检测变讲义送仪表
《温度检测仪表》课件

无线化
总结词
无线化是温度检测仪表未来发展的重要趋势之一。
详细描述
无线温度检测仪表无需布线,安装方便,可以快速部署在各种复杂环境中。同时,无线传输技术可以 实现远程实时监测和数据共享,方便用户随时随地掌握温度情况。无线温度检测仪表的出现,大大提 高了测温的灵活性和便利性,为工业生产和科学研究带来了极大的便利。
域。
集成温度传感器工作原理
集成温度传感器是一种将温度传感器与信号处理电路集成在一起 的集成电路。常见的集成温度传感器有模拟输出和数字输出两种 类型。
模拟输出型集成温度传感器通过模拟电路将温度信号转换为电压 或电流信号输出;数字输出型集成温度传感器则将温度信号转换 为数字信号输出。
集成温度传感器具有体积小、精度高、线性度好等优点,适用于 各种小型化、智能化的测温系统。
农业种植的温度监控
总结词
在农业种植中,温度对作物的生长具有重要影响,温度检测仪表用于监测和控 制温室的温度,提高作物的生长速度和产量。
详细描述
在温室种植中,温度检测仪表可以对温室内外的温度进行实时监测,根据作物 生长的需求自动调节温室内的温度,创造适宜的生长环境,提高作物的产量和 品质。
医疗领域的温度监测
温度检测仪表广泛应用于工业生产、 科学研究、医疗健康等领域,是现代 工业和科技发展的重要支撑。
温度检测仪表的分类
按照工作原理,温度检测仪表可分为热电偶温度计、热电阻温度计、红外线温度计 等。
按照测量范围,温度检测仪表可分为低温、常温、高温等不同类型,以满足不同应 用场景的需求。
按照输出信号,温度检测仪表可分为模拟输出和数字输出两种类型,模拟输出主要 用于连续监测,数字输出则便于数据记录和处理。
科研实验的温度控制
过程检测仪表讲义1

p+ 1/2 ρν2=constant
Measuring the pressure gradient across a known resistor allows to calculate a flow rate. The concepts is analogous to Ohm’s law: voltage (pressure) across a fixed resistor is proportional to current (flow).
12
5.2 Pressure Differential Flowmeter
5.2.2 流量基本方程式 假设条件: 1. 管道中的连续稳定的理想流体(无粘性,且不可压缩) 2.节流件前的取压点静压为P1,相应流速为u1,介质密度为ρ; 节流件后的取压点静压为P2,相应流速为u2,介质密度仍为ρ。
qv CA0u 2
差压式质量流量计 微动质量流量计
6
质量流量
直接法 间接法
补充
管道流动的几个重要概念
1、Reynolds Number(雷诺数)
是一个表征流体惯性与粘性力之比的无量纲 参数。 Re=U l / μ U——流体平均流速 l——特征尺寸 μ——运动粘度 Re≤2000,Laminar flow(层流) Re≥5000,Turbulent flow(湍流)
Mass Flowmeter Others
2
5.1 Flow Measurement
5.1.1 Flow Rate
Volumetric Flow ——单位时间内流过某截面流体的体积 dV Unit :m3/s qv v A dt Mass Flow Rate ——单位时间内流过某截面流体的质量
过程检测仪表教学课件

流量计
检测任何可以在管道中流动的物 质,如管道、供水系统、工业管 道、压缩空气系统和加油站等的 流量。
仪表的选择
1
选择方法
选择仪表时需考虑使用环境、测量量和使用目的等多种因素。
2
注意事项需注意仪表的精源自、量程、可靠性、防护等特性。过程检测流程
过程检测流程是指运用仪器设备进行检测的全部工作步骤。具体流程包括检 测前的准备工作、开机自检、选择测量点、进行测量和记录测量结果等。
常见故障及处理方法
仪表故障分类
通常有电源故障、信号线故障、系统故障、机械故 障、控制回路故障等。
常见故障及处理
常见故障包括仪表无法工作、故障、损坏等。可根 据具体状况进行排除和维修。
结束语
1 总结
本教学PPT介绍了过程检测仪表的作用、分类、选择、流程和一些常见故障及处理方法。
2 对学生的启示
学生应全面学习仪表的基础知识,并了解检测流程中的细节,提高实践技能。
过程检测仪表教学课件 PPT
本教学PPT旨在介绍过程检测仪表的作用、分类、选择方法、流程和故障排 除。旨在帮助学生了解过程检测领域的基础知识,提升实践技能。
概述
过程检测仪表是工业控制系统中不可或缺的元素。它可以在生产运行中持续 监测和测量各种参数,包括温度、压力、流量等。正确使用仪表能够获取各 种生产数据,并在过程控制和监测方案的制定和执行中发挥重要作用。
仪表分类
按测量物理量分类
常见的测量物理量为温度、压力、流量、液面、 液位、速度、质量等,不同物理量使用不同的 控制仪表。
按工作原理分类
根据工作原理,仪表可以分为机械式、电气式、 电子式、光电式和光电子式等。
常见仪表介绍
温度计
压力计
组合仪表培训讲义

