真题练习
中考语文真题专项练习——句子排序

中考语文真题专项练习——句子排序1.(2020江西)下列句子组成语段顺序排列正确的一项是(2分)()①那些杀身成仁的志士将生命视作敝履,他们并非对于生已感到厌倦,相反,他们倒是乐生的人。
②这是“生”的美丽之最高的体现。
③他们是为了保持“生”的美丽,维持多数人的生存,而毅然献出自己的生命的。
④这样深的爱!甚至那躯壳化为泥土,这爱也还笼罩世间,跟着太阳和明星永久闪耀。
⑤“生”的确实是美丽的,乐“生”是人的本分。
A. ①③④②⑤B. ①③②④⑤C. ⑤①③④②D. ⑤②①③④2.(2020重庆B卷)将下列句子组成一段连贯的话,排序合理的一项是(3分)()①入夜,华灯齐放,礼花飞舞,广场上空一片辉煌。
②每当国庆节到来,天安门广场花团锦簇,姹紫嫣红。
③鲜花、彩灯、礼花,映衬着人们的歌舞,天安门广场沸腾起来了。
④无数盆鲜花组成一个个大花坛,把广场装点得五彩缤纷。
A. ①④②③B. ②④①③C. ①③④②D. ②①④③3.(2020云南省卷)给下列句子排序,最恰当的一项是(2分)()①但是,现在我们知道实际情形并不是这样。
②通过对格陵兰岛冰核的测量,我们有了一份10多万年以来地球气候变化的详细记录。
结果并不乐观。
③相反,它的气候总是在温暖和严寒之间剧烈地摇摆不停,快速变化。
④在很长一段时间内,我们认为地球是渐渐地进入和脱离冰川期的,其周期在数十万年以上。
⑤记录表明地球在最近一段历史时期根本不是人们以前所认为的那样,是一个风调雨顺的安身之处。
A. ②⑤③①④B. ②④①⑤③C. ④①②⑤③D. ④①⑤②③4.(2020盐城)将下列句子组成语意连贯的一段话,排序最恰当的一项是(2分)()①因为柠檬的酸性比葡萄更明显,所以网友们现在选择了“吃柠檬”来表示妒忌。
②但是在网络时代,“柠檬”代替了“葡萄”成为“酸”的代名词。
③“吃柠檬”的人就成了“柠檬人”,形容那些躲在键盘后表达很多酸言酸语的人。
④原来有一句熟语“吃不到葡萄说葡萄酸”,用来形容妒忌的心态。
初一上数学真题专题练习---绝对值的几何意义

绝对值的几何意义【真题精选】1.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和6两点之间的距离是,数轴上表示1和﹣4的两点之间的距离是.②数轴上表示x和﹣3的两点之间的距离表示为.数轴上表示x和6的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+4|的最小值=.④若x表示一个有理数,且|x+1|+|x﹣3|=4,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣4|有最小值为.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.3.阅读材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|,当两点中有一点在原点时,不妨设点A在原点.如图1.|AB|=|OB|=|b|=|a﹣b|;当A,B 两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.请你仿照上例,回答下列问题:①数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当﹣3<x<2时,|x+3|+|x+2|=;④当代数式|x﹣2|+|x+1|取最小值时,相应的x的取值范围是;⑤|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2010|最小值是.4.式子|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值是()A.2B.4C.6D.85.当式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1999|取得最小值时,实数x的值是()A.1B.999C.1000D.19996.代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2002|的最小值是.7.|x+1|+|x﹣2|+|x﹣2012|的最小值为.8.|x+1|+|x+2|+|x+3|+…+|x+2014|的最小值为.9.若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有()A.4个B.5个C.6个D.7个10.我们知道,在数轴上,|a|表示数a到原点的距离.进一步地,点A,B在数轴上分别表示有理数a,b,那么A,B两点之间的距离就表示为|a﹣b|;反过来,|a﹣b|也就表示A,B两点之间的距离.下面,我们将利用这两种语言的互化,再辅助以图形语言解决问题.例,若|x+5|=2,那么x为:①|x+5|=2,即|x﹣(﹣5)|=2.文字语言:数轴上什么数到﹣5的距离等于2.②图形语言:③答案:x为﹣7和﹣3.请你模仿上题的①②③,完成下列各题:(1)若|x+4|=|x﹣2|,求x的值;①文字语言:②图形语言:③答案:(2)|x﹣3|﹣|x|=2时,求x的值:①文字语言:②图形语言:③答案:(3)|x﹣1|+|x﹣3|>4.求x的取值范围:①文字语言:②图形语言:③答案:(4)求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值.①文字语言:②图形语言:③答案:【挑战来袭】11.如果|x﹣a|+|x|<2没有实数解,则a的取值范围是.12.若不等式|x﹣2|+|x+3|+|x﹣1|≥a对一切数x都成立,则a的取值范围是.13.对于全体实数x,不等式|x﹣1|+2|x﹣9|+|x﹣2|+|x﹣10|+|x﹣11|≥m恒成立,求m的最大值.绝对值的几何意义参考答案与试题解析1.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和6两点之间的距离是4,数轴上表示1和﹣4的两点之间的距离是5.②数轴上表示x和﹣3的两点之间的距离表示为|x+3|.数轴上表示x和6的两点之间的距离表示为|x﹣6|.③若x表示一个有理数,则|x﹣1|+|x+4|的最小值=5.④若x表示一个有理数,且|x+1|+|x﹣3|=4,则满足条件的所有整数x的是﹣1或0或1或2或3.⑤若x表示一个有理数,当x为3,式子|x+2|+|x﹣3|+|x﹣4|有最小值为6.【分析】①数轴上两点间的距离等于两个数的差的绝对值;②数轴上两点间的距离等于两个数的差的绝对值;③根据绝对值几何意义即可得出结论.④分情况讨论计算即可得出结论;⑤|x+2|+|x﹣3|+|x﹣4|表示数轴上某点到表示﹣2、3、4三点的距离之和,【解答】解:①数轴上表示2和6两点之间的距离是|6﹣2|=4,数轴上表示1和﹣4的两点之间的距离是|1﹣(﹣4)|=5;故答案为:4,5;②数轴上表示x和﹣3的两点之间的距离表示为|x﹣(﹣3)|=|x+3|,数轴上表示x和6的两点之间的距离表示为|x﹣6|;故答案为:|x+3|,|x﹣6|;③根据绝对值的定义有:|x﹣1|+|x+4|可表示为点x到1与﹣4两点距离之和,根据几何意义分析可知:当x在﹣4与1之间时,|x﹣1|+|x+4|有最小值5,故答案为:5;④当x<﹣1时,|x+1|+|x﹣3|=﹣x﹣1+3﹣x=﹣2x+2=4,解得:x=﹣1,此时不符合x<﹣1,舍去;当﹣1≤x≤3时,|x+1|+|x﹣3|=x+1+3﹣x=4,此时x=﹣1或x=0,x=1,x=2,x=3;当x>3时,|x+1|+|x﹣3|=x+1+x﹣3=2x﹣2=4,解得:x=3,此时不符合x>3,舍去;故答案为:﹣1或0或1或2或3;⑤:∵可看作是数轴上表示x的点到﹣2、3、4三点的距离之和,∴当x=3时,|x+2|+|x﹣3|+|x﹣4|有最小值.∴|x+2|+|x﹣3|+|x﹣4|的最小值=|3+2|+|3﹣3|+|3﹣4|=6.故答案为3,6.【点评】此题是绝对值题目,主要考查的是绝对值的应用,明确|x+2|+|x﹣3|+|x﹣4|的几何意义是解题的关键.