精编2018中考数学备考专题复习: 一元一次方程(含解析)
2018全国各地中考数学分类解析第6章 一元一次方程

第六章一元一次方程3.1 解一元一次方程1.(2018重庆,7,4分>已知关于x的方程2x+a一9=0的解是x=2,则a的值为( >A.2B.3C.4D.5【解读】把x=2代入方程2x+a一9=0即可求出a.【答案】D【点评】能使方程两边相等的未知数的值是方程的解,根据此定义,如果告诉了方程的解,那么这个数代人方程中一定使方程两边相等,由此可求出待定系数,这是解决此类问题的常法。
vDyLB4sIwl 2.<2018浙江省温州市,9,4分)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元。
小明买20张门票共花了1225元,设其中有张成人票,张儿童票,根据题意,下列方程组正确的是< )vDyLB4sIwlA. B.C. D.【解读】本题的数量关系是:成人票的数量+儿童票数量=20;成人票钱数+儿童票钱数=1225.【答案】B【点评】本题考查了列方程组解应用题。
难度较小.3.2 一元一次方程的应用1.<2018山东省潍坊市,题号12,分值3)12、下图是某月的日历表,在此日历表上可以用一个矩形圈出个位置的9个数<如6,7,8,13,14,15,20,21,22)。
若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为< )vDyLB4sIwl A . 32 B .126 C .135 D .144【解读】列方程解日历中问题,日历中数据规律.【答案】不妨设圈出的9个数中,最小的数为x, 最大的x+16 根据“最大数与最小数的积为192”得到解得<负值舍去) 这9个数的和:8+9+10+15+16+17+22+23+24=144,所以本题正确答案是D.【点评】用字母表示出这9个数是解决本题的基础。
根据题目中的条件列出方程是解决本题的关键.2.<2018湖南湘潭,15,3分)湖南省2018年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家人去台湾旅游,计划花费元.设每人向旅行社缴纳元费用后,共剩元用于购物和品尝台湾美食.根据题意,列出方程为.vDyLB4sIwl【解读】找出等量关系:每人向旅行社缴纳元费用,加上用于购物和品尝台湾美食的元,等于花费的元. 列出方程为3X+5000=20000。
2018年中考数学总复习第二章方程与不等式第6讲一元一次方程与分式方程及其应用讲解篇

第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法2.分式方程及解法1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )2.(2017·宁波)分式方程2x +13-x =32的解是____________________.3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x +1=1x -1.【问题】给出以下五个代数式:2x -4,x -2,x ,12,3.(1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程; (2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一 等式性质和方程的解的含义例1 (1)(2017·杭州)设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y 3c,则2x =3y(2)已知关于x 的方程2x +a -9=0的解是x =2,则a =________.(3)已知关于x 的方程3x +n2x +1=2的解是负数,则n 的取值范围为______________.【解后感悟】(1)熟记等式的性质并根据等式的性质求解是解题关键;(2)本题利用方程的思想,通过方程的解来构造关于a 的一元一次方程,求出a 值;(3)本题是分式方程的解和解一元一次不等式,关键是得出n -2<0和n -2≠-12,注意题目中的隐含条件2x +1≠0不要忽略.1.(1)已知等式3a =2b +5,则下列等式中不一定成立的是( )A .3a -5=2bB .3a +1=2b +6C .3ac =2bc +5D .a =23b +53(2)如果方程x +2=0与方程2x -a =0的解相同,那么a =____________________. (3)(2017·成都)已知x =3是分式方程kx x -1-2k -1x=2的解,那么实数k 的值为( )A .