2019年北师大版初中七年级数学上册3.3 整式强化练习

合集下载

北师大版数学七年级上册 3.3 整式 习题及答案

北师大版数学七年级上册 3.3 整式 习题及答案

北师大版数学七年级上册 3.3 整式 习题及答案[知识点]整式、多项式和单项式的概念1.数与 的 的代数式叫做单项式,单独 个数或 个字母也是单项式。

2.几个 的 叫做多项式。

3. 和 统称整式。

4.单项式的系数:单项式中的 因数叫做这个单项式的系数。

5.单项式的次数:一个单项式中,所有字母的 叫做这个单项式的次数。

6.多项式的项:在多项式中,每个 叫做多项式的项。

7.多项式的次数:一个多项式中, 的项的次数,叫做这个多项式的次数。

[预习自检]1.单项式-12mn 的系数是 ,次数 。

2.多项式-13x 2y -3x+2中,它的项分别为 ,它的次数是 。

[基础练习]1.下列代数式中,全是单项式的一组是( )A. 1x,2,ab 2B.a ,2,12mnC.x−y3,1,y D.x -y ,-3,12(a -b )2.下列各式:-x+1,p+3,6>2,x−yx+y ,0,S=12ab ,65y ,x−y π中,整式有( )A.6个B. 5个C. 4个D. 3个3.一个六次多项式,它的任何一项的次数都( )A. 小于6B. 等于6C. 不小于6D. 不大于64.单项式 5xy 3z 27的系数是,次数是 。

5.多项式a 5-5a 3b+9ab 2-1的最高次项为 ,多项式的项为 ,次数为 。

[能力提升]6.下列说法错误的是( )A.单项式b 的系数和次数都是1B.数字1也是单项式C.-2xy 3是系数为-23的二次单项式 D. 2a-a 是多项式7.如果-12a 2b 2n -1是五次单项式,则n 的值为( )A.1B.2C.3D.48.多项式-3x2―5x―1的各项分别是()A. -3x2,5x,1B. -3x2,―5x,―1C. 3x2,5x,1D. 3x2,―5x,―19. 多项式1+xy-xy2的次数及最高次项的系数分别是()A. 2,1B. 2,-1C. 3,-1D. 5,-110. 多项式-2a+3b2+1中各项的系数分别是()A. -2,3,0B. -2,3,1C. 2,3,1D. -2,-3,111. 对于代数式-23x2yz的系数,下列说法正确的是()A. 系数为-2B. 系数为-6C. 系数为-8D. 系数为812.代数式 − 2x 3y37的系数是。

北师大版七年级数学上册3.3整式同步练习含答案

北师大版七年级数学上册3.3整式同步练习含答案

3 整式关键问答①1x是单项式吗?是多项式吗? ②单独的一个数或一个字母是单项式吗?1.①②在代数式:①a 2;②1x ;③x 2-x -1;④-2;⑤x -y 3;⑥-34ab 中,单项式有________,多项式有________.(填序号)2.单项式-65ab 4的系数是________,次数是________.3.多项式-x 3y +2x -5,其中最高次项是________,最高次项的次数是________,常数项是________.命题点 1单项式及有关概念 [热度:92%]4.③在代数式52x 2-3x ,2πx 2y ,1x ,-5,a ,0,3x -y 2中,单项式的个数是( )A .1B .2C .3D .4 方法点拨③判断一个代数式是不是单项式,关键就是看式子中的数与字母或字母与字母之间是不是纯粹的乘积关系,单独的一个数或一个字母也是单项式.如果一个代数式中含有加、减的关系,那么它就不是单项式;分母有字母(π除外)的式子一定不是单项式5.④单项式-3πxy 22的系数与次数分别是( )A .3,3B .-12,3C .-32,4D .-32π,3易错警示④(1)系数也包括前面的符号; (2) π表示一个数.6.⑤已知(a -1)x 2y a+1是关于x ,y 的五次单项式,则这个单项式的系数是( )A .1B .2C .3D .0 解题突破⑤根据单项式的次数先求得a ,从而确定单项式,再求单项式的系数. 7.⑥下列说法正确的是( )A .单项式b 的次数是0 B.1x 是一次单项式C .24x 3是7次单项式D .-a 的系数是-1 易错警示⑥单项式的次数是所有字母指数的和,24是数命题点 2 多项式及有关概念 [热度:94%] 8.⑦多项式-x 2-12x +1的各项分别是( )A .-x 2,12x ,1B .-x 2,-12x ,1C .x 2,12x ,1D .x 2,-12x ,+1易错警示⑦多项式的项包括其前面的符号9.⑧下列对于多项式1-2x +12x 2的说法,错误的是( )A .是二次三项式B .由1,2x ,12x 2三项组成C .最高次项的系数是12 D .一次项的系数是-2易错警示⑧(1)不可以把多项式中各项的次数的和看作多项式的次数.(2)写出多项式的每一项时,不要漏掉“-”,如2a -b 中的项分别是2a ,-b .10.按某种标准把多项式进行分类时,3x 3-4和a 2b +ab 2+1属于同一类,则下列哪一个多项式也属于此类( ) A .abc -1 B .x 2-y C .3x 2+2xy 4 D .m 2+2mn +n 211.多项式12x |m |-x +m -4是关于x 的四次三项式,则m 的值是( )A .4B .-2C .-4D .4或-412.如果一个多项式是五次多项式,那么它任何一项的次数( ) A .都小于5 B .都等于5 C .都不小于5 D .都不大于513.如果x n -(m -1)x +2是关于x 的三次二项式,那么m 2+n =________. 解题突破⑨x 的一次项,是指这个单项式只含有一个字母x ,且次数为1. 方法点拨⑩多项式不含有哪一项,这一项的系数就为0.14.⑨⑩若多项式x 2+(k -1)x +3中不含有x 的一次项,则k =________.15.一个关于a ,b 的多项式,除常数项为-1外,其余各项的次数都是3,系数都为-1,并且各项都不相同,这个多项式最多有几项?请将这个多项式写出来.16.⑪我们做如下规定:把一个多项式按照同一个字母的指数从大到小的顺序排列,常数项放在最后,叫做这个多项式按此字母的降幂排列;把一个多项式按照同一个字母的指数从小到大的顺序排列,常数项放在最前,叫做这个多项式按此字母的升幂排列.依据规定把多项式3mn 2-2m 2n 3+5-8m 3n 重新排列: (1)按m 的降幂排列; (2)按n 的升幂排列.方法点拨⑪按某一字母的升幂排列或降幂排列,指的是只按这一字母的指数自小到大(升幂)或自大到小(降幂)依据加法交换律来重新把项进行排序.17.将(a-b)看成一个字母,把代数式-(a-b)2-2-(a-b)3+2(a-b)按字母(a-b)降幂排列,若设x=a-b.(1)将上述代数式改写成关于x的多项式.(2)已知a=b+2,先求x,并求出上述代数式的值.详解详析3 整式1.①④⑥ ③⑤ 2.-65 53.-x 3y 4 -54.D [解析] 式子52x 2-3x ,3x -y 2有减法运算,式子1x 分母中含字母,都不是单项式,另外四个都是单项式.故选D.5.D6.A [解析] 由题意,得a +1+2=5,解得a =2,则这个单项式的系数是a -1=1,故选A. 7.D 8.B 9.B10.A [解析] 3x 3-4和a 2b +ab 2+1属于同一类,都是三次多项式,A.abc -1是三次多项式,故本选项符合题意;B.x 2-y 是二次多项式,故本选项不符合题意;C.3x 2+2xy 4是五次多项式,故本选项不符合题意;D.m 2+2mn +n 2是二次多项式,故本选项不符合题意.故选A.11.C [解析] 因为多项式12x |m |-x +m -4是关于x 的四次三项式,所以|m |=4,m -4≠0, 所以m =-4. 故选C.12.D [解析] 多项式的次数为各项中次数最高的项的次数.既然为五次多项式,也就是各项的次数最高为5次,任何一项的次数只能小于或等于5.13.4 [解析] 由题意,得n =3,m =1,所以m 2+n =4.14.1 [解析] 多项式x 2+(k -1)x +3中不含有x 的一次项,即(k -1)x =0,所以k -1=0,解得k =1. 15.解:这个多项式最多有五项,即-a 3-ab 2-a 2b -b 3-1. 16.解:(1)按m 的降幂排列为-8m 3n -2m 2n 3+3mn 2+5.(2)按n的升幂排列为5-8m3n+3mn2-2m2n3.17.解:按字母(a-b)降幂排列为-(a-b)3-(a-b)2+2(a-b)-2.(1)改写为-x3-x2+2x-2.(2)由题意知x=a-b=2,所以原式=-23-22+2×2-2=-10. 【关键问答】①不是,不是.②是.。