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是3;表示﹣3和2两点之间的距离是5;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=2或﹣4;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是8,最小距离是2.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=6.【分析】(1)根据数轴,观察两点之间的距离即可解决;(2)根据绝对值可得:x+1=±3,即可解答;(3)根据绝对值分别求出a,b的值,再分别讨论,即可解答;(4)根据|a+4|+|a﹣2|表示数a的点到﹣4与2两点的距离的和即可求解.【解答】解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.【点评】此题考查数轴上两点之间的距离的算法:数轴上两点之间的距离等于相应两数差的绝对值,应牢记且会灵活应用.3.阅读材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|,当两点中有一点在原点时,不妨设点A在原点.如图1.|AB|=|OB|=|b|=|a﹣b|;当A,B 两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.请你仿照上例,回答下列问题:①数轴上表示﹣2和﹣5的两点之间的距离是3;数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;③当﹣3<x<2时,|x+3|+|x+2|=1或2x+5;④当代数式|x﹣2|+|x+1|取最小值时,相应的x的取值范围是﹣1≤x≤2;⑤|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2010|最小值是1010025.【分析】①根据(1)中的知识可以得到两点之间的距离就是较大的数与较小的数的差,据此即可求解;②根据(1),即可直接写出结果;③利用﹣3<x<﹣2时,当﹣2≤x<2时,分别求出即可;④代数式|x﹣1|+|x+2|表示数轴上一点到1、﹣2两点的距离的和,根据两点之间线段最短,进而得出答案;⑤利用y=|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2010|是数轴上点x与1、2、3、…2010的距离和,进而得出当1005≤x≤1006 时,y最小求出即可.【解答】解:①数轴上表示﹣2和﹣5的两点之间的距离是﹣2﹣(﹣5)=3,数轴上表示1和﹣3的两点之间的距离是1﹣(﹣3)=4;故答案为:3;②数轴上表示x和﹣1的两点之间的距离是|x+1|,|AB|=2,则|x+1|=2,故x=1或﹣3;故答案为:|x+1|,1或﹣3;③当﹣3<x<﹣2时,|x+3|+|x+2|=x+3﹣x﹣2=1,当﹣2≤x<2时,|x+3|+|x+2|=x+3+x+2=2x+5,故答案为:1或2x+5;④若|x+1|+|x﹣2|取最小值,那么表示x的点M在﹣1和2之间的线段上,所以﹣1≤x≤2;故答案为:﹣1≤x≤2;⑤由题意可得:y=|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2010|是数轴上点x与1、2、3、…2010的距离和.所以,当1005≤x≤1006 时,y最小=(2010﹣1)+(2009﹣2)+(2008﹣3)+…+(1006﹣1005)=2009+2007+2005+…+3+1=10052=1010025.故答案为:1010025.【点评】此题主要考查了绝对值、数轴等知识,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.4.式子|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值是()A.2B.4C.6D.8【分析】分x≤2、2<x≤4、4<x≤8以及x>8四种情况考虑,消去绝对值符号,根据一次函数的性质找出每段|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的取值范围,由此即可得出结论.【解答】解:当x≤2时,原式=(2﹣x)+(4﹣x)+(4﹣x)+(8﹣x)=18﹣4x,∵﹣4<0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≥10;当2<x≤4时,原式=(x﹣2)+(4﹣x)+(4﹣x)+(8﹣x)=14﹣2x,∵﹣2<0,∴此时6≤|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|<10;当4<x≤8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(8﹣x)=2x﹣2,∵2>0,∴此时6<|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≤14;当x>8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(x﹣8)=4x﹣18,∵4>0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|>14.综上可知:|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值为6.故选:C.【点评】本题考查了绝对值,解题的关键是根据(x﹣2)(x﹣4)(x﹣8)=0确定将x分四段来考虑.5.当式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1999|取得最小值时,实数x的值是()A.1B.999C.1000D.1999【分析】观察已知条件可以发现,|x﹣a|表示x到a的距离.要使题中式子取得最小值,则应该找出与最小数和最大数距离相等的x的值,此时式子得出的值则为最小值.【解答】解:由已知条件可知,|x﹣a|表示x到a的距离,只有当x到1的距离等于x到1999的距离时,式子取得最小值.所以当x==1000时,式子取得最小值.故选:C.【点评】本题考查了绝对值,做此题需要一定的技巧,要结合绝对值的定义来考虑.另外还要知道,当x与最小数和最大数距离相等时,式子才能取得最小值.6.代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2002|的最小值是1002001.【分析】可以用数形结合来解题:x为数轴上的一点,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣2002|表示:点x到数轴上的2002个点(1、2、3、…、2002)的距离之和,进而分析得出最小值.【解答】解:在数轴上,要使点x到两定点的距离和最小,则x在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x≤2002时,|x﹣1|+|x﹣2002|有最小值2001;当2≤x≤2002时,|x﹣2|+|x﹣2002|有最小值2000;…当x=1001时,|x﹣1001|有最小值0.综上,当1001<x<1002时,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣2002|能够取到最小值,最小值为:x﹣1+x﹣2+x﹣3+…+2001﹣x+2002﹣x=﹣1﹣2﹣3﹣…﹣1001+1002+1003+…+2002=1001×1001=1002001.故答案为:1002001.【点评】此题主要考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出1001<x<1002时,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣2002|能够取到最小值是解题关键.7.