-1B .0C .1D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.【解后感悟】(1)去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项(尤其是常数项),若分子是多项式,则要把它看成一个整体加上括号;(2)去括号可用分配律,注意符号,勿漏乘.2.解方程:(1)(2016·贺州)解方程:x 6-30-x4=5;(2)7x -12⎣⎢⎡⎦⎥⎤x -12(x -1)=23(x -1).类型三 分式方程的解法例3 (2015·营口)若关于x 的分式方程2x -3+x +m3-x=2有增根,则m 的值是( )A .m =-1B .m =0C .m =3D .m =0或m =3【解后感悟】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程:③把增根代入整式方程即可求得相关字母的值.例4 (1)(2017·湖州)解方程:2x -1=1x -1+1; (2)(2017·陕西模拟)解方程:2-x x -3=13-x -2.【解后感悟】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.解分式方程:(1)x x -3=x -63-x+3;(2)x x +1-4x2-1=1.类型四 一元一次方程和分式方程的应用例5 (2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【解后感悟】此题主要考查了分式方程的应用,此题关键是正确理解题意,找到合适的等量关系,列出方程.注意不要忘记检验.4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接. (1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】 解分式方程:x2-4x x2-1+1=2xx +1.参考答案第6讲 一元一次方程与分式方程及其应用【考点概要】1.整式 等式 等式 相等 一 1 括号 同类项 2.未知数 整式 最简公分母 不为03.间接 等量关系【考题体验】 1.C2.x =13.160x =200x +54.x =3 【知识引擎】【解析】(1)答案不唯一,2x -4=3和2x -4x -2=12;(2)2x -4=3,解得x =3.5;2x -4x -2=12,解得x =2,代入方程x =2是方程的增根,舍去,所以,方程无解.【例题精析】例1 (1)B ;(2)5;(3)解方程3x +n 2x +1=2得x =n -2.∵关于x 的方程3x +n2x +1=2的解是负数,∴n -2<0.解得:n <2.又∵原方程有意义的条件为:x ≠-12,∴n -2≠-12,即n ≠32.∴n <2且n ≠32. 例2 6x-3(x -1)=12-2(x +2),6x -3x +3=12-2x -4,3x +3=8-2x ,3x +2x =8-3,5x =5,∴x =1. 例3 方程两边都乘以(x -3)得,2-x -m =2(x -3),∵分式方程有增根,∴x -3=0,解得x =3,∴2-3-m =2(3-3),解得m =-1.故选A . 例4 (1)方程两边都乘以x -1得:2=1+x -1,解得:x =2,检验:∵当x =2时,x -1≠0,∴x =2是原方程的解,即原方程的解为x =2. (2)方程的两边同乘(x -3),得:2-x =-1-2(x -3),解得:x =3,检验:把x =3代入(x -3)=0,即x =3不是原分式方程的解.则原方程无解. 例5 (1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得:x +2x -600=6600,解得:x =2400,2x -600=4200,答:B 花木数量为2400棵,则A 花木数量是4200棵; (2)设安排a 人种植A 花木,由题意得:420060a =240040(26-a ),解得:a =14,经检验:a =14是原分式方程的解,26-a =26-14=12,答:安排14人种植A 花木,12人种植B 花木.【变式拓展】1.(1)C (2)-4 (3)D 2. (1)x =30; (2)x =-573.3.