七年级数学上册 第三章 整式及其加减 3.3 整式作业设计 (新版)北师大版-(新版)北师大版初中七

七年级数学上册 第三章 整式及其加减 3.3 整式作业设计 (新版)北师大版-(新版)北师大版初中七

整式一、选择题1. 下列各整式中,次数为3次的单项式是()A. xy2B. xy3C. x+y2D. x+y32. 单项式4xy2z3的次数是()A. 3B. 4C. 5D. 63. 如果单项式3a n b2c是5次单项式,那么n=()A. 2B. 3C. 4D. 54. 下列代数式中,是4次单项式的为()A. 4abcB. ﹣2πx2yC. xyz2D. x4+y4+z45. 按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A. abc﹣1B. x2﹣2C. 3x2+2xy4D. m2+2mn+n26. 若关于x,y的多项式x2y﹣7mxyy3+6xy化简后不含二次项,则m=()A. B. C. ﹣ D. 07. 下列四个判断,其中错误的是()A. 数字0也是单项式B. 单项式a的系数与次数都是1C. x2y2是二次单项式D. ﹣的系数是8. 单项式的次数是()A. ﹣23B. ﹣C. 6D. 39. 单项式﹣32xy2z3的次数和系数分别为()A. 6,﹣3B. 6,﹣9C. 5,9D. 7,﹣910. 下列代数式中:①a;②πr2;③x2+1;④﹣3a2b;⑤.单项式的个数是()A. 2B. 3C. 4D. 5二、填空题11. x2y是__次单项式.12. 代数式ab﹣πxy﹣x3的次数是__,其中﹣πxy项的系数是__.13. 多项式x2﹣4x﹣8是__次__项式.14. 若代数式6a m b4是六次单项式.则m=__.15. 多项式(mx+4)(2﹣3x)展开后不含x项,则m=__.16. 一组按规律排列的式子:,,,,…则第n个式子是__(n为正整数).三、解答题17. 观察下列一串单项式的特点:xy,﹣2x2y,4x3y,﹣8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?18. 将多项式按字母X的降幂排列.19. 单项式x2y m与多项式x2y2+x3y4+的次数相同,求m的值.20. (1)已知代数式:4x﹣4xy+y2﹣x2y3.①将代数式按照y的次数降幂排列;②当x=2,y=﹣1时,求该代数式的值.(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.21. 关于x、y的多项式(m﹣2)+(n+3)xy2+3xy﹣5.(1)若原多项式是五次多项式,求m、n的值;(2)若原多项式是五次四项式,求m、n的值.答案一、选择题1. 【答案】A【解析】本题利用单项式的次数的定义解决,所含字母的指数之和.A选项的次数是3次;B 选项的次数是4次;C选项不是单项式;D选项不是单项式.故选A.2.【答案】D【解析】单项式的次数是指单项式中所有字母指数的和,1+2+3=6,故选D.3. 【答案】A【解析】根据单项式的次数的概念可得,n+2+1=5,解得n=2.故选A.4. 【答案】C【解析】A. 4abc,3次单项式; B. ﹣2πx2y,3次单项式; C. xyz2,4次单项式; D. x4+y4+z4,4次多项式,故符合题意的只有C,故选C.5. 【答案】A【解析】从多项式的次数考虑求解.3x3﹣4和a2b+ab2+1属于同一类,都是3次多项式,A、abc﹣1是3次多项式,故本选项正确;B、x2﹣2是2次多项式,故本选项错误;C、3x2+2xy4是5次多项式,故本选项错误;D、m2+2mn+n2是2次多项式,故本选项错误.故选A.6.【答案】B【解析】先将已知多项式合并同类项,得2y+3+(6-7m)xy,由于不含二次项,由此可以得到关于m方程,解方程即可求出m.2323+(6-7m)xy.∵不含二次项,∴6-7m=0,∴m=67.故选B.7.【答案】C【解析】A. 数字0也是单项式,正确,故不符合题意;B. 单项式a的系数与次数都是1,正确,故不符合题意,C. x2y2是4次单项式,故C错误,符合题意;D. ﹣的系数是,正确,故不符合题意,故选C.8.【答案】D【解析】根据单项式次数的定义,所有字母的指数和是2+1=3,故次数是3.故选D.9. 【答案】B【解析】单项式的次数是指单项式中所有字母指数的和,单项式的系数是指单项式中的数字因数,由此可得单项式﹣32xy2z3的次数是:1+2+3=6,系数是-32=-9,故选B.【点睛】本题主要考查单项式的系数与次数,熟记概念是解题的关键.10. 【答案】B【解析】①a,单项式;②πr2,单项式;③x2+1,多项式;④﹣3a2b单项式;⑤,不是整式,所以单项式有3个,故选B.【点睛】本题主要考查单项式,记住单项式的概念并能正确区分是解题的关键.二、填空题11.【答案】3【解析】根据单项式次数的概念可知x2y是3次单项式,故答案为:3.12.【答案】 (1). 3 (2).【解析】根据单项式和多项式的概念求解.多项式ab-πxy-x3是3次3项式.单项式系数是故答案为:3.点睛:本题考查了多项式和单项式的知识,几个单项式的和叫做多项式;数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.13. 【答案】 (1). 二 (2). 三【解析】多项式x2﹣4x﹣8次数是2,项数是3,所以该多项式是二次三项式,故答案为:二,三.14. 【答案】2【解析】根据题意则有:m+4=6,解得,m=2,故答案为:2.15. 【答案】6【解析】先将多项式展开,再合并同类项,然后根据题意即可解答.∵(mx+4)(2-3x)=2mx-3mx2+8-12x=-3mx2+(2m-12)x+8,∵展开后不含x项,∴2m-12=0,即m=6,故填空答案:6.16.【答案】【解析】分子依次是:a ,a 3,a 5,a 7,a 9,…,a 2n-1;分母依次是:2,4,6,8,10,…,2n;故可得第n个式子为:,故答案为:.【点睛】本题是规律题,解题的关键是根据已知所给的式子正确地分析分子、分母的变化规律.三、解答题17. 【答案】(1)256x9y;(2)(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【解析】(1)通过观察可得:n为偶数时,单项式的系数为负数,x的指数为n时,系数的绝对值是2n-1,由此即可解答本题;(2)先根据已知确定出第n个单项式,然后再根据单项式的系数是指单项式的数字因数,次数是所有字母指数的和解答即可.解:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y;(2)∵n为偶数时,单项式的系数为负数,x的指数为n时,系数为2n﹣1,单项式为-2n﹣1x n y,当n为奇数时的单项式为2n﹣1x n y,所以第n个单项式为(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【点睛】本题考查的是单项式,根据题意找出各式子的规律是解答此题的关键.18.【答案】【解析】先分别求出各单项式里x的次数,再按x的降幂排列,即把x按从高次到低次排列.解:多项式的项为:,所以按字母x的降幂排列为:.19. 【答案】5【解析】根据单项式的次数与多项式的次数分别求出单项式的次数与多项式的次数,根据次数相同列出方程,解方程即可得.解:∵单项式x2y m与多项式x2y2+x3y4+的次数相同,∴2+m=7,解得m=5.故m的值是5.20. 【答案】(1)①﹣x2y3+y2﹣4xy+4x;②21;(2)1.【解析】(1)①按照字母y的次数从高到低进行排列即可;②把x、y的值代入进行求值即可;(2)根据多项式的次数和项数的定义即可求得m、n的值,然后再代入进行求值即可. 解:(1)已知代数式:4x﹣4xy+y2﹣x2y3,①将代数式按照y的次数降幂排列为﹣x2y3+y2﹣4xy+4x;②当x=2,y=﹣1时,4x﹣4xy+y2﹣x2y3=8+8+1+4=21;(2)∵关于xyz的代数式-(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,∴,解得,∴|m﹣n|=|1﹣2|=1.21. 【答案】(1)m=﹣2、n为任意实数;(2)m=﹣2,n≠﹣3.【解析】(1)根据多项式的次数的定义求得m、n的值即可;(2)根据多项式的次数和项数的定义求得两个未知数的值或取值X围即可.解:(1)∵关于x、y的多项式(m﹣2)+(n+3)xy2+3xy﹣5是五次多项式,∴,解得:m=﹣2,∴原多项式是五次多项式,m=﹣2、n为任意实数;(2)∵关于x、y的多项式(m﹣2)+(n+3)xy2+3xy﹣5为五次四项式,∴,解得:m=-2,n≠-3,∴原多项式是五次四项式,m=﹣2,n≠﹣3.【点睛】本题考查了多项式的定义,了解多项式的有关定义是解答本题的关键.。