|x+1|+|x﹣2|+|x﹣2012|的最小值为2013.【分析】根据x的取值范围结合绝对值的意义分情况进行计算.【解答】方法一:解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣2012|=﹣x﹣1﹣x+2﹣x+2012=﹣3x+2013,则﹣3x+2013≥2016;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣2012|=x+1﹣x+2﹣x+2012=﹣x+2015,则2013≤﹣x+2015<2014;当2<x≤2012时,|x+1|+|x﹣2|+|x﹣2012|=x+1+x﹣2﹣x+2013=x+2012,则2014<x+2012≤4024;当x>2012时,|x+1|+|x﹣2|+|x﹣2012|=x+1+x﹣2+x﹣2012=3x﹣2013,则3x﹣2013>4023.综上所述|x+1|+|x﹣2|+|x﹣2012|的最小值为2013.方法二:x为数轴上任意一点,|x+1|+|x﹣2|+|x﹣2012|表示数轴上表示x的点到表示数﹣1,2,2012三点的距离和,当x=2是,距离和最小,为3+2010=2013.故答案为:2013.【点评】本题重点考查了绝对值的知识,化简绝对值是数学的重点也是难点,先明确x的取值范围,才能求得|x+1|+|x﹣2|+|x﹣2012|的最小值.8.|x+1|+|x+2|+|x+3|+…+|x+2014|的最小值为1014049.【分析】研究|x+1|+|x+2|+|x+3|+…+|x+2014|的最小值,利用当绝对值的个数为奇数时,取得最小值x是其中间项,而当绝对值的个数为偶数时,则x取中间两项结果一样.从而得出对于|x+1|+|x+2|+|x+3|+…+|x+2014|,当x=﹣1007或﹣1008时取得最小值.【解答】解:由绝对值的几何意义可知,当绝对值的个数为奇数时,取得最小值x是其中间项,而当绝对值的个数为偶数时,则x取中间两项结果一样.因此,对于函数|x+1|+|x+2|+|x+3|+…+|x+2014|,当x=﹣1007或﹣1008时,取得最小值为:1006+1005+…+0+1+2+1007=1006×(1+1006)+1007=1014049.故答案为:1014049.【点评】本小题主要考查带绝对值的函数、函数的最值等基础知识,考查运算求解能力,归纳能力.属于基础题.9.若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有()A.4个B.5个C.6个D.7个【分析】依据|x﹣2|+|x+4|=6,分类讨论即可得到所有整数x即可.【解答】解:①当x<﹣4时,|x﹣2|+|x+4|>6(不合题意);②当﹣4≤x≤2时,|x﹣2|+|x+4|=6,符合题意的所有整数x的值为﹣4,﹣3,﹣2,﹣1,0,1,2,③当x>2时,|x﹣2|+|x+4|>6(不合题意);综上所述,满足|x﹣2|+|x+4|=6的所有整数x的个数是7.故选:D.【点评】此题考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.10.我们知道,在数轴上,|a|表示数a到原点的距离.进一步地,点A,B在数轴上分别表示有理数a,b,那么A,B两点之间的距离就表示为|a﹣b|;反过来,|a﹣b|也就表示A,B两点之间的距离.下面,我们将利用这两种语言的互化,再辅助以图形语言解决问题.例,若|x+5|=2,那么x为:①|x+5|=2,即|x﹣(﹣5)|=2.文字语言:数轴上什么数到﹣5的距离等于2.②图形语言:③答案:x为﹣7和﹣3.请你模仿上题的①②③,完成下列各题:(1)若|x+4|=|x﹣2|,求x的值;①文字语言:②图形语言:③答案:(2)|x﹣3|﹣|x|=2时,求x的值:①文字语言:②图形语言:③答案:(3)|x﹣1|+|x﹣3|>4.求x的取值范围:①文字语言:②图形语言:③答案:(4)求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值.①文字语言:②图形语言:③答案:【分析】运用数形结合思想:图一图二图三图四【解答】解:(1)文字语言:数轴上什么数到﹣4的距离等于到2的距离.图形语言:答案:x=﹣1.(2)文字语言:数轴上什么数到3的距离比到原点(0)的距离大2.图形语言:答案:x=.(3)文字语言:数轴上什么数到1的距离和它到3的距离大于4.图形语言:答案:x>4,x<0.(4)文字语言:数轴上什么数到1,2,3,4,5距离之和最小值.图形语言:答案:6.【点评】本题主要考查了绝对值的性质以及利用数形结合求解问题.11.如果|x﹣a|+|x|<2没有实数解,则a的取值范围是a≥2或a≤﹣2.【分析】先将绝对值不等式转化成y1=和y2=,要使|x﹣a|+|x|<2没有实数解,则有y2>y1没有实数解,借助图象,即可得出结论.【解答】解:∵|x﹣a|+|x|<2,∴|x﹣a|<2﹣|x|,设y1=|x﹣a|,y2=2﹣|x|,∴y1=,y2=,如图,函数y2=的图象是定的,当y=0时,x=2或x=﹣2,∴A(2,0),B(﹣2,0),∵|x﹣a|+|x|<2没有实数解,∴y2>y1没有实数解,即函数y1的图象不在函数y2的图象的上方,∴a≥2或a≤﹣2,故答案为:a≥2或a≤﹣2.【点评】此题主要考查了绝对值不等式,绝对值函数图象的画法,利用数形结合是解本题的关键.12.若不等式|x﹣2|+|x+3|+|x﹣1|≥a对一切数x都成立,则a的取值范围是a≤5.【分析】先判断出|x﹣2|+|x+3|+|x﹣1|表示x到﹣3,1,2这三个点的距离之和,而x=1时,距离之和最小,即可得出结论.【解答】解:如图,由数轴知,|x﹣2|+|x+3|+|x﹣1|表示x到﹣3,1,2这三个点的距离之和.当x=1时,距离之和最小,此时|x﹣2|+|x+3|+|x﹣1|=1+4=5,即不等式|x﹣2|+|x+3|+|x﹣1|≥5对一切数x都成立,∴a≤5,故答案为:a≤5.【点评】本题考查绝对值,解题的关键是学会利用数形结合的思想解决问题.13.对于全体实数x,不等式|x﹣1|+2|x﹣9|+|x﹣2|+|x﹣10|+|x﹣11|≥m恒成立,求m的最大值.【分析】先找出零点,再判断出x=9时,|x﹣1|+|x﹣9|+|x﹣9|+|x﹣2|+|x﹣10|+|x﹣11|取最小值,即可得出结论.【解答】解:按顺序排列零点:1,2,9,9,10,11,共六个,∴当x=9时,|x﹣1|+|x﹣9|+|x﹣9|+|x﹣2|+|x﹣10|+|x﹣11|取最小值,最小值为8+0+0+7+1+2=18,故m的最大值为18.【点评】此题主要考查了绝对值不等式,解决此题问题的关键是找到零点,对于含绝对值的问题一般可采用零点分段法,若有偶数个零点,则最小值在中间两点之间(含端点)取到;若有奇数个零点,则最小值在中间点取到.。
粉笔练习题和真题

粉笔练习题和真题一、选择题1. 下列哪个词语不属于表示颜色的词语?A. 碧绿B. 火红C. 喜悦D. 湛蓝A. 月亮像一把镰刀。
B. 他跑得快。
C. 雪花飘落下来。
D. 小明很聪明。
A. 推波助澜B. 多此一举C. 捅马蜂窝D. 鹬蚌相争二、填空题1. 《庐山谣》的作者是______。
2. “人生自古谁无死,留取丹心照汗青”出自______的作品。
3. “春眠不觉晓,处处闻啼鸟”是______的诗句。
三、判断题1. 《红楼梦》是我国四大名著之一。
()2. 语文、数学、英语是小学阶段的必考科目。
()3. 诺贝尔奖设立于1901年。
()四、简答题1. 请简要介绍一下我国的四大发明。
2. 请列举三种常见的修辞手法。
3. 请简述《水浒传》中的宋江形象。
五、作文题请以“我的梦想”为题,写一篇不少于300字的作文。
六、真题演练(一)2019年高考语文真题阅读下面的文言文,完成14题。
……(二)2018年中考数学真题已知函数f(x) = 2x + 3,求f(2)的值。