(1)解得x =3,经检验x =3是增根,分式方程无解. (2)x =-3.4.设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为(x +5)元.根据题意,得12000x +5=5000x .解得x =257.经检验,x =257是原方程的解,且符合题意,则科普类图书平均每本的价格为257+5=607元,答:文学类图书平均每本的价格为257元,科普类图书平均每本的价格为607元.【热点题型】【分析与解】(1)寻找规律:1张这样的餐桌四周可坐6人,2张这样的餐桌拼接起来四周可坐6+4人,3张这样的餐桌拼接起来四周可坐6+4×2人,4张这样的餐桌拼接起来四周可坐6+4×3人,…n 张这样的餐桌拼接起来四周可坐6+4(n -1)人.∴4张这样的餐桌拼接起来四周可坐18人,8张这样的餐桌拼接起来四周可坐34人.(2)∵n 张这样的餐桌拼接起来四周可坐6+4(n -1)人,∴若用餐的人数有90人,则6+4(n -1)=90,解得n =22.∴若用餐的人数有90人,则这样的餐桌需要22张.【错误警示】原方程变形为x2-4x (x +1)(x -1)+1=2x x +1.方程两边同乘(x +1)(x -1),得x 2-4x +(x +1)(x -1)=2x(x -1).整理得x 2-4x +x 2-1=2x 2-2x ,即2x =-1,x =-12.检验:当x =-12时,(x +1)(x -1)≠0,所以x =-12是原方程的根.。
2018年中考数学试题分类汇编:考点(8)一元一次方程(含解析)

考点 8一元一次方程一.选择题(共8 小题)1.( 2018?恩施州)一商铺在某一时间以每件120 元的价钱卖出两件衣服,此中一件盈余20%,另一件损失20%,在此次买卖中,这家商铺()A.不盈不亏 B .盈余 20 元C.损失 10 元D.损失 30 元【剖析】设两件衣服的进价分别为x、y 元,依据收益 =销售收入﹣进价,即可分别得出对于x、y 的一元一次方程,解之即可得出x、 y 的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、 y 元,依据题意得:120﹣ x=20%x, y﹣ 120=20%y,解得: x=100 , y=150,∴120+120﹣ 100﹣ 150=﹣ 10(元).应选: C.2.(2018?通辽)一商铺以每件150 元的价钱卖出两件不一样的商品,此中一件盈余25%,另一件损失 25%,则商铺卖这两件商品总的盈亏状况是()A.损失 20 元B.盈余 30 元C.损失 50 元D.不盈不亏【剖析】设盈余的商品的进价为x 元,损失的商品的进价为y 元,依据销售收入﹣进价=收益,即可分别得出对于 x、y 的一元一次方程,解之即可得出x、y 的值,再由两件商品的销售收入﹣成本=收益,即可得出商铺卖这两件商品总的损失20 元.【解答】解:设盈余的商品的进价为x 元,损失的商品的进价为y 元,依据题意得:150﹣ x=25%x, 150﹣ y=﹣ 25%y,解得: x=120 , y=200,∴150+150﹣ 120﹣ 200=﹣ 20(元).应选: A.3.( 2018?南通模拟)篮球竞赛规定:胜一场得 3 分,负一场得 1 分,某篮球队共进行了 6 场竞赛,得了12 分,该队获胜的场数是()A.2B.3C.4D.5【剖析】设该队获胜x 场,则负了(6﹣ x)场,依据总分=3×获胜场数 +1×负了的场数,即可得出对于x 的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x 场,则负了(6﹣x)场,依据题意得:3x+( 6﹣ x)=12,解得: x=3.答:该队获胜 3 场.应选: B.4.( 2018?台州)甲、乙两运动员在长为100m的直道 AB( A, B 为直道两头点)长进行匀速来回跑训练,两人同时从 A 点起跑,抵达 B 点后,立刻转身跑向 A 点,抵达 A 点后,又立刻转身跑向 B 点, 若甲跑步的速度为 5m/s,乙跑步的速度为4m/s,则起跑后100s 内,两人相遇的次数为()A. 5 B. 4 C. 3 D. 2【剖析】可设两人相遇的次数为x,依据每次相遇的时间,总合时间为100s,列出方程求解即可.【解答】解:设两人相遇的次数为x,依题意有x=100,解得 x=4.5 ,∵ x 为整数,∴ x 取 4.应选: B.5.( 2018?