3.3整式北师大版七年级数学上册习题ppt

3.3整式北师大版七年级数学上册习题ppt
式分别为-4037x2019,4039x2020.
0既不是单项式也不是多项式
因为3x2ny5-m的次数也是6,所以2n+5-m=6,所以n=2.
(1)这组单项式的系数的符号规律是(-1)n(或负号、正号依次出现),系数的绝对值规律是
2n-1(或从1开始的连续奇数) ;
(1)这组单项式的系数的符号规律是(-1)n(或负号、正号依次出现),系数的绝对值规律是
C.3
D.4
5.对于多项式3x2-y+3x2y3+x4-1,下列说法正确的是( C )
A.次数为12
B.常数项为1
C.项数为5
D.最高次项为x4
-3-
3. 3 整

知识要点基础练
综合能力提升练
拓展探究突破练
知识点 3 整式
6.下列各式中,不是整式的是( B )
A.6ab

B.

C.a+1

7.(改编)在代数式 2xy,0,3
3. 3 整

知识要点基础练
综合能力提升练
拓展探究突破练
16.已知多项式x4-y-3xy-2xy2-5x2y3-1,按要求解答下列问题:
(1)写出该多项式的各项;
解:各项分别是x4,-y,-3xy,-2xy2,-5x2y3,-1.
(2)该多项式的次数是 5 ,三次项的系数是 -2 ;
(3)若|x+1|+|y-2|=0,试求该多项式的值.
已知多项式x4-y-3xy-2xy2-5x2y3-1,按要求解答下列问题:
下列说法中,正确的是( D )
(2)各项分别为3x2,-38x4y,-2.
(2)这组单项式的次数的规律是 从1开始的连续自然数 ;