……(三)2017年高考英语真题阅读下面短文,根据短文内容回答问题。
……七、阅读理解题(一)现代文阅读阅读下面的文章,回答问题。
文章《时间的价值》:时间是无声的,它不会告诉我们它的重要性,但我们的生活却无时无刻不在证明着它的价值。
人们常说“一寸光阴一寸金,寸金难买寸光阴”,这句话道出了时间的珍贵。
那么,我们如何才能更好地利用时间呢?1. 作者在文章中提到的“一寸光阴一寸金”是用来比喻什么的?2. 请简述文章中提到的至少两种利用时间的方法。
(二)古诗文阅读阅读下面的古诗,回答问题。
《静夜思》床前明月光,疑是地上霜。
举头望明月,低头思故乡。
1. 请解释“疑是地上霜”中的“疑”字在诗句中的作用。
2. 诗人通过这首诗表达了怎样的情感?八、完形填空题阅读下面的短文,从下面四个选项中选择最合适的词语填空。
秋天来了,树叶(1)______了颜色,金黄的落叶(2)______了一地。
高中语文2024高考复习修改病句专项练习(真题+典例)(附参考答案和相关知识讲解)

高考语文修改病句专项练习班级考号姓名总分一、真题练习1、(2023新课标全国Ⅰ卷)……有一位记者,①拥有人们只能望其项背的超强记忆力。
②他虽然能轻松地记住一长串数字,③却发现不了其中的规律;④他脑海里充满各种孤立的事实,⑤却不能归纳出一些模式将它们组织起来。
⑥这促使他不能理解隐喻等修辞手法,⑦甚至复杂一点的句子。
⑧记忆大师奥布莱恩曾多次获得世界记忆锦标赛冠军,⑨虽然他的阅读理解能力比常人低很多,⑩听课的时候也很难集中注意力。
也许正是牺牲了一部分记忆,我们才有了独一无二的归纳和抽象思维能力。
……文中第二段有三处表述不当,请指出其序号并做修改,使语言表达准确流畅,逻辑严密。
不得改变原意。
2、(2023新高考全国Ⅱ卷)文中画横线的部分有语病,请进行修改,使语言表达准确流畅。
可增删少量词语,但不得改变原意。
……对耳朵来说,过大的声音就是噪音,噪音会对耳道产生压力,压力又会撞击鼓膜听骨链传到内耳,震荡前庭淋巴液,这一系列连锁反应下来,会出现晕车一样的头晕症状。
声音过大还会损坏耳蜗中的听觉毛细胞,导致耳鸣。
如果长时间暴露在过大的声音中,会使听觉毛细胞失去敏感性,无法接收声音的信号,形成暂时或永久性听力下降。
3、(2023全国甲卷)文中画横线的语句中有一处表述不当,请标出原句序号后再做修改,并使修改后的语句与上下文的衔接流畅自然。
事有凑巧,在不同的时间和不同的地方,我听见过三位老师讲“破釜沉舟”这个成语。
第一位教师是这样讲的:“‘破釜沉舟’表示坚决的意思。
做事一定要坚决。
无论做什么,只要是正当的、应该做的事,就必须抱定只许前进而不许后退、只许胜利而不许失败的决心,只有这样才能得到成功。
如果(),工作还没开始就准备下失败的退路,那样一定不会成功。
①当然,②前进的目的必须正确。
③在这一点上,④我们不能跟古人相提并论。
……4.(2022全国乙卷)阅读下面的文字,完成下题。
视网膜动脉阻塞时,视网膜缺血时间越长,对视功能危害越大。
初一上数学真题专题练习---一元一次方程的应用(二)

一元一次方程的应用(二)【真题精选】1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是分钟时,选择方式一与方式二的费用相同.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有人.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:(注:应纳税额=纳税所得额﹣起征额﹣专项附加扣除)小吴2019年1月纳税所得额是7800元,专项附加扣除2000元,则小吴本月应缴税款元;与此次个税调整前相比,他少缴税款元.17.(2019秋•海淀区校级月考)学校组织游学活动,去往北京市某公园,公园门票价格规定如下表:北京线路共有104人参加本次游园,分两车出发,编号为1号和2号.其中1号车有40多人,不足50人.经估算,如果两辆车以车为单位购票,则一共应付1240元.(1)1号车与2号车各有多少学生?(2)若两车联合起来,作为一个团体购票,可省多少钱?(3)若1号车单独组织去游园,如何购票才最省钱,并说明理由.一元一次方程的应用(二)参考答案与试题解析一.试题(共17小题)1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,4x=5(90﹣x),故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?【分析】首先根据题意,设有x个椅子,则有40﹣x个凳子,然后根据:椅子腿数+凳子腿数=145,列出方程,求出椅子的数量,进而求出凳子的数量即可.【解答】解:设有x个椅子,则有40﹣x个凳子,根据题意列方程,4x+3(40﹣x)=145,解方程,得:x=25,∴40﹣x=40﹣25=15.答:有25个椅子,15个凳子.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【分析】设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.【解答】解:设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据题意列方程得,120x=2×80(42﹣x)解得x=24,则42﹣x=42﹣24=18.答:共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.【分析】可设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,根据方式一与方式二的费用相同的等量关系列出方程计算即可求解.【解答】解:设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,依题意有58+0.25(x﹣150)=88,解得x=270.故当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.故答案为:270.【点评】本题考查了一元一次方程的应用,关键是理解方式一与方式二两种移动电话的计费方式.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?【分析】(1)分别计算出方案一和方案二的花费,然后比较大小即可解答本题;(2)设一班有x人,根据已知得出两种方案费用一样,进而列出方程求解即可.【解答】解:(1)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(2)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.【点评】本题主要考查了一元一次方程的应用,根据已知得出关于x的方程是解题关键.6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.【分析】(1)根据A、B两家公司的优惠方案所提供的数量关系直接列代数式化简即可;(2)根据购买A、B两个公司体育用品的费用相等,列出方程可求x的值;(3)首先求出还需要购买排球的个数,即x的值,再将x的值分别代入(1)中所求的代数式,与10500比较,即可求解.【解答】解:(1)由A公司的优惠方案得,购买A公司体育用品的费用为:0.8×(100×50+40x)=(32x+4000)元;购买B公司体育用品的费用为:100×50+40(x﹣50)=(40x+3000)元;(2)依题意有32x+4000=40x+3000,解得x=125.故此时x的值为125;(3)还需要排球:600﹣(100+50)﹣50﹣100×2=200(个).在A公司采购需要的费用为:32×200+4000=10400<10500,在B公司采购需要的费用为:40×200+3000=11000>10500,所以能满足训练要求,应在A公司采购.【点评】本题考查一元一次方程的应用,列代数式,根据数量关系列出代数式是正确计算的前提,理解两个公司的优惠方案是解决问题的关键.