临安区)中央电视台 2 套“高兴辞典”栏目中,有一期的题目以下图,两个天平都均衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5【剖析】由图可知: 2 球体的重量 =5 圆柱体的重量, 2 正方体的重量 =3 圆柱体的重量.可设一个球体重x,圆柱重 y,正方体重z.依据等量关系列方程即可得出答案.【解答】解:设一个球体重x,圆柱重 y,正方体重z.依据等量关系列方程2x=5y; 2z=3y,消去 y 可得: x= z,则 3x=5z ,即三个球体的重量等于五个正方体的重量.应选: D.6.(2018?邵阳)程大位是我国明朝商人,珠算发明家.他60 岁时达成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确定了算盘用法.书中有以下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100 个和尚分100 个馒头,假如大和尚 1 人分 3 个,小和尚 3 人分 1 个,正好分完,大、小和尚各有多少人,以下求解结果正确的选项是()A.大和尚 25 人,小和尚75 人 B .大和尚 75 人,小和尚25 人C.大和尚 50 人,小和尚50 人 D .大、小和尚各 100 人【剖析】依据 100 个和尚分 100 个馒头,正好分完.大和尚一人分 3 个,小和尚 3 人分一个获得等量关系为:大和尚的人数 +小和尚的人数 =100,大和尚分得的馒头数+小和尚分得的馒头数 =100,依此列出方程即可.【解答】解:设大和另有x 人,则小和另有( 100﹣x)人,依据题意得:3x+ =100,解得 x=25则 100﹣x=100 ﹣25=75(人)因此,大和尚 25 人,小和尚 75 人.应选: A.7.( 2018?武汉)将正整数 1 至 2018 按必定规律摆列以下表:平移表中带暗影的方框,方框中三个数的和可能是()A. 2019 B . 2018 C . 2016 D . 2013【剖析】设中间数为x,则此外两个数分别为x﹣1、 x+1,从而可得出三个数之和为3x ,令其分别等于四个x 值,本题得解.选项中数,解之即可得出x 的值,由x 为整数、x 不可以为第一列及第八列数,即可确定【解答】解:设中间数为x,则此外两个数分别为x﹣ 1、 x+1,∴三个数之和为(x﹣ 1) +x+( x+1)=3x.依据题意得:3x=2019、 3x=2018、 3x=2016、3x=2013,解得: x=673 , x=672(舍去),x=672,x=671.∵673=84× 8+1,∴ 2019 不合题意,舍去;∵672=84× 8,∴ 2016 不合题意,舍去;∵671=83× 7+7,∴三个数之和为2013 .应选: D.8.( 2018?香坊区)某种商品每件的标价是270 元,按标价的八折销售时,仍可赢利20%,则这类商品每件的进价为()A. 180 元B. 200 元C. 225 元D.259.2 元20%,列方程求解.【剖析】设这类商品每件的进价为x 元,依据按标价的八折销售时,仍可赢利【解答】解:设这类商品每件的进价为x 元,由题意得, 270× 0.8 ﹣ x=20%x,解得: x=180 ,即每件商品的进价为180 元.应选: A.二.填空题(共 2 小题)9.( 2018?曲靖)一个书包的标价为115 元,按8 折销售仍可赢利15%,该书包的进价为80元.【剖析】设该书包的进价为x 元,依据销售收入﹣成本=收益,即可得出对于x 的一元一次方程,解之即可得出结论.【解答】解:设该书包的进价为x 元,依据题意得:115× 0.8 ﹣ x=15%x,解得: x=80 .答:该书包的进价为80 元.故答案为: 80.10.(2018?临沂)任何一个无穷循环小数都能够写成分数的形式,应当如何写呢?我们以无穷循环小数0.为例进行说明:设0. =x ,由 0.=0.7777, 可知, l0x=7.7777, 是.得 0. =.将0.写成分数的形式是.【剖析】设 0.=x ,则 36.=100x ,两者做差后可得出对于【解答】解:设 0.=x ,则 36.=100x ,,因此l0x ﹣ x=7,解方程,得x=x 的一元一次方程,解之即可得出结论.,于∴100x﹣ x=36,解得: x=.故答案为:.三.解答题(共 3 小题)11.(2018?随州)我们知道,有理数包含整数、有限小数和无穷循环小数,事实上,全部的有理数都能够化为分数形式(整数可看作分母为 1 的分数),那么无穷循环小数如何表示为分数形式呢?请看以下示例:例:将 0.化为分数形式因为 0.=0.777, ,设x=0.777, ①则 10x=7.777, ②②﹣①得9x=7,解得 x=,于是得0. =.同理可得0. ==,1.=1+0.=1+ =依据以上阅读,回答以下问题:(以下计算结果均用最简分数表示)【基础训练】(1)0. =,5.=;(2)将 0. 化为分数形式,写出推导过程;【能力提高】(3)0. 1 = ,2.0= ;(注: 0. 1 =0.315315, , 2.0 =2.01818, )【探究发现】( 4)①试比较 0. 与 1 的大小: 0. = 1(填“>”、“<”或“ =”)。