2019年北师大版七年级上《3.3.2整式》同步练习含答案解析

2019年北师大版七年级上《3.3.2整式》同步练习含答案解析

《3.3.2整式》一、选择题1.下列说法中正确的是()A.单项式x的系数和次数都是零B.34x3是7次单项式C.5πR2的系数是5D.0是单项式2.下列说法中正确的是()A.3x3﹣2x2+1是五次三项式B.3m2﹣是二次二项式C.x2﹣x﹣34是四次三项式D.2x2﹣2x+3中一次项系数为﹣23.将多项式﹣a2+a3+1﹣a按字母a升幂排列正确的是()A.a3﹣a2﹣a+1 B.﹣a﹣a2+a3+1 C.1+a3﹣a2﹣a D.1﹣a﹣a2+a34.下列式子中属于二次三项式的是()A.2x2+3 B.﹣x2+3x﹣1 C.x3+2x2+3 D.x4﹣x2+15.多项式﹣6y3+4xy2﹣x2+3x3y是按()排列.A.x的升幂B.x的降幂C.y的升幂D.y的降幂6.同时都含有字母a、b、c,且系数为1的7次单项式共有()A.4个B.12个C.15个D.25个二、填空题7.代数式①a3﹣1,②0,③m+,④,⑤,⑥中单项式有;多项式有(填序号).8.是次单项式,系数是.9.a4﹣3a2b+3ab2﹣b3﹣3是次项式,它的项分别是,常数项是.10.把多项式2x4﹣1+2x2﹣3x3﹣x按x的降幂排列为.11.把多项式3﹣m2n3﹣2n2﹣m2n按n的升幂排列为.12.关于m的多项式6m n+1﹣am n+m n﹣1﹣1是三次三项式,则a= ,n= .13.3a2b m+1c是六次单项式,则m= .三、解答题14.对于多项式3x2﹣x4y﹣1.3+2xy2,分别回答下列问题:(1)是几项式;(2)写出它的各项;(3)写出它的最高次项;(4)写出最高次项的次数;(5)写出多项式的次数;(6)写出常数项.15.将多项式x3y3﹣4xy4+x4y+y4﹣x2y2先按x的降幂排列,再按y的升幂排列,并指出它是几次几项式,常数项和最高次项系数各是多少.16.写出系数是3,均含有字母a、b的所有五次单项式.17.补入下列多项式的缺项,并按字母x降幂排列(1)﹣x+x3﹣5(3)2+x2﹣x3﹣x5.18.一个关于a、b的多项式,除常数项为﹣1外,其余各项的次数都是3,系数都为﹣1,并且各项都不相同,这个多项式最多有几项?请将这个多项式写出来.并先将它按字母a降幂排列,再把它按字母b升幂排列.19.下列关于x、y的多项式是一个四次三项式,试确定m、n的值,并指出这个多项式是按哪一个字母的升幂还是降幂排列的.m﹣2+x m﹣1y+(3﹣m)x m﹣2y﹣nx2y m﹣3+x m﹣4y2.20.(1)将(a﹣b)看成一个字母,把代数式﹣(a﹣b)2﹣2﹣(a﹣b)3+2(a﹣b)按字母“a﹣b”降幂排列,若设x=a﹣b,将上述代数式改写成关于x的多项式.(2)已知a=b+2,先求x,并求出上述代数式的值.《3.3.2整式》参考答案与试题解析一、选择题1.下列说法中正确的是()A.单项式x的系数和次数都是零B.34x3是7次单项式C.5πR2的系数是5D.0是单项式【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:根据单项式的系数和次数的定义:A、单项式x的系数是1,次数都是1,B、34x3是3次单项式,字母指数是3,C、5πR2的系数是5π,π是常数,D、0是单项式.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.2.下列说法中正确的是()A.3x3﹣2x2+1是五次三项式B.3m2﹣是二次二项式C.x2﹣x﹣34是四次三项式D.2x2﹣2x+3中一次项系数为﹣2【考点】多项式.【分析】此题是对多项式性质进行分析,多项式的次数是“多项式中次数最高的项的次数”,据此可解此题.【解答】解:A、3x3﹣2x2+1是三次三项式,故错误;B、3m2﹣分式,故错误;x2﹣x﹣34是二次三项式,故错误;D、2x2﹣2x+3的一次项系数是﹣2,正确.故选D【点评】解题的关键是弄清多项式次数是多项式中次数最高的项的次数.易错点:由于概念理解不透彻,容易错选A或B.3.将多项式﹣a2+a3+1﹣a按字母a升幂排列正确的是()A.a3﹣a2﹣a+1 B.﹣a﹣a2+a3+1 C.1+a3﹣a2﹣a D.1﹣a﹣a2+a3【考点】多项式.【分析】按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面.【解答】解:∵多项式﹣a2+a3+1﹣a中,﹣a的指数是1,﹣a2的指数是2,a3的指数是3,∴按字母a升幂排列为1﹣a﹣a2+a3.故选D.【点评】把一个多项式按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面.如果是降幂排列应按此字母的指数从大到小依次排列,常数项应放在最后面.4.下列式子中属于二次三项式的是()A.2x2+3 B.﹣x2+3x﹣1 C.x3+2x2+3 D.x4﹣x2+1【考点】多项式.【分析】运用多项式的次数及项数的定义求解即可.【解答】解:由多项式的次数与项数的定义得﹣x2+3x﹣1二次三项式.故选:B.【点评】本题主要考查了多项式,解题的关键是运用多项式的次数及项数的定义求解.5.多项式﹣6y3+4xy2﹣x2+3x3y是按()排列.A.x的升幂B.x的降幂C.y的升幂D.y的降幂【考点】多项式.【分析】根据字母x的次数从低到高排列叫按x的升幂排列.【解答】解:﹣6y3+4xy2﹣x2+3x3y是按字母x的升幂排列,故选A.【点评】本题考查了多项式,掌握升降幂排列是解题的关键.6.同时都含有字母a、b、c,且系数为1的7次单项式共有()A.4个B.12个C.15个D.25个【考点】单项式.【专题】常规题型.【分析】根据题意可得a,b,c的指数和为7,分情况讨论即可.【解答】解:a,b,c的指数分别为:1、1、5;1、2、4;1、3、3;1、4、2;1、5、1;2、1、4;2、2、3;2、3、2;2、4、1;3、1、3;3、2、2;3、3、1;4、1、2;4、2、1;5、1、1;共15种情况,故选C.【点评】本题考查了单项式的次数,所有字母的指数和.二、填空题7.代数式①a3﹣1,②0,③m+,④,⑤,⑥中单项式有②⑤;多项式有①④(填序号).【考点】整式.【分析】解决本题关键是搞清整式、单项式、多项式的概念,紧扣概念作出判断.【解答】解:根据整式,单项式,多项式的概念可知,单项式有②⑤;多项式有①④.故本题答案为:②⑤;①④【点评】主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.8.是9 次单项式,系数是﹣.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,是1+3+5=9次单项式,系数是﹣.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.9.a4﹣3a2b+3ab2﹣b3﹣3是四次五项式,它的项分别是a4,﹣3a2b,3ab2,﹣b3,﹣3 ,常数项是﹣3 .【考点】多项式.【分析】根据多项式项、次数的概念解答.