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?【分析】可设他们买了x张优惠票,根据等量关系:买票共花费了1640元,依此列出方程求解即可.【解答】解:设他们买了x张优惠票,根据题意列方程得:80x+120(x﹣3)=1640,80x+120x﹣360=1640,200x=2000,解得x=10.答:他们买了10张优惠票.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡【分析】设一年内在便利店购买咖啡x次,用x表示出购买各类会员年卡的消费费用,把x=75、85代入计算,比较大小得到答案.【解答】解:设一年内在便利店购买咖啡x次,购买A类会员年卡,消费费用为40+2×(0.9×10)x=(40+18x)元;购买B类会员年卡,消费费用为80+2×(0.8×10)x=(80+16x)元;购买C类会员年卡,消费费用为130+(10+5)x=(130+15x)元;把x=75代入得A:1390元;B:1280元;C:1255元,把x=85代入得A:1570元;B:1440元;C:1405元,则小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为购买C类会员年卡.故选:C.【点评】本题考查的是有理数的混合运算的应用,掌握有理数的混合运算法则是解题的关键.10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?【分析】设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有(106﹣2x)人.根据初一(1)班有20多人,不足30人得出20<x<30,再分①46<106﹣2x≤60,②106﹣2x>60两种情况进行讨论,根据三个班都以班为单位购票,则一共应付1365元列出方程,求解即可.【解答】解:设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有[101﹣x﹣(x﹣5)]=(106﹣2x)人.依题意可知,20<x<30,∴x﹣5<25,46<106﹣2x<66.①如果46<106﹣2x≤60,那么15x+15(x﹣5)+12(106﹣2x)=1365,解得x=28,符合题意.所以x﹣5=23,101﹣x﹣x+5=50;②如果106﹣2x>60,那么15x+15(x﹣5)+10(106﹣2x)=1365.解得x=38.∵38>30,∴x=38不合题意舍去.答:初一(1)班有28人,初一(2)班有23人,初一(3)班有50人.【点评】本题考查了一元一次方程的应用,设初一(1)班有x人,根据x的取值范围得出初一(2)班与初一(3)班人数的范围,进而进行分类讨论是解题的关键.11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?【分析】(1)根据总价=单价×数量,即可求出结论;(2)设复印x张时,两处的收费相同,由甲,乙两店收费相同,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)10×0.1=1(元),30×0.1=3(元),10×0.12=1.2(元),20×0.12+(30﹣20)×0.9=3.3(元).故答案为:1;3;1.2;3.3.(2)设复印x张时,两处的收费相同,依题意,得:0.1x=20×0.12+(x﹣20)×0.09,解得:x=60.答:复印60张时,两处的收费相同.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=2张A门票的价格,据此可列出方程组求解.【解答】解:设小明预订了B等级,C等级门票分别为x张和y张,依题意,得,解方程组,得,答:小明预订了B等级门票2张,C等级门票5张.【点评】本题考查了二元一次方程组的应用,关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?【分析】(1)根据表格中的数据列出相应的方程,从而可以得到初一(2)班的人数;(2)根据表格中的数据和(1)中的结果,可知两个班一起购买最省钱,从而可以求得可以省多少钱.【解答】解:(1)设初一(1)班x人,初一(2)班y人,根据题意可得:12x+10y=1106,由于x,y都是整数,且40<x<50,50<x<100,当初一(1)班有48人时,48×12=576,1106﹣576=530,530÷10=53.当初一(1)班有43人时,43×12=516,1106﹣516=590,590÷10=59.所以,初一(2)班共有53人或59人;(2)两个一起买票更省钱,①8×(48+53)=808,1106﹣808=298(元).②8×(43+59)=816,1106﹣816=290(元).这样比原计划节省298元或290元.【点评】本题考查二元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?【分析】(1)根据里程费+时长费,列式可得车费;(2)根据行车里程1千米,列式可得车费;(3)可设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据等量关系:里程费+时长费=车费37.4元,列出方程求出速度,进一步得到从学校到小华家快车行驶的路程.【解答】解:(1)应付车费=1.8×6+0.8×10=18.8(元).故应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据题意得,解得x=12.∴3x=36.∴(千米).答:从学校到小华家快车行驶了9千米.故答案为:18.8;14.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出方程是解题的关键.15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有3人.【分析】设该家庭中购买普通票的有x人,则可以购买优惠票的有人,根据网络购票优惠的钱数,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入中即可求出结论.【解答】解:设该家庭中购买普通票的有x人,则可以购买优惠票的有人,依题意,得:120x﹣120×0.9x=1080﹣996,解得:x=7,∴=3.故答案为:3.【点评】此题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:。
高中刷题练习册高考真题

高中刷题练习册高考真题高中数学刷题练习册高考真题一、选择题(每题4分,共40分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \)的图像与x轴有且仅有一个交点,则下列说法正确的是:A. \( f(0) = 0 \)B. \( f(1) = 0 \)C. \( f(x) \)的顶点坐标为(1, -1)D. \( f(x) \)的对称轴为x = 12. 已知点A(-2, 3)和B(2, -3),直线AB的斜率为:A. 1B. -1C. -3D. 33. 已知三角形ABC的三个内角A、B、C的度数分别为30°、45°和105°,那么三角形ABC的面积为:A. 6B. 8C. 10D. 124. 若sinθ = 3/5,且θ为锐角,求cosθ的值:A. 4/5B. -4/5D. -√7/55. 已知数列{an}的前n项和为Sn,且满足Sn = 2an - 2,当n≥2时,求a3的值:A. 4B. 6C. 8D. 106. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x):A. 3x^2 - 6xB. 3x^2 - 3xC. x^3 - 6xD. 3x^2 + 3x7. 已知等差数列{an}的首项a1 = 2,公差d = 3,求第10项a10的值:A. 29B. 32C. 35D. 388. 已知圆的方程为(x - 2)^2 + (y + 1)^2 = 9,求圆心坐标:A. (2, -1)B. (-2, 1)C. (-2, -1)D. (2, 1)9. 已知直线l:y = 2x + 1与抛物线C:y^2 = 8x交于A、B两点,求AB的距离:B. 4√6C. 4√7D. 4√810. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,求三角形的形状:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形二、填空题(每题4分,共20分)1. 函数y = log2(x)的定义域为_________。