2018年中考数学总复习 3.1 一元一次方程及其解法

第3章一次方程与方程组3.1一元一次方程及其解法第1课时一元一次方程1.理解一元一次方程的概念.2.掌握等式的基本性质,并会灵活运用等式的性质解一元一次方程.3.体会数学问题源于实际生活,会从实际情境中建立等量关系.重点对一元一次方程概念的理解,会运用等式的基本性质解简单的一元一次方程.难点对等式基本性质的理解与运用.一、创设情境,导入新知问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距x km,那么客车从A地到B地的行驶时间为______,货车从A 地到B地的行驶时间为______.3.客车与货车行驶时间的关系是________.4.根据上述关系,可列方程为________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、自主合作,感受新知阅读课文并结合生活实际,完成《·》“预习导学”部分.三、师生互动,理解新知问题1:在参加2008年北京奥运会的中国代表队中,羽毛球运动员有19人,比跳水运动员的2倍少1人.参加奥运会的跳水运动员有多少人?解析:此题可能有学生在小学的基础上列出算式得出,如(19+1)÷2.当然上述学生比较少,因为这个算式的建立是不容易的.这样大部分学生的方法是用在小学学过的简易方程,他们也会设出x,建立方程.解:设跳水运动员有x 人,则依据题意,得2x -1=19.注意:此处为了不分散主题,暂不分析这个方程得来的思路.问题2:王玲今年12岁,王玲的爸爸今年36岁,问再过几年,她爸爸的年龄是她年龄的2倍?解析:一般情况下,我们是问什么设什么,我们这儿设过x 年后她爸爸的年龄是她年龄的2倍.这样用这儿的两倍关系建立等式,即x 年后她爸爸的年龄=x 年后王玲的年龄×2.解:设过x 年后她爸爸的年龄是她年龄的2倍,则依题意,得36+x =2(12+x).此处可引导学生将父女两人x 年后的年龄表示出来,以加强互动.探究点一:一元一次方程的有关概念观察以上两个方程,找出其特点:(1)有几个未知数?(2)未知数的次数是几?教师在学生回答的基础上,归纳一元一次方程的概念:只含有一个未知数(元),并且未知数的次数是1,且等式两边都是整式的方程叫做一元一次方程.回顾一元一次方程的解:使得一元一次方程两边都相等的未知数的值叫做方程的解;一元方程的解,也可叫做方程的根.探究点二:等式的基本性质为了能对方程进行求解,我们必须有依据,什么是依据呢?这就是等式的性质.(方程是一个等式)等式的性质:(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.即如果a =b ,那么a +c =b +c ,a -c =b -c.(2)等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.即如果a =b ,那么ac =bc ,a c =b c(c≠0). (3)(对称性)如果a =b ,那么b =a.(4)(传递性)如果a =b ,b =c ,那么a =c.四、应用迁移,运用新知1.一元一次方程的辨别例1 下列方程中是一元一次方程的是( )A .x +3=y +2B .1-3(1-2x)=-2(5-3x)C .x -1=1xD .y 3-2=2y -7解析:A .含有两个未知数,不是一元一次方程,错误;B .化简后含有未知数的项可以消去,不是方程,错误;C .分母中含有字母,不是一元一次方程,错误;D .符合一元一次方程的定义,正确.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.2.利用一元一次方程的概念求字母次数的值例2 方程(m +1)x |m|+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎪⎨⎪⎧|m|=1,m +1≠0,解得m =1. 