【解答】解:a4﹣3a2b+3ab2﹣b3﹣3是四次五项式,它的项分别是a4,﹣3a2b,3ab2,﹣b3,﹣3,常数项是﹣3.【点评】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中,所有字母的指数和叫做这个单项式的次数;(3)几个单项式的和叫多项式;(4)多项式中的每个单项式叫做多项式的项;(5)多项式中不含字母的项叫常数项;(6)多项式里次数最高项的次数,叫做这个多项式的次数.10.把多项式2x4﹣1+2x2﹣3x3﹣x按x的降幂排列为2x4﹣3x3+2x2﹣x﹣1 .【考点】多项式.【分析】按x的指数从大到小排列即可.【解答】解:把多项式2x4﹣1+2x2﹣3x3﹣x按x的降幂排列为2x4﹣3x3+2x2﹣x﹣1,故答案为:2x4﹣3x3+2x2﹣x﹣1.【点评】此题主要考查了多项式,关键是掌握降幂排列的定义,按照某个字母的指数从大到小排列.11.把多项式3﹣m2n3﹣2n2﹣m2n按n的升幂排列为3﹣m2n﹣2n2﹣m2n3.【考点】多项式.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:按n的升幂排列为3﹣m2n﹣2n2﹣m2n3.故答案为:3﹣m2n﹣2n2﹣m2n3.【点评】此题考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.12.关于m的多项式6m n+1﹣am n+m n﹣1﹣1是三次三项式,则a= 0 ,n= 2 .【考点】多项式.【分析】直接利用多项式的定义得出a的值以及n+1的值.【解答】解:∵关于m的多项式6m n+1﹣am n+m n﹣1﹣1是三次三项式,∴a=0,n+1=3,解得:n=2.故答案为:0,2.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.13.3a2b m+1c是六次单项式,则m= 2 .【考点】单项式.【分析】根据六次单项式的定义可得2+m+1+1=6,解方程即可求解.【解答】解:依题意有2+m+1+1=6,解得m=2.故答案为:2.【点评】此题考查了单项式的次数,关键是熟悉一个单项式中所有字母的指数的和叫做单项式的次数.三、解答题14.对于多项式3x2﹣x4y﹣1.3+2xy2,分别回答下列问题:(1)是几项式;(2)写出它的各项;(3)写出它的最高次项;(4)写出最高次项的次数;(5)写出多项式的次数;(6)写出常数项.【考点】多项式.【分析】多项式是由单项式组成,包括常数,确定单项式是包括前面的符号,多项式的次数是“多项式中次数最高的项的次数”.根据前面的定义即可确定多项式3x2﹣x4y﹣1.3+2xy2的项数,最高次项,次数.【解答】解:多项式3x2﹣x4y﹣1.3+2xy2有4项组成,最高项是﹣x4y,次数是5,常数项是﹣1.3.∴(1)四项式;(2)3x2,﹣ x4y,﹣1.3,2xy2;(3)﹣x4y;(4)5次;(5)5次;(6)﹣1.3.【点评】多项式是由单项式组成,多项式中不含字母的项是常数项,确定单项式是包括前面的符号,多项式的次数是“多项式中次数最高的项的次数”.15.将多项式x3y3﹣4xy4+x4y+y4﹣x2y2先按x的降幂排列,再按y的升幂排列,并指出它是几次几项式,常数项和最高次项系数各是多少.【考点】多项式.【分析】按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,降幂正好相反,多项式x3y3﹣4xy4+x4y+y4﹣x2y2中x的指数依次是3,1,4,0,2.按x的降幂排列为x4y+x3y3﹣x2y2﹣4xy4+y4,y的次数依次为3,4,1,4,2,按y的升幂排列x4y﹣x2y2+x3y3+y4﹣4xy4,有四个单项式组成,常数项没有,即为0.【解答】解:x3y3﹣4xy4+x4y+y4﹣x2y2先按x的降幂排列为x4y+x3y3﹣x2y2﹣4xy4+y4,按y的升幂排列为x4y﹣x2y2+x3y3+y4﹣4xy4,它是六次五项式,常数项为0,最高次项系数为1.【点评】按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,降幂正好相反,多项式的次数是“多项式中次数最高的项的次数”.16.写出系数是3,均含有字母a、b的所有五次单项式.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:写出系数是3,均含有字母a、b的所有五次单项式如3ab4,3a2b3.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.17.补入下列多项式的缺项,并按字母x降幂排列(1)﹣x+x3﹣5(3)2+x2﹣x3﹣x5.【考点】多项式.【分析】(1)补一个x2,然后再按字母x降幂排列即可;(2)补x+x4,然后再按字母x降幂排列即可.【解答】解:(1)﹣x+x3﹣5+x2=x3+x2﹣x﹣5;(2)2+x2﹣x3﹣x5+x+x4=﹣x5+x4﹣x3+x2+x+2.【点评】此题主要考查了多项式,关键是掌握降幂排列的定义,按照某个字母的指数从大到小排列.18.一个关于a、b的多项式,除常数项为﹣1外,其余各项的次数都是3,系数都为﹣1,并且各项都不相同,这个多项式最多有几项?请将这个多项式写出来.并先将它按字母a降幂排列,再把它按字母b升幂排列.【考点】多项式.【分析】根据多项式的次数的概念确定这个多项式,再排列即可.【解答】解:这个多项式最多有五项,如:﹣a3﹣ab2﹣a2b﹣b3﹣1,按字母a降幂排列为﹣a3﹣a2b﹣ab2﹣b3﹣1;按字母b升幂排列为﹣1﹣a3﹣a2b﹣ab2﹣b3.【点评】本题考查的是多项式的概念,能根据题意写出这个多项式是解此题的关键.19.下列关于x、y的多项式是一个四次三项式,试确定m、n的值,并指出这个多项式是按哪一个字母的升幂还是降幂排列的.m﹣2+x m﹣1y+(3﹣m)x m﹣2y﹣nx2y m﹣3+x m﹣4y2.【考点】多项式.【分析】直接利用多项式的定义得出m,n的值,进而得出答案.【解答】解:∵m﹣2+x m﹣1y+(3﹣m)x m﹣2y﹣nx2y m﹣3+x m﹣4y2是关于x、y的多项式是一个四次三项式,∴m﹣1=3,n=0,解得:m=4∴m﹣2+x m﹣1y+(3﹣m)x m﹣2y﹣nx2y m﹣3+x m﹣4y2=2+x3y﹣x2y+y2,则这个多项式是按y的升幂排列的.【点评】此题主要考查了多项式,正确得出m,n的值是解题关键.20.(1)将(a﹣b)看成一个字母,把代数式﹣(a﹣b)2﹣2﹣(a﹣b)3+2(a﹣b)按字母“a﹣b”降幂排列,若设x=a﹣b,将上述代数式改写成关于x的多项式.(2)已知a=b+2,先求x,并求出上述代数式的值.【考点】多项式.【分析】(1)将(a﹣b)看成一个整体,将指数从高到低进行排列.利用x=a﹣b代入即可.(2)由题意可知:x=a﹣b=2,代入代数式即可.【解答】解:(1)由题意可知:按字母(a﹣b)降幂排列为:﹣(a﹣b)3﹣(a﹣b)2+2(a﹣b)﹣2,改写为:﹣x3﹣x2+2x﹣2;(2)由题意知:x=a﹣b=2,∴原式=﹣23﹣22+2×2﹣2=﹣10.【点评】本题考查多项式降幂排列以及代入求值问题,属于基础题型.。