初一上数学真题专题练习---含参数的一元一次方程

含参数的一元一次方程【真题精选】1.(2020秋•昌平月考)下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=62.(2020秋•西城期末)下列等式变形正确的是()A.如果a=b,那么a+3=b﹣3B.如果3a﹣7=5a,那么3a+5a=7C.如果3x=﹣3,那么6x=﹣6D.如果2x=3,那么x=3.(2020秋•朝阳区校级期中)下列方程是一元一次方程的是()A.x2﹣1=4B.C.3(x﹣1)=2x+3D.x﹣4y=﹣64.(2021秋•海淀月考)关于x的方程(a+1)x=a﹣1有解,则a的值为()A.a≠0B.a≠1C.a≠﹣1D.a≠±1 5.(2021秋•海淀月考)如果关于x的方程(a﹣3)x=2021有解,那么实数a的取值范围是()A.a<3B.a=3C.a>3D.a≠3 6.(2021秋•海淀月考)如果关于x的方程ax=b有无数个解,那么a、b满足的条件是()A.a=0,b=0B.a=0,b≠0C.a≠0,b=0D.a≠0,b≠0 7.(2021秋•海淀月考)已知关于x的方程a(2x﹣1)=3x﹣2无解,则a的值是.8.(2020秋•西城区校级期中)已知关于x的方程(k﹣1)x|k|+k=3为一元一次方程,则k =,该方程的解x=.9.(2020•西城期中)关于x的方程(m﹣1)x|m|+3=0是一元一次方程,则m的值是()A.﹣1B.1C.1或﹣1D.210.(2020•西城月考)已知(m2﹣1)x2+(m﹣1)x+7=0是关于x的一元一次方程,则m 的值为()A.±1B.﹣1C.1D.以上答案都不对11.(2020秋•西城区校级期中)关于x的方程2x﹣kx+1=5x﹣2的解为x=﹣1,则k的值为()A.10B.﹣4C.﹣6D.﹣8 12.(2020•西城月考)若方程2x+1=﹣1的解也是关于x的方程1﹣2(x﹣a)=2的解,则a的值为.13.(2020•西城月考)已知关于x的方程2x﹣a=1与方程=﹣a的解的和为,求a的值.14.(2020秋•朝阳区校级期中)已知关于x的方程kx﹣1=2(x+1)的解为整数,且k为整数,则满足条件的所有k的值为.15.(2019秋•丰台区校级期中)若关于x的一元一次方程(m﹣1)x﹣3=0的解是正整数,求整数m的值.16.(2019秋•密云区期末)已知方程(m+1)x n﹣1=n+1是关于x的一元一次方程.(1)求m,n满足的条件.(2)若m为整数,且方程的解为正整数,求m的值.17.(2020秋•通川区期末)若关于x的方程x﹣6=(k﹣1)x有正整数解,则满足条件的所有整数k值之和是()A.0B.1C.﹣1D.﹣418.(2020•西城月考)已知关于x的方程ax+=的解是正整数,求正整数a的值,并求出此时方程的解.19.(2019秋•通州区期末)对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程max{x,﹣x}=2x+1的解为()A.x=﹣1B.x=C.x=1D.x=﹣1或20.(2019秋•海淀区校级期中)我们规定x的一元一次方程ax=b的解为b﹣a,则称该方程是“差解方程”,例如:3x=4.5的解为4.5﹣3=1.5,则该方程3x=4.5就是“差解方程”,请根据上述规定解答下列问题:(1)已知关于x的一元一次方程4x=m是“差解方程”,则m=.(2)已知关于x的一元一次方程4x=ab+a是“差解方程”,它的解为a,则a+b =.(3)已知关于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代数式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.含参数的一元一次方程参考答案与试题解析一.试题(共20小题)1.(2020秋•昌平月考)下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=6【分析】根据等式的性质即可解决.【解答】解:A、若4x=2,则x=,原变形错误,故这个选项不符合题意;B、若4x﹣2=2﹣3x,则4x+3x=2+2,原变形错误,故这个选项不符合题意;C、若4(x+1)﹣3=2(x+1),则4(x+1)﹣2(x+1)=3,原变形错误,故这个选项不符合题意;D、若﹣=1,则3(3x+1)﹣2(1﹣2x)=6,原变形正确,故这个选项符合题意;故选:D.【点评】本题考查了等式的性质.熟知等式的性质是解题的关键.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.2.(2020秋•西城期末)下列等式变形正确的是()A.如果a=b,那么a+3=b﹣3B.如果3a﹣7=5a,那么3a+5a=7C.如果3x=﹣3,那么6x=﹣6D.如果2x=3,那么x=【分析】根据等式的性质和各个选项中的式子,可以判断是否正确,从而可以解答本题.【解答】解:如果a=b,那么a+3=b+3,故选项A错误;如果3a﹣7=5a,那么3a﹣5a=7,故选项B错误;如果3x=﹣3,那么6x=﹣6,故选项C正确;如果2x=3,那么x=,故选项D错误;故选:C.【点评】本题考查等式的性质,解答本题的关键是明确等式的性质,会用等式的性质解答问题.3.(2020秋•朝阳区校级期中)下列方程是一元一次方程的是()A.x2﹣1=4B.C.3(x﹣1)=2x+3D.x﹣4y=﹣6【分析】根据一元一次方程的定义逐个判断即可.【解答】解:A.是一元二次方程,不是一元一次方程,故本选项不符合题意;B.是分式方程,不是整式方程,不是一元一次方程,故本选项不符合题意;C.是一元一次方程,故本选项符合题意;D.是二元一次方程,不是一元一次方程,故本选项不符合题意;故选:C.【点评】本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.4.(2021秋•海淀月考)关于x的方程(a+1)x=a﹣1有解,则a的值为()A.a≠0B.a≠1C.a≠﹣1D.a≠±1【分析】根据一元一次方程有解,可得一元一次方程的系数不能为零,可得答案.【解答】解:由关于x的方程(a+1)x=a﹣1有解,得a+1≠0,解得a≠﹣1.故选:C.【点评】本题考查了一元一次方程有解的条件,利用了一元一次方程的系数不能为零.5.(2021秋•海淀月考)如果关于x的方程(a﹣3)x=2021有解,那么实数a的取值范围是()A.a<3B.a=3C.a>3D.a≠3【分析】根据方程有解确定出a的范围即可.【解答】解:∵关于x的方程(a﹣3)x=2021有解,∴a﹣3≠0,即a≠3,故选:D.【点评】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.6.(2021秋•海淀月考)如果关于x的方程ax=b有无数个解,那么a、b满足的条件是()A.a=0,b=0B.a=0,b≠0C.a≠0,b=0D.a≠0,b≠0【分析】根据方程有无数个解的特征即可进行解答.【解答】解:∵方程ax=b有无数个解,∴未知数x的系数a=0,∴b=0.故选:A.【点评】本题主要考查了含有一个未知数的方程有无数个解的条件,x前面系数为0时方程有无数个解是解题的关键.7.(2021秋•海淀月考)已知关于x的方程a(2x﹣1)=3x﹣2无解,则a的值是.【分析】若一元一次方程ax+b=0无解,则a=0,b≠0,据此可得出a的值.