安全注意事项
遵守安全操作规程
在安装和调试组合仪表时,应 遵守相关安全操作规程,确保
人员安全。
断电操作
在进行与电源相关的操作时, 应先断开电源,避免短路或电 击事故。
防震防潮
在安装和调试过程中,应采取 措施防止组合仪表受到剧烈震 动或潮湿环境的影响。
保护线路
在连接线路时,应确保线路不 被挤压或过度弯曲,以防损坏
检查仪表盘的线路是否老化、破损或松动,如有 需要更换或紧固。
更换灯泡
如仪表盘上有灯泡,定期检查并更换损坏的灯泡。
常见故障排除
显示屏不亮
检查线路是否连接良好,灯泡是否损坏,如有问题及时更换。
指针不工作
检查传感器是否正常,线路连接是否牢固,如有问题及时修复。
报警灯常亮
检查报警灯电路是否正常,传感器是否损坏,如有问题及时更换。
THANKS FOR WATCHING
感谢您的观看
5G通信技术
利用5G高速、低延迟的通信特性,实现组合仪表数据的实时传输和 处理。
物联网技术
通过物联网技术,实现组合仪表与车辆其他系统的互联互通,提升信 息共享和协同工作能力。
应用领域拓展
智能交通
组合仪表在智能交通领域的应用,如实时路况显示、交通信号优 化等。
自动驾驶
随着自动驾驶技术的发展,组合仪表将作为人机交互的重要界面, 提供丰富的驾驶信息和辅助决策功能。
工业控制仪表通常包括温度计、压力计、 工业控制仪表的发展趋势是智能化和网
流量计、液位计、振动监测仪等,通过 络化,能够实现远程监控和自动控制,
这些仪表,操作员可以实时了解生产设
提高生产效率和安全性。
备的运行状态和工艺参数。
06 组合仪表的未来展望
AE全仪表系统培训讲义

•
图1 SIS的构成
下图为由PES构成的SIS
检测单元
输入模块
PES 控制模块
输出模块
执行单元
•
SIS安全仪表系统
SIS仪表安包含全控制功能,也可包含仪表安全保护功 能,或包含这两者。
需要说明的是,这里所说的仪表控制功能,是指以连 续模式(Continuous Mode)操作并具有特定的SIL,用 于防止危险状态发生或者减轻其发生的后果,与常规 的PID控制功能是完全不同的概念。
④ 美国仪表学会制定的ISA-S84.01-1996《安全仪表系统 在过程工业中的应用》。
⑤ 美国化学工程学会制定的AICHE(ccps)-1993,《 化学过程的安全自动化导则》。
⑥ 英国健康与安全执行委员会制定的HSE PES-1987, 《可编程电子系统在安全领域的应用》。
•
SIS的相关标准及认证机构
•
SIS安全仪表系统
按照SIS的定义,下述系统均属于安全仪表系统: 安全联锁系统(Safety Interlock System—SIS) 安全关联系统(Safety Related System—SRS) 仪表保护系统(Instrument Protective System—IPS) 透平压缩机集成控制系统(Integrated Turbo &
② 2006年、2007年等同采用IEC61508、IEC61511的中国 国家标准GB/T20438、GB/T21109相继发布,中国的 功能安全标准开始规范我国的功能安全工作。
•
SIS的相关标准及认证机构
③ 国际电工委员会1997年制定的IEC 61508/61511标准, 对用机电设备(继电器)、固态电子设备、可编程电 子设备(PLC)构成的安全联锁系统的硬件、软件及 应用作出了明确规定。
氧化锆氧量分析仪讲义