北师大版七年级上册3.3整式同步测试题含答案

北师大版七年级上册3.3整式同步测试题含答案

北师大版七年级上册 第三章 整式及其加减 3.3 整式 同步测试题1.在式子-x 2,1x,x -2,-10a 2,0.8中, 单项式有________________.2.-a 2b 的系数是________,次数是________;26x 3y 2的系数是________,次数是________;-3m 2n 5的系数是________,次数是________. 3.-4a 2b 的次数是( )A .3B .2C .4D .-44.下列说法正确的是( )A .单项式m 的次数是0B .-12πa 的系数是-12C .2πr 2的次数是3D.-a 2b 3的系数为-13,次数为3 5.下列说法正确的是( )A .单项式x 的系数和次数都是0B .单项式x 的系数和2的系数一样都是1C .5πR 2的系数为5D .0是单项式6.下列说法正确的是( )A .单项式-xy 25的系数是-5,次数是2 B .单项式a 的系数为1,次数是0C.xy -12是二次单项式 D .单项式-67ab 的系数为-67,次数是2 7.下列式子:2a 2b ,3xy -2y 2,a +b 2,4,-m ,x +yz 2x ,ab -c π,其中多项式有( ) A .2个B .3个C .4个D .5个8.多项式4x 2-3x -2是________次________项式,它的项分别是________.-53a 2b 2+a 3-34ab +1是________次________项式,它的二次项的系数是________. 9.多项式1+2xy -3xy 2的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .2,310.下列各多项式中,是二次三项式的是( )A .a 2+b 2B .x +y +7C .5-x -y 2D .x 2-y 2+x -3x 211.下列说法错误的是( )A.2a+b 是一次二项式 B .x 6-1是六次二项式C .3x 4-5x 2y 2-6y 3+2是四次四项式D.1x 2+2x+1不是多项式 12.下列式子中:①mn +a ;②ax 2+bx +c ;③-6ab ;④x +y 2;⑤a -b x;⑥5+7x.整式有________.(填序号)13.式子m +n 7,-4,-53xy ,b a -2,x n ,1x -3中单项式有,多项式有 . 14.代数式x +yz ,4a ,mn 3+ma +b ,-x ,1,3xy 2,15m ,m +n 4,m +n ab 中( ) A .有5个单项式,4个多项式B .有8个整式C .有9个整式D .有4个单项式,3个多项式15.(1)2x 2-3x -1中,二次项是________,二次项系数是________;一次项是________,一次项系数是________;常数项是________.(2)3a 2b 2-2ab 2+12ab -1是________次多项式, 它有________项,故是________次________项式.16.在代数式x 2+5,-1,-3x +2,π,5x ,x 2+1x +1,5x 中,整式有( ) A .3个 B .4个C .5个D .6个17.下列语句中错误的是( )A .数字0也是单项式B .单项式a 的系数与次数都是1C.12x 2y 2是二次单项式 D .-2ab 3的系数是-2318.(3m -2)x 2y n +1是关于x ,y 的五次单项式,且系数为1,则m ,n 的值分别是( )A .1,4B .1,2C .0,5D .1,119.如果整式x n -2-5x +2是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .620.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12, 则这个二次三项式为________________________.21.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.22.如果|a +1|+(b -2)2=0,那么单项式-xa +byb -a 的次数是多少?23.某种商品进价为a 元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原价的70%)的价格开展促销活动,这时一件该商品的售价为多少?此时是盈利销售还是亏本销售?24.有一个多项式为a10-a9b +a8b2-a7b3+…,按这种规律写下去.(1)写出它的第六项和最后一项;(2)这个多项式是几次几项式?答案:1. -x 2,-10a 2,0.82. -1 326 5-35 33. A4. D5. D6. D7. B8. 二 三 4x 2,-3x ,-2四 四 -349. A10. C11. A12. ①②③④⑥13. -4,-53xy m +n 714. D15. (1) 2x 22-3x -3-1(2) 四四 四 四16. C17. C18. B19. C20. -12x 2+x -1221. 根据题意得2+m +1=6解得:m =3,2n +2=6解得n =2,所以m 2+n 2=1322. 因为|a +1|+(b -2)2=0,所以a +1=0,b -2=0,即a =-1,b =2.所以-x a +b y b -a =-xy 3.所以单项式-x a +b y b -a 的次数是423. 根据题意列式得:(1+30%)70%·a =0.91a 元,这时一件该商品的售价为0.91a,此时是亏本销售。

强化训练北师大版七年级数学上册第三章整式及其加减单元测试试卷(详解版)

强化训练北师大版七年级数学上册第三章整式及其加减单元测试试卷(详解版)