方法总结:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.3.一元一次方程的解例3 检验下列各数是不是方程5x -2=7+2x 的解,并写出检验过程.(1)x =2; (2)x =3.解析:将未知数的值代入方程,看左边是否等于右边,即可判断是不是方程5x -2=7+2x 的解.解:(1)将x =2代入方程,左边=8,右边=11,左边≠右边,故x =2不是方程5x -2=7+2x 的解;(2)将x =3代入方程,左边=13,右边=13,左边=右边,故x =3是方程5x -2=7+2x 的解.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.4.等式的基本性质例4 已知mx =my ,下列结论错误的是( )A .x =yB .a +mx =a +myC .mx -y =my -yD .amx =amy解析:A .等式的两边都除以m ,依据是等式的基本性质2,而A 选项没有说明m≠0,故A 错误;B .符合等式的基本性质1,正确;C .符合等式的基本性质1,正确;D .符合等式的基本性质2,正确.方法总结:在等式的两边同时加上或减去同一个数或字母,等式仍成立,这里的数或字母没有条件限制,但是在等式的两边同时除以同一个数或字母时,这里的数或字母必须不为0.5.利用等式的基本性质解方程例5 见课本P 86例1.方法总结:解方程时,一般先将方程变形为ax =b 的形式,然后再变形为x =c 的形式.五、尝试练习,掌握新知课本P 87练习第1、2题.《·》“随堂演练”部分.六、课堂小结,梳理新知引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?本节课我们学习了一元一次方程的概念,知道了什么是一元一次方程,它需要两个基本条件:一是只含一个未知数,二是未知数的次数只能是一次.同时我们学习了解方程的依据,即等式性质,这个性质中,我们要特别注意第二条,同除的数不可以是0,三是我们学会了利用等式性质对方程进行求解.七、深化练习,巩固新知课本P 90习题3.1第1、2题.《·》“课时作业”部分.第2课时 移项解一元一次方程1.理解移项的意义,掌握移项变号的基本原则.2.会利用移项解一元一次方程.重点理解移项的意义,掌握移项变号的基本原则,会利用移项解一元一次方程.难点理解移项的意义,掌握移项变号的基本原则,会利用移项解一元一次方程.一、复习旧知,导入新知上节课学习了一元一次方程,它们都有这样的特点:一边是含有未知数的项,一边是常数项.这样的方程我们可以用合并同类项的方法解答.问题引入:(1)解方程:2x -52x =6-8. (2)观察下列一元一次方程,与上题的类型有什么区别?2x +7=32-2x怎样才能使它向x =a(a 为常数)的形式转化呢?二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《·》“预习导学”部分.三、师生互动,理解新知探究点:移项解一元一次方程观察P 86例1解答过程中的第1步:2x -1=19 ①2x =19+1 ②由方程①到方程②,这个变形相当于把①中的“-1”这一项从方程的左边移到了方程的右边.“-1”这项移动后,发生了什么变化?(改变了符号)总结:根据等式性质1的变形,其实就是把方程的一项改变符号,从一边移到另一边,这种变形我们把它叫做移项.一般地,把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x =a”的形式.移项,一般都习惯把含未知数的项移到等式左边.四、应用迁移,运用新知1.移项例1 通过移项将下列方程变形,正确的是( )A.由5x-7=2,得5x=2-7B.由6x-3=x+4,得3-6x=4+xC.由8-x=x-5,得-x-x=-5-8D.由x+9=3x-1,得3x-x=-1+9解析:A.由5x-7=2,得5x=2+7,故错误;B.由6x-3=x+4,得6x-x=3+4,故错误;C.正确;D.由x+9=3x-1,得3x-x=9+1,故错误.方法总结:(1)所移动的是方程中的项,并且是从方程的一边移到另一边,而不是在这个方程的一边变换两项的位置;(2)移项时要变号,不变号不能移项.2.用移项解一元一次方程例2 见课本P87例2.例3 解下列方程:(1)-x-4=3x;(2)5x-1=9;(3)-4x-8=4;(4)0.5x-0.7=6.5-1.3x.