氧化锆氧量分析仪讲义摘要:氧化锆作为一种耐火原料,以其熔融温度高达2900℃的独特的热稳定性,被广泛应用在工业测量设备——氧量分析仪的制造上。
氧化锆氧量分析仪又被称为氧化锆氧量计,通常用来测量燃烧过程中烟气的含氧浓度以及非燃烧气体氧浓度测量。
该分析仪氧传感器的关键部件由氧化锆制成,内外两侧涂上多孔性铂电极制成氧浓度差电池,传感器内温度恒定的电化学电池产生一个毫伏电势,直接反应出烟气中含氧浓度值。
本文主要讲述氧化锆氧量分析仪的原理、应用及故障处理。
关键词:氧化锆氧量分析仪原理、应用、故障处理。
一、概述:1、参比概念:reference 为仪器仪表性能试验或保证测量结果能有效比对而规定的一组带有允差的影响量的值或范围。
2、原理:氧化锆电解质的两面各烧结一个铂电极,当氧化锆两侧的氧分压不同时,氧分压高的一侧的氧以离子形式向氧分压低的一侧迁移,结果使氧分压高的一侧铂电极失去电子显正电,而氧分压低的一侧铂电极得到电子显负电,因而在两铂电极之间产生氧浓差电势。
此电势在温度一定时只与两侧气体中氧气含量的差(氧浓差)有关。
若一侧氧气含量已知(如空气中氧气含量为常数),则另一侧氧气含量(如烟气中氧气含量)就可用氧浓差电势表示,测出氧浓差电势,便可知道烟气中氧气含量。
设 P0>P1,在高温下(650~850℃)氧就会从分压大的P0侧向分压小的P1侧扩散,这种扩散,不是氧分子透过氧化锆从P0侧到P1侧,而是氧分子离解成氧离子后通过氧化锆的过程。
在750℃左右的高温中,在铂电极的催化作用下,在电池的P0侧发生还原反应,一个氧分子从铂电极取得4个电子,变成两个氧离子进入电解质,即O2(P0)+4e 2O^2-;P0侧的铂电极由于大量给出电子而带正电,成为氧浓差电池的正极或阳极。
反之,在电池P1侧发生的是氧化反应,氧离子在铂电极上释放电子并结合成氧分子析出。
氧化锆(ZrO2)是一种陶瓷,一种具有离子导电性质的固体。
在常温下为单斜晶体,当温度升高到1150℃时,晶型转变为立方晶体,同时约有7%的体积收缩;当温度降低时,又变为单斜晶体。
自动化仪表培训讲义ppt课件

未来市场前景预测
工业自动化市场
随着工业4.0、智能制造等战略的推进,工业自动化市场 将持续增长,自动化仪表作为重要组成部分将迎来更广阔 的发展空间。
新能源市场 新能源领域的快速发展将带动自动化仪表的需求增长,如 光伏、风电等新能源发电系统需要大量的自动化仪表进行 监测和控制。
环保和节能市场
环保和节能政策的日益严格将推动相关产业的发展,自动 化仪表在环保监测、节能减排等方面将发挥重要作用。
接触式测温仪表
通过接触被测对象来测量温度, 如热电阻、热电偶等。
非接触式测温仪表
无需接触被测对象,通过测量目标 辐射的红外能量来确定温度,如红 外测温仪。
温度变送器
将温度信号转换为标准信号输出, 便于远程传输和集中控制。
压力仪表
弹性式压力计
利用弹性元件受压变形的原理测 量压力,如弹簧管压力表、膜片
石油化工行业应用案例
原油储罐液位测量
采用雷达液位计或伺服液位计,实现高精度、高可靠性的液位测 量。
管道流量测量
采用电磁流量计、涡街流量计等,实现管道内流体流量的准确测 量。
压力和温度测量
采用压力变送器、温度传感器等,对工艺过程中的压力和温度进 行实时监测。
电力行业应用案例
锅炉水位控制
采用差压水位计或电容式水位计,实现锅炉水位的精确测量和控 制。
质量流量计
直接测量流体的质量流量,如科里奥利质量流量 计。
物位仪表
直读式物位计
01
通过直接读取液位高度来测量物位,如玻璃板液位计、磁翻板
液位计等。
浮子式物位计
02
利用浮子随液位变化而上下浮动的原理测量物位,如浮球液位
计、浮筒液位计等。
电容式物位计
MPM MDM 变送控制器 系列产品说明书