七年级数学上册第三章整式及其加减单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列代数式中单项式共有( )2312314,,,0.3,,,,,0,353a b m ax b r a x y ππ+--+-. A .2个 B .4个 C .6个 D .8个2、如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式.如323342x xy xyz y +++是3次齐次多项式,若32326x a b ab c +-是齐次多项式,则x 的值为( )A .1-B .0C .1D .2 3、如果0xy ≠,22103xy axy +=,那么a 的值为( )A .-3B .13- C .0 D .3 4、下列各式:﹣12mn ,m ,8,1a ,x 2+2x +6,25x y -,24x y π+,y 3﹣5y +1y 中,整式有( ) A .3个 B .4个 C .6个 D .7个5、黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-6、代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差7、下列各式中去括号正确的是( )A .a 2-(2a -b 2+b )=a 2-2a -b 2+bB .2x 2-3(x -5)=2x 2-3x +5C .-(2x +y )-(-x 2+y 2)=-2x +y +x 2-y 2D .-a 3-[-4a 2+(1-3a )]=-a 3+4a 2-1+3a8、下列去括号正确的是( ).A .1()1a b a b --=--B .12()12a b a b +-=+-C .1()1a b a b --=+-D .1()1a b a b --=-+9、下列各项中的两项,为同类项的是( )A .22x y -与2xyB .2π与3y πC . 3mn 与4nm -D .0.5ab -与abc10、若3223323M x x y xy y =-++,322325N x x y xy y =-+-,则322327514x x y xy y -++的值为( ).A .M N +B .M N -C .3M N -D .3N M -第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、请写出一个系数为1-,只含字母x 和y 的五次单项式_______,最多能写出_______个.2、一个多项式减去3x 等于2535x x --,则这个多项式为________.3、已知多项式4(1)25n m x x x --+-是三次三项式,则(m +1)n =___.4、观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形中共有________个〇.5、一个菜地共占地(6m +2n )亩,其中(3m +6n )亩种植白菜,种植黄瓜的地是种植白菜的地的13,剩下的地种植时令蔬菜,则种植时令蔬菜的地有_________亩.三、解答题(5小题,每小题10分,共计50分)1、如图,从边长为()5a +cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),求长方形的面积.2、化简:(1)2222625x y xy x y xy --+; (2)23322352427x x x x x -+--++-;(3)22223456m mn n mn n -+--; (4)333362534x y xy xy x y -++-;(5)2222212685342ab a b ab a b ab -+++--; (6)222()3()6()5()m n n m m n m n -+-----.3、(1)若(a ﹣2)2+|b +3|=0,则(a +b )2019= .(2)已知多项式(6x 2+2ax ﹣y +6)﹣(3bx 2+2x +5y ﹣1),若它的值与字母x 的取值无关,求a 、b 的值;(3)已知(a +b )2+|b ﹣1|=b ﹣1,且|a +3b ﹣3|=5,求a ﹣b 的值.4、已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式;(2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值. 5、化简:(1)()()2245223x y x y +--; (2)113(22)4623y z x y z x ⎛⎫----+ ⎪⎝⎭; (3)12[2(65)3]2x x x -+--+; (4)(32)7[5(2)3]x y z x x y z --++---+-.-参考答案-一、单选题1、C【解析】【分析】根据单项式的定义,即可得到答案.【详解】解:2312314,,,0.3,,,,,0,353a b m ax b r a x y ππ+--+-中,单项式有,m -30.3,,,5b π-340,3r π,共6个, 故选C .【考点】本题主要考查单项式的定义,掌握“数字和字母,字母和字母的乘积叫做单项式,单独的字母和数字也叫单项式”是解题的关键.2、C【解析】【分析】根据齐次多项式的定义列出关于x 的方程,最后求出x 的值即可.【详解】解:由题意,得x +2+3=1+3+2解得x =1.故选C .【考点】本题主要考查了学生的阅读能力与知识的迁移能力以及单项式的次数,根据齐次多项式列出方程成为解答本题的关键.3、B【解析】【分析】 根据同类项的定义可知,213xy 和2axy 是同类项,两数和为0,且0xy ≠,则系数13和a 互为相反数,求解即可.【详解】∵0xy ≠,22103xy axy +=,则213xy 和2axy 是同类项, ∴系数互为相反数, ∴1+3a =0, 即13a =-, 故选:B .【考点】本题考查了同类项的定义,相反数的定义,熟记同类项的定义是解题的关键.4、C【解析】【分析】根据整式的定义,结合题意即可得出答案.【详解】 解:在﹣12mn ,m ,8,1a ,x 2+2x +6,25x y -,24x y π+,y 3﹣5y +1y 中,整式有﹣12mn ,m ,8, x 2+2x +6,25x y -,24x y π+,一共6个. 故选:C .【考点】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.5、D【解析】先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.【详解】解:()22537351x x x x +---+22=537351x x x x +--+-2288x x =+-所以的计算过程是:()22288351x x x x +---+22288351x x x x =+---+2139x x =-+-故选:.D【考点】本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.6、D【解析】【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D.用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.7、D【解析】【分析】直接利用去括号法则进而分析得出答案.【详解】解:A 、a 2-(2a -b 2-b )=a 2-2a +b 2+b ,故此选项错误;B 、2x 2-3(x -5)=2x 2-3x +15,故此选项错误;C 、-(2x +y )-(-x 2+y 2)=-2x -y +x 2-y 2,故此选项错误;D 、-a 3-[-4a 2+(1-3a )]=-a 3+4a 2-1+3a ,正确.故选:D .【考点】此题主要考查了去括号法则,正确掌握去括号法则是解题关键.8、D【解析】【分析】根据去括号的法则逐项判断即可求解.【详解】解:A 、1()1a b a b --=-+,故本选项错误,不符合题意;B 、12()122+-=+-a b a b ,故本选项错误,不符合题意;C 、1()1a b a b --=-+,故本选项错误,不符合题意;D 、1()1a b a b --=-+,故本选项正确,符合题意.故选:D .【考点】本题主要考查了去括号法则,熟练掌握去括号法则——如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.9、C【解析】【分析】含有相同的字母,相同字母的指数分别相同的项是同类项,依此判定即可.【详解】A. 22x y -与2xy 不是同类项,不符合题意;B. 2π与3y π不是同类项,不符合题意; C.3mn 与4nm -是同类项; D. 0.5ab -与abc 不是同类项,不符合题意.【考点】此题考查同类项,熟记定义即可正确解答.10、C【解析】【分析】分别计算:M N +,M N -,3M N -,3N M -化简后可得答案.【详解】解:32232532M N x x y xy y +=-+-,故A 不符合题意;2238M N x y xy y -=-++,故B 不符合题意;322332233396925M N x x y xy y x x y xy y -=-++-+-+3223=27514x x y xy y -++,故C 符合题意;322332233=36315323N M x x y xy y x x y xy y --+--+--3223=2318x x y xy y -+-,故D 不符合题意;故选:.C【考点】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.二、填空题1、 23x y -(答案不唯一) 4【解析】【分析】根据单项式的系数和次数概念,按要求写出答案即可.【详解】解:一个系数为1-,只含字母x 和y 的五次单项式为:23x y -,还可以是:4xy -,32x y -41x y -,最多可以写出4个.故答案是:23x y -,4.【考点】本题主要考查单项式的相关概念,熟练掌握单项式的次数和稀释概念是解题的关键.2、255x -【解析】【分析】要求的多项式实际上是2(535)3x x x --+,化简可得出结果.【详解】解:2(535)3x x x --+=225353=55x x x x --+-,故答案为:255x -.【考点】此题考查整式的加减计算,正确掌握整式的去括号法则及合并同类项法则是解题的关键. 3、8【解析】【分析】根据多项式的项、次数的定义可得这个多项式中不含4(1)m x -,且n x -的次数为3,由此可得出,m n 的值,再代入计算即可得.【详解】解:由题意得:10,3m n -==,即1,3m n ==,则3(1)(11)8n m +=+=,故答案为:8.【考点】本题考查了多项式的项和次数,掌握理解定义是解题关键.4、6055【解析】【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【详解】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为6055.【考点】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.5、(2m-6n)【解析】【分析】根据题意列出算式6m+2n-[(3m+6n)+13(3m+6n)],再去括号、合并同类项即可.【详解】解:种植时令蔬菜的地的面积为6m +2n -[(3m +6n )+13(3m +6n )]=6m +2n -43(3m +6n )=6m +2n -4m -8n=2m -6n (亩),故答案为:(2m -6n ).【考点】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.三、解答题1、()()2824cm a + 【解析】【分析】根据拼图的过程可得出长方形的长与宽,进而表示其面积即可.【详解】由拼图可知,长方形的长为:()()()5126a a a +++=+cm ,宽为:()()514a a +-+=(cm ),所以长方形的面积为:()()()2264824cm a a +⨯=+ 答:长方形的面积为()()2824cm a +. 【考点】本题考查整式加减的应用,理解拼图的过程,得出拼成长方形的长与宽是解决问题的关键.2、(1)22x y xy -;(2)3412x x +-;(3)22282m mn n --;(4)3325x y xy ++;(5)22238 3.53a b ab ab +-+;(6)22()4()m n m n ----. 【解析】【分析】根据同类项的概念,合并同类项即可,其中第6小题将m n -看作一个整体进行计算即可.【详解】(1)2222625x y xy x y xy --+()()226521x y xy =-+-+22x y xy =-;(2)23322352427x x x x x -+--++-()3232(22)457x x x =-+-++--=3412x x +-;(3)22223456m mn n mn n -+--222(35)(46)m mn n =+--+-=22282m mn n --;(4)333362534x y xy xy x y -++-()()3364235x y xy =-+-++3325x y xy =++;(5)2222212685342ab a b ab a b ab -+++-- ()22212584632a b ab ab ⎛⎫=-+++-+- ⎪⎝⎭=22238 3.53a b ab ab +-+;(6)222()3()6()5()m n n m m n m n -+-----=222()3()6()5()m n m n m n m n -+-----=()()226()35()m n n m --+--=22()4()m n m n ----.【考点】本题考查了多项式的加减,掌握合并同类项的方法是解题的关键.3、(1)﹣1;(2)a =1,b =2;(3)a ﹣b =﹣8.【解析】【分析】(1)利用非负数和的性质可求a =2,b =﹣3,再求代数式的之即可;(2)将原式去括号合并同类项原式=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解方程即可;(3)利用非负数性质可得a +b =0且|b ﹣1|=b ﹣1,可得010a b b +=⎧⎨-≥⎩,由|a +3b ﹣3|=5,可得a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去)即可.【详解】解:(1)∵(a ﹣2)2+|b +3|=0,且(a ﹣2)2≥0,|b +3|≥0,∴a ﹣2=0,b +3=0,解得a =2,b =﹣3,∴(a +b )2019=(2﹣3)2019=﹣1.故答案为:﹣1;(2)原式=6x 2+2ax ﹣y +6﹣3bx 2﹣2x ﹣5y +1,=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解得:a =1,b =2;(3)∵(a +b )2+|b ﹣1|=b ﹣1,∴(a +b )2+|b ﹣1|-(b ﹣1)=0,∵|b ﹣1|≥(b ﹣1),∴|b ﹣1|-(b ﹣1)≥0,(a +b )2≥0,∴a +b =0且|b ﹣1|=b ﹣1,∴010a b b +=⎧⎨-≥⎩, 解得,1a b b =-⎧⎨≥⎩, ∵|a +3b ﹣3|=5,∴a +3b ﹣3=5或a +3b ﹣3=-5,∴a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去),∴a ﹣b =﹣4﹣4=﹣8.【考点】本题考查非负数和的性质,以及代数式的值与字母x的取值无关,绝对值化简,掌握非负数和的性质,以及代数式的值与字母x的取值无关的解法是解题关键.4、(1)﹣2a2b+ab2+2abc;(2) 8a2b﹣5ab2;(3)对,0.【解析】【分析】(1)根据B=4a2b﹣3ab2+4abc-2A列出关系式,去括号合并即可得到B;(2)把A与B代入2A-B中,去括号合并即可得到结果;(3)把a与b的值代入计算即可求出值.【详解】解:(1)∵2A+B=4a2b﹣3ab2+4abc,∴B=4a2b﹣3ab2+4abc-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc;(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2;(3)对,由(2)化简的结果可知与c无关,将a=18,b=15代入,得8a2b-5ab2=8×218⎛⎫⎪⎝⎭×15-5×18×21()5=0.【考点】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.5、(1)26y ;(2)1106y x -;(3)410x +;(4)710x -+【解析】【分析】先去括号,再合并同类项化简求解即可.【详解】解:(1)原式224204626x y x y y =+-+=;(2)原式111664610236y z x y z x y x =--+++=-;(3)原式1226532410x x x x =--+++=+;(4)原式327523710x y z x x y z x =-+-+-+-++=-+;【考点】此题考查了整式的加减运算,熟练掌握去括号、合并同类项法则是解本题的关键.。