解析:通过移项、合并、系数化为1的方法解答即可.解:(1)移项得-x-3x=4,合并同类项得-4x=4,系数化成1得x=-1;(2)移项得5x=9+1,合并同类项得5x=10,系数化成1得x=2;(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.五、尝试练习,掌握新知课本P88练习第1、2题.《·》“随堂演练”部分.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习掌握了移项变号的基本原则,会利用移项解一元一次方程.七、深化练习,巩固新知课本P91习题3.1第3、4(1)(2)、8题.《·》“课时作业”部分.第3课时去括号解一元一次方程1.会用分配律去括号解含括号的一元一次方程.2.经历探索用去括号的方法解方程的过程,进一步熟悉方程的变形,弄清楚每步变形的依据.重点运用去括号法则解带有括号的方程.难点解一元一次方程的步骤,去括号注意事项.一、创设情境,导入新知一艘船从甲码头到乙码头顺水行驶用了2小时,从乙码头返回甲码头逆水行驶用了2.5小时,水流速度是3千米/时,求船在静水中的速度.(1)题目中的等量关系是__________.(2)根据题意可列方程为__________.你能解这个方程吗?二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《·》“预习导学”部分.三、师生互动,理解新知探究点:去括号解一元一次方程问题:小明家来客人了,爸爸给了小明10元钱,让他买1听果奶饮料和4听可乐.从商店回来后,小明交给爸爸3元钱.如果我们知道1听可乐比1听果奶饮料多0.5元,能不能求出1听果奶饮料是多少钱呢?设置问题串:(1)小明买东西共用去多少元?(2)如何用未知数x表示1听果奶饮料或者1听可乐的价钱?(3)这个问题中有怎样的等量关系?小组充分讨论交流后回答:(1)买东西用去10-3=7(元).(2)若设1听果奶饮料为x元时,则1听可乐为(x+0.5)元;若设1听可乐为x元时,则1听果奶饮料为(x-0.5)元.(3)如:买可乐的钱+买果奶饮料的钱=用去的钱.(学生的思路很广泛,也可列成其他形式,只要合理即可)教师在学生回答的基础上,确定出一个方程:设1听果奶饮料x元,则方程为4(x+0.5)+x=10-3.问题串:(1)这个方程与上节课解过的方程在形式上有什么不同?它们有什么联系?(2)它的主要特点是什么?怎样解这个方程?学生可以讨论出以下结论:方程中含有括号,如果去掉括号,就可以利用移项法则进行解方程了,关键步骤就是去括号.回顾去括号法则:⑴括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号.⑵括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.学生自主学习课本P88例3,让学生体验去括号解方程的过程与方法,深化对解方程过程的认识.注意:(1)方程中有带括号的式子时,根据乘法分配律和去括号法则化简.(2)去括号时不要漏乘括号内的任何一项.(3)若括号前面是“-”号,记住去括号后括号内各项都变号.(4)-x =10不是方程的解,必须把x 的系数化为1,才算完成解方程的过程.四、应用迁移,运用新知1.用去括号的方法解方程例1 解下列方程:(1)4x -3(5-x)=6;(2)5(x +8)-5=6(2x -7).解析:先去括号,再移项,合并同类项,系数化为1即可求得答案.解:(1)4x -3(5-x)=6,去括号得4x -15+3x =6,移项合并同类项得7x =21,系数化为1得x =3;(2)去括号得5x +40-5=12x -42,移项、合并同类项得-7x =-77,系数化为1得x =11.方法总结:解一元一次方程的步骤是去括号、移项、合并同类项、系数化为1.2.根据已知方程的解求字母系数的值例2 已知关于x 的方程3(a -x 3)=x 2+3的解为2,求代数式(-a)2-2a +1的值. 解析:此题可将x =2代入方程,得出关于a 的一元一次方程,解方程即可求出a 的值,再把a 的值代入所求代数式计算即可.解:因为x =2是方程3(a -x 3)=x 2+3的解, 所以3(a -23)=1+3,解得a =2, 所以原式=a 2-2a +1=22-2×2+1=1.方法总结:此题考查方程解的意义及代数式的求值.将未知数x 的值代入方程,求出a 的值,然后将a 的值代入整式即可解决此类问题.3.