V2.0 MPM/MDM变送控制器系列产品说明书目录1产品概述 (1)2安全警告 (1)3性能指标 (2)4外形结构 (3)5电气连接 (8)6按键设置 (9)7安装 (11)8通信指令 (12)9责任 (13)本公司保留由于产品技术和工艺更新对本说明书的修改权。
若有更改,不再另行通知。
请注意本说明书的最新版本。
本公司保留对本说明书的最终解释权。
非常感谢您选用麦克传感器股份有限公司产品。
在您使用本系列产品之前,请仔细阅读说明书。
1产品概述MPM/MDM系列变送控制器是压力、差压、液位测控的智能化仪表,由MPM/MDM484C、MPM/MDM460、MPM460W、MPM/MDM484ZL四个子系列组成。
该系列产品为全电子结构,可进行现场压力/差压/液位的测量、显示与控制,输出标准信号,同时可实现基于RS485(Modbus RTU协议)总线的网络传输与变送控制器参数远程设定与调校。
使用灵活,操作简单,调节容易。
广泛应用于水电、自来水、水处理、石油、化工、冶金等各行业之中,可实现对流体介质的压力、差压、液位的测量、显示和控制。
产品具有以下特点●高精度数模转换电路,微处理器处理数据●方便组网和数据传输,可实现远程调校和设定●主、副屏同时显示(484C只有主屏)●按键设置参数和调校,操作方便●同时具有输出标准模拟信号和RS485(Modbus RTU协议)通信接口●最多可提供八路控制(460系列),控制精确高●设置回差值,取消触点抖动现象,控制可靠2安全警告使用前应仔细阅读本说明书,按每款产品电气定义接线。
在没有标准压力源时,请勿对变送器进行调校,若需调校请由专业人员操作。
请您不要用手或尖锐的东西触压波纹膜片,以免损坏传感器。
在有大的干扰环境下,应将壳体良好接地。
3性能指标测量范围:液位:0m~1m…200mHO(仅MPM460W)2压力:-100kPa…0kPa~10kPa…100MPa差压:0kPa~50kPa…3.5MPa过载压力:压力:1.5倍满量程压力或110MPa(取最小值)差压:静压≤20MPa液位:1.5倍满量程压力供电电源:220V AC或110~370V DC或24V DC输出信号:模拟量:4mA~20mADC、0mA~10/20mADC、0/1V~5/10VDC数字量:RS485接口(Modbus RTU协议)环境温度:-10℃~60℃介质温度:-10℃~80℃存储温度:-40℃~80℃(460W投入式传感器部分-20℃~80℃)相对湿度:0%~80%振动:加速度≤3g,频率0Hz~300Hz冲击:≤10g稳定性:≤±0.3%/年最大功耗:≤3.5W(460系列5~8控制点≤5W)精度:≤±0.25%FS(典型值),≤±0.5%FS(最大值)继电器负载能力:240V/3A AC或30V/3A DC触点寿命:>100000次主显示屏:0.56英寸(460系列、484C系列)或0.8英寸(484ZL系列)副显示屏:0.36英寸(460系列、484ZL系列)显示范围:-1999~9999(高亮红)数字部分:采样速度:10次/秒控制接点数:1~5点(484C系列,484ZL系列)1~8点(460系列)安装方式:垂直安装、轴向安装(MPM484ZL、MPM484C)、投入式安装防护等级:IP65:MPM460(W)与MDM460显示壳体部分IP68:MPM460W传感器部分4外形结构4.1结构材料压力接口:不锈钢感压膜片:316L不锈钢电子壳体:不锈钢密封方式:丁腈橡胶或全焊接4.2压力接口表压型:M20×1.5外螺纹差压型:G1/4内螺纹型液位(460W):传感器部分为投入式液位传感器4.3外形图a)MPM/MDM484C型系列产品外形图图b)MPM460型、MDM460型、MPM460W型外形图MPM460型压力变送控制器外形图MDM460型差压变送控制器外形图MPM460W 型变送控制器外形图MPM460WK 型变送控制器外形图c)MPM484ZL 型压力变送控制器外形图MDM484ZL 型差压变送控制器外形图(垂直安装方式)MPM484ZL 型压力变送控制器外型图(轴向安装)注:轴向安装的变送控制器和垂直安装的变送控制器的接口尺寸是一致。