北师大版七年级数学上学期同步随堂优测:3.3 整式

北师大版七年级数学上学期同步随堂优测:3.3 整式

3 整式
1.下列式子:①ab +c ,②ax 2+bx +c ,③-5,④π,⑤x -y 2,⑥2x x -1
.是整式的有____________,是单项式的有____________,是多项式的有________________________________________________________________________.(只填序号)
2.下列结论正确的是 ( ) A.x 2y 28的系数是8
B .-23mnx 的次数是1
C .单项式a 的系数和次数都0
D .-23x 2
y 3是3次单项式,系数为-83
3.下列说法正确的是 (
) A .7+1a 是多项式
B .3x 4-5x 2y 2-6y 4-2是四次四项式
C .x 6-1的项数和次数都是6
D.1m -1n 是整式
4.已知(m +1)2x 2y n -1是关于x 、y 的六次单项式,其系数为4,求m 、n 的值.
5.说出下列多项式的项数、次数、最高次项系数,常数项.
(1)4x 2-3x +9; (2)a -a 2b +b 2+37;
(3)a 2+2ab +b 2; (4)x 2-23xy 2-12+y 2.
3 整式
1.①②③④⑤ ③④ ①②⑤
2.D 3.B
4.m =1或-3,n =5.
5.(1)是二次三项式,最高次项系数是4,常数项是9;
(2)是三次四项式,最高次项系数是-1,常数项是37
; (3)是二次三项式,最高次项系数是1、2、1,常数项为0;
(4)是三次四项式,最高次项系数是-23,常数项是-12
.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 整式
一、选择题(每小题4分,共12分)
1.下列说法正确的是( )
A.2a不是单项式
B.是单项式
C.的一次项系数是1
D.1是单项式
2.单项式-的系数与次数分别是( )
A.-3,3
B.-,3
C.-,4
D.-,3
3.多项式(a-1)x3+(b-1)x是关于x的一次式,则a,b的值可以为( )
A.0,3
B.0,1
C.1,2
D.1,1
二、填空题(每小题4分,共12分)
4.单项式32013xy2的次数是.
5.如果mx n y是关于x,y的一个单项式,且系数是9,次数是4,则m= ,n= .
6.(2012·沈阳中考)有一组多项式:a+b2,a2-b4,a3+b6,a4-b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.
三、解答题(共26分)
7.(8分)把下列代数式按单项式、多项式、整式进行分类.
x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1,.
8.(8分)关于x,y的多项式(3a+2)x2+(9a+10b)xy-x+2y+7不含二次项,求3a-5b.
【拓展延伸】
9.(10分)已知多项式a4+(m+2)a n b-ab+3.
(1)当m,n满足什么条件时,它是五次四项式?
(2)当m,n满足什么条件时,它是四次三项式?
答案解析
1.【解析】选D.A、2a是单项式,B、=+是多项式,C、=-,故一次项系数是.
2.【解析】选D.因为-的系数为-,次数为1+2=3,所以选D.
3.【解析】选C.因为是关于x的一次式,所以不含有x的3次项,即a-1=0,所以a=1,是关于x的一次式,故b-1≠0.综上满足条件的只有
C.
4.【解析】因为单项式中的字母指数分别是1,2,
故32013xy2是3次单项式.
答案:3
5.【解析】因为mx n y是关于x,y的一个单项式,且系数是9,次数是4,所以m=9,n+1=4,则n=3.
答案:9 3
6.【解析】观察第1个多项式为:a1+b2×1,
第2个多项式为:a2-b2×2,
第3个多项式为:a3+b2×3,
第4个多项式为:a4-b2×4,

所以第n个多项式为:a n+(-1)n+1b2n,
所以第10个多项式为:a10-b20.
答案:a10-b20
7.【解析】本题的实质就是识别单项式、多项式与整式.单项式中数和字母、字母和字母之间必须是相乘的关系,多项式必须是几个单项式的和的形式.
单项式有x2y,-,-29,600xz,axy.
多项式有a-b,x+y2-5,2ax+9b-5,xyz-1.
整式有x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1.
8.【解析】由题意,知(3a+2)x2,(9a+10b)xy这两项是二次项,由于不含有二次项,
所以3a+2=0,9a+10b=0,所以a=-,b=,
所以3a-5b=3×(-)-5×=-2-3=-5.
9.【解析】(1)当a4+(m+2)a n b-ab+3是五次四项式时,
m+2≠0,n+1=5,
所以当m≠-2,n=4时,多项式是五次四项式.
(2)当a4+(m+2)a n b-ab+3是四次三项式时,
①m+2=0,m=-2.
与n的值无关,即m=-2,n为任意数时,它是四次三项式.
②m+2-1≠0,且n=1,即m≠-1,n=1时它是四次三项式.
【归纳整合】有关多项式的次数和项数的问题,应注意多项式的次数是指多项式中次数最高项的次数,而不是各项次数的和,多项式中的项是指多项式中的每一个单项式,这里的“项”应包括其前面的符号.。

相关文档
最新文档