【解答】解:原式可化为:(2a﹣3)x+2﹣a=0,∵方程无解,∴可得:2a﹣3=0,2﹣a≠0,故a的值为.故填.【点评】本题考查一元一次方程的解,难度不大关键是掌握无解情况下各字母的取值情况.8.(2020秋•西城区校级期中)已知关于x的方程(k﹣1)x|k|+k=3为一元一次方程,则k=﹣1,该方程的解x=﹣2.【分析】由一元一次方程的定义,只含有一个未知数、未知数的最高次数为1且两边都为整式的等式.可得|k|=1,k﹣1≠0,求出k的值,再解方程即可.【解答】解:∵(k﹣1)x|k|+k=3为一元一次方程,∴|k|=1,k﹣1≠0,∴k=±1,k≠1,∴k=﹣1,∴﹣2x﹣1=3,移项,得﹣2x=4,解得x=﹣2,故答案为:﹣1,﹣2.【点评】本题考点一元一次方程的定义,熟练掌握一元一次方程的定义及其解法是解题的关键.9.(2020•西城期中)关于x的方程(m﹣1)x|m|+3=0是一元一次方程,则m的值是()A.﹣1B.1C.1或﹣1D.2【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由题意,得|m|=1且m﹣1≠0,解得m=﹣1,故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.(2020•西城月考)已知(m2﹣1)x2+(m﹣1)x+7=0是关于x的一元一次方程,则m 的值为()A.±1B.﹣1C.1D.以上答案都不对【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由题意,得m2﹣1=0且m﹣1≠0,解得m=﹣1,故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.11.(2020秋•西城区校级期中)关于x的方程2x﹣kx+1=5x﹣2的解为x=﹣1,则k的值为()A.10B.﹣4C.﹣6D.﹣8【分析】把x=﹣1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【解答】解:依题意,得2×(﹣1)﹣(﹣1)k+1=5×(﹣1)﹣2,即﹣1+k=﹣7,解得,k=﹣6.故选:C.【点评】本题考查了方程的解的定义.无论是给出方程的解求其中字母系数,还有判断某数是否为方程的解,这两个方向的问题,一般都采用代入计算是方法.12.(2020•西城月考)若方程2x+1=﹣1的解也是关于x的方程1﹣2(x﹣a)=2的解,则a的值为﹣.【分析】求出第一个方程的解得到x的值,代入第二个方程计算即可求出a的值.【解答】解:方程2x+1=﹣1,解得:x=﹣1,代入方程得:1+2+2a=2,解得:a=﹣,故答案为:﹣【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.(2020•西城月考)已知关于x的方程2x﹣a=1与方程=﹣a的解的和为,求a的值.【分析】首先解两个关于x的方程,利用a表示出方程的解,然后根据两个方程的解的和是,列方程求得a的值.【解答】解:解2x﹣a=1得x=,解=﹣a,得x=.由题知+=,解得a=﹣3.【点评】此题考查的是一元一次方程的解法,正确解关于x的方程是解决本题的关键.14.(2020秋•朝阳区校级期中)已知关于x的方程kx﹣1=2(x+1)的解为整数,且k为整数,则满足条件的所有k的值为3或1或﹣1或5.【分析】先求方程的解得x=,再由已知可得k﹣2=±1或k﹣2=±3,求出k的值即可.【解答】解:kx﹣1=2(x+1),去括号得,kx﹣1=2x+2,移项、合并同类项,得(k﹣2)x=3,解得x=,∵方程的解为整数,∴k﹣2=±1或k﹣2=±3,∴k=3或k=1或k=5或k=﹣1,故答案为:3或1或﹣1或5.【点评】本题考查一元一次方程的解,熟练掌握一元一次方程的解法,并由方程解的情况列出k满足的等式是解题的关键.15.(2019秋•丰台区校级期中)若关于x的一元一次方程(m﹣1)x﹣3=0的解是正整数,求整数m的值.【分析】解方程得:x=,x是整数,则m﹣1=±1或±3,据此即可求得m的值.【解答】解:(m﹣1)x﹣3=0,解得:x=,∵解是正整数,∴m﹣1=1或3,解得:m=2或4.故整数m的值为2或4.【点评】本题考查了一元一次方程的解,正确理解m﹣1=±1或±3是关键.16.(2019秋•密云区期末)已知方程(m+1)x n﹣1=n+1是关于x的一元一次方程.(1)求m,n满足的条件.(2)若m为整数,且方程的解为正整数,求m的值.【分析】(1)利用一元一次方程的定义求m,n满足的条件;(2)先根据m为整数且方程的解为正整数得出m+1=1或m+1=3,解一元一次方程可以得出m的值.【解答】解:(1)因为方程(m+1)x n﹣1=n+1是关于x的一元一次方程.所以m+1≠0,且n﹣1=1,所以m≠﹣1,且n=2;(2)由(1)可知原方程可整理为:(m+1)x=3,因为m为整数,且方程的解为正整数,所以m+1为正整数.当x=1时,m+1=3,解得m=2;当x=3时,m+1=1,解得m=0;所以m的取值为0或2.【点评】本题主要考查了一元一次方程的定义,解题的关键是求出n的值.17.(2020秋•通川区期末)若关于x的方程x﹣6=(k﹣1)x有正整数解,则满足条件的所有整数k值之和是()A.0B.1C.﹣1D.﹣4【分析】根据方程的解为正整数,可得(k﹣2)是6的约数,根据约数关系,可得k的值.【解答】解:解x﹣6=(k﹣1)x,得x=.由x=是正整数,得2﹣k=6时,k=﹣4,2﹣k=3时,k=﹣1,2﹣k=2时,k=0,2﹣k=1时,k=1,∴﹣4﹣1+0+1=﹣4.故选:D.【点评】本题考查了一元一次方程的解,利用6的约数是解题关键.18.(2020•西城月考)已知关于x的方程ax+=的解是正整数,求正整数a的值,并求出此时方程的解.【分析】首先解关于x的方程求得x的值,根据x是正整数即可求得a的值.【解答】解:由ax+=,得ax+9=5x﹣2,移项、合并同类项,得:(a﹣5)x=﹣11,系数化成1得:x=﹣,∵x是正整数,∴a﹣5=﹣1或﹣11,∴a=4或﹣6.又∵a是正整数.∴a=4.则x=﹣=11.综上所述,正整数a的值是4,此时方程的解是x=11.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.19.(2019秋•通州区期末)对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程max{x,﹣x}=2x+1的解为()A.x=﹣1B.x=C.x=1D.x=﹣1或【分析】方程利用题中的新定义变形,计算即可求出解.【解答】解:当x>﹣x,即x>0时,方程变形得:x=2x+1,解得:x=﹣1,不符合题意;当x<﹣x,即x<0时,方程变形得:﹣x=2x+1,解得:x=﹣,综上,方程的解为x=﹣,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.(2019秋•海淀区校级期中)我们规定x的一元一次方程ax=b的解为b﹣a,则称该方程是“差解方程”,例如:3x=4.5的解为4.5﹣3=1.5,则该方程3x=4.5就是“差解方程”,请根据上述规定解答下列问题:(1)已知关于x的一元一次方程4x=m是“差解方程”,则m=.(2)已知关于x的一元一次方程4x=ab+a是“差解方程”,它的解为a,则a+b=.(3)已知关于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代数式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.【分析】(1)根据差解方程的定义即可得出关于m的一元一次方程,解之即可得出结论;(2)根据差解方程的定义即可得出关于a、b的二元二次方程组,解之得出a、b的值即可得出答案;(3)根据差解方程的概念列式得到关于m、n的两个方程,联立求解得到m、n的关系,然后代入化简后的代数式进行计算即可求解.【解答】解:(1)由题意可知x=m﹣4,由一元一次方程可知x=,∴m﹣4=,解得m=;故答案为:;(2)由题意可知x=ab+a﹣4,由一元一次方程可知x=,又∵方程的解为a,∴=a,ab+a﹣4=a,解得a=,b=3,∴;故答案为:.(3)∵一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,∴mn+m=,mn+n=﹣,两式相减得,m﹣n=.∴﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]=﹣5(m﹣n)﹣33,=﹣5×﹣33+2×,=,=﹣.【点评】本题考查了一元一次方程的解,读懂题意,理解差解方程的概念并根据概念列出方程是解题的关键.。
病句真题及练习

2007年3、下列各句中没有语病的一项是A、无论干部还是群众,毫不例外,都必须遵守社会主义法制。
B、她因为不看忍受雇主的歧视和侮辱,便投诉《人间指南》编辑部,要求编辑部帮她伸张正义,编辑部对此十分重视。
C、艺术家下乡巡回演出,博得了各界观众的热烈欢迎,各界人士对这次成功的演出给予了很高的评价。
D、他从不教训人,他鼓励你,安慰你,慢慢地使你的眼睛睁大,牵着你的手徐徐朝前走去,倘若有绊脚石,他会替你踢开。
2008年2、下列各句中“颜色”的意义与其他三句不同的是A、她的“圣女升天图”挂在神坛后面,那朱红与亮蓝两种颜色鲜明极了,全幅气势流动,如风行水上。
B、他不能忍受这样的欺骗,决定给她点颜色看看。
C、教堂的地是用大理石铺的,颜色花样种种不同。
D、她的头发同黄牛毛一样颜色。
3、下列各句中,没有歧义的一句是A、刘校长来学校里不过几天,许多人还不认识。
B、这是一个十分有趣的人,他的笑话讲不完。
C、在《我得父亲》这篇文章中,他写了许多感人的故事。
D、三个老师提出的建议,在教代会上以全票获得通过。
2010年5.在下列各句中,存在语病的一句是( ) A.青年一代的素质如何,在很大程度上决定着中华民族在21世纪的前途和命运。
B.有识之士指出,全面提高学生的素质教育,是教育界目前面临的大事。
C.我们相信,教育优先发展的战略地位,在《国家中长期教育发展和改革规划纲要》颁布后必将得到进一步落实。
D. 然而,培养一代新风,不单是学校的事,也是全社会的事。
模拟练习6.下列各句中没有语病的一句是( )A.矗立在鲁迅纪念馆前的这座铜像,是由巴金等著名作家倡议国内外热爱鲁迅的人士集资30万元铸成的。
B.去年以来,由于日方在对历史问题的认识和钓鱼岛的问题上接连采取错误的举措,使中日关系正常发展受到严重干扰。
C.现在,我又看到了那阔别多年的乡亲,那我从小就住惯了的茅草房子,那崎岖的街道,那熟悉的乡音,那胶东人所特有的幽默爽朗的笑声。
D.由于思想水平不高以及文字表现力差的限制,缺点和错误是难免的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年“专转本”计算机应用基础统一考试试题
(考试时间90分钟,满分100分)
一、单项选择题
1. 基于冯·诺依曼提出的存储程序控制原理的计算机系统,其硬件基本结构包括:、控制器、存储器、输入设备和输出设备。
A. 显示器
B. 运算器
C. 磁盘驱动器
D. 键盘
6. 微型计算机系统的CPU、存储器和外部设备之间采用总线连接。
总线通常由三部分组成。
A. 地址总线、数据总线和系统总线
B. 系统总线、数据总线和控制总线
C. 地址总线、数据总线和控制总线
D. 地址总线、系统总线和控制总线
8. 3.5英寸的软盘的总容量为。
A. 80磁道ⅹ9扇区ⅹ1024字节/扇区ⅹ2
B. 40磁道ⅹ18扇区ⅹ1024字节/扇区ⅹ2
C. 40磁道ⅹ18扇区ⅹ512字节/扇区ⅹ2
D. 80磁道ⅹ18扇区ⅹ512字节/扇区ⅹ2
10. 计算机系统配置高速缓冲存储器(Cache)是为了解决。
A. 内存与辅助存储器之间速度不匹配问题
B. CPU与辅助存储器之间速度不匹配问题
C. CPU与内存储器之间速度不匹配问题
D. 主机与外设之间速度不匹配问题
二、多项选择题
2. 对于写保护的软盘,不能进行操作。
A. 格式化
B. 把软盘上的内容复制到硬盘上
C. 对软盘中的文件重命名
D. 把硬盘上的内容复制到软盘上
三、填空题
1. 内存储器中的每个存储单元都被赋予一个唯一的序号,称为。
存储单元的基本单位是字节。
2. 传输率为9600bit/s,意味着每分钟最多可传送个ASCⅡ码字符。
3. 1KB的内存空间能存储512个汉字内码,约存个24x24点阵汉字的字形码。
4. 在计算机硬件系统中,提供各部件之间相互交换各种信息的通道是。
2006年“专转本”计算机应用基础统一考试试题
(考试时间90分钟,满分100分)
一、单项选择题
1. 一个完整的计算机系统应包括__________。
A. 主机及外部设备
B. 机箱、键盘、显示器及打印设备
C. 硬件系统和软件系统
D. 中央处理器、存储器及外部设备
3. PC机的标准输入设备是_________,缺少该设备计算机就无法正常工作。
A. 键盘
B. 鼠标
C. 扫描仪
D. 数字化仪
4. 衡量一台计算机优劣的主要技术指标通常是指__________。
A.所配备的系统软件的优劣
B.CPU的主频、运算速度,字长和存储容量等。
C.显示器的分辨率、打印机的配置
D.软、硬盘容量的大小
二、多项选择题
1. 微型计算机系统采用总线对CPU、存储器和外部设备进行连接。
它们主要负责传送的信号是_______。
A. 管理信号
B. 地址信号
C. 数据信号
D. 控制信号
2. 下列部件中属于计算机外部设备的是_______。
A. 电源
B. CPU
C. 鼠标
D. 扫描仪
三、填空题
3. 优盘、扫描仪、数码相机等计算机外设都可使用_______接口与计算机连接。
4. 对一台显示器而言,当分辨率越高时,其扫描频率将会_______。
四、判断题
3. 用于存储显示屏上像素颜色信息的是显示存储器。
4. 针式打印机的耗材是色带;喷墨打印机的耗材是墨水;激光打印机的耗材是碳粉。
2007年“专转本”计算机应用基础统一考试试题
(考试时间90分钟,满分100分)
一、单项选择题
4.根据摩尔(Moore)定律,单块集成电路的集成度平均每______翻一番。
A.8-14 个月 B.18-24个月 C.28-34个月 D.38-44个月
5.中央处理器(CPU)是计算机的核心部件,一台计算机中最多包含_____中央处理器。
A.一个 B.两个 C.三个 D.四个
6.计算机在执行U盘上的程序时,首先把U盘上的程序和数据读入到_______,然后才能被计算机运行。
A.硬盘 B.软盘
C.内存 D.缓存
7.某处理器具有32GB的寻址能力,则该处理器的地址线有_______。
A. 36根 B. 35根 C. 32根 D.24根
8.扫描仪是常用的输入设备,在扫描仪的性能指标中不包括______
A.扫描仪的分辨率
B.扫描仪的色彩位数
C.扫描仪的扫描幅面
D.扫描仪的结构
9.彩色显示器的色彩是由三基色合成而得到的。
某显示器的三基色R、G、B分别用4位二进制数表示,则它可以表示______种不同的颜色。
A.65536 B.4096 C.256 D.12
10.某CD—ROM驱动器的速率标称为40X,表示其数据的传输速率为_______。
A.2000KB/s B. 4000KB/s C.6000KB/s D.8000KB/s
二、多项选择题
52.BIOS的中文名称叫基本输入/输出系统,它主要包含_________
A.CMOS设置程序
B.加电自检程序
C.键盘驱动程序
D.系统自举程序
三、填空题
63.在计算机内部,程序是由指令组成的。
大多数情况下,指令由________和操作数地址两部分组成。
64.计算机所使用的I/O 接口分成多种类型。
从数据传输方式来看,由串行接口和______接口。
四、判断题
83.CPU运行时的系统时钟及各种与其同步的时钟均是由CPU内部控制器提供的。
84.无线键盘和无线鼠标采用的是无线接口,通过无线电波将信息传送给计算机,需要专用的接收器。
85.数据传送率是衡量硬盘性能的一项指标。
硬盘内部传输速率大于外部传输速率。