应用方程思想求值例3 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6?解析:先列出方程,然后根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.解:依题意得2(x 2-1)-x 2-(x 2+3x -2)=6,去括号得2x 2-2-x 2-x 2-3x +2=6,移项、合并同类项得-3x =6,系数化为1得x =-2.方法总结:先按要求列出方程,然后去括号,移项(把含未知数的项移到方程左边,不含未知数的项移到方程右边),合并同类项,最后把未知数的系数化为1得到原方程的解.五、尝试练习,掌握新知课本P 89练习第1、2题.《·》“随堂演练”部分.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了解了去括号解一元一次方程的步骤:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.七、深化练习,巩固新知课本P 91习题3.1第4(3)(4)、6、9、10题.《·》“课时作业”部分.第4课时去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法.2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的一般步骤.重点用去分母的方法解方程.难点去分母时,不漏乘不含分母的项(即整数项);正确理解分数线的作用,去分母后注意给分子添加括号.一、复习旧知,导入新知1.等式的基本性质2是怎样叙述的呢?2.求下列几组数的最小公倍数:(1)2,3;(2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《·》“预习导学”部分.三、师生互动,理解新知探究点:去分母解一元一次方程1.探索去分母解方程的方法问题:刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成,现在甲先单独绣1天,接着乙又单独绣4天,剩下的工作由甲、乙两人合绣,问再合绣多少天可以完成这件作品?学生活动:观察问题情境,弄清题意,分析问题中的等量关系.教师活动:(1)指定一名学生说出问题中的等量关系;(2)引导学生分析,建立方程模型.师生共同分析:(1)题中的等量关系是:甲完成的工作量+乙完成的工作量=工作总量.(2)设工作总量为1,剩下的工作两人合做需x天完成,则115(x+1)+112(x+4)=1.提出问题:如何解方程115(x+1)+112(x+4)=1?(1)鼓励学生尝试解这个方程,指定两名学生到黑板演示.(2)巡视学生,对不同的解法,只要合理,都给予肯定.(3)给出两种不同的解法.解法一:去括号,得115x +115+112x +412=1. 移项,得:115x +112x =1-115-412. 化简,得:320x =35. 两边同除以320,得x =4. 教师:该方程与前面解过的方程有什么不同?学生:以前学过的方程的系数都为整数,而这一题出现了分数.教师:能否把分数系数化为整数?学生:我们可以根据等式性质2,在方程两边同时乘上一个既是15又是12的倍数60,就可以去掉分母,把分数化为整数.这样使解方程避免计算“分数”的复杂性,使解方程过程简单.解法二:去分母,得4(x +1)+5(x +4)=60.去括号,得4x +4+5x +20=60.移项,得标准形式:9x =36.方程两边同除以9,得x =4.教师:去分母,方程两边同乘以一个什么数合适呢?学生分组讨论,合作交流得出结论:方程两边都乘以所有分母的最小公倍数,从而去掉分母.于是,解方程的基本程序又多了一步“去分母”.(4)引导学生比较两种解法,得出解法二更简便.2.探索解一元一次方程的具体步骤学生自主学习课本P 89例4,让学生体验去括号解方程的过程与方法,深化对解方程过程的认识.问题:你能总结一下解一元一次方程都有哪些步骤吗?(学生回顾总结,小组可以讨论交流.)归纳:(1)去分母——方程两边同乘以各分母的最小公倍数.注意不可漏乘某一项,特别是不含分母的项,分子是代数式要加括号.(2)去括号——应用分配律、去括号法则,注意不漏乘括号内各项,括号前“-”号,括号内各项要变号.(3)移项——一般把含未知数的项移到方程的左边,常数项移到方程的右边,注意移项要变号.(4)化简——一类代数式的加减,要注意只是系数相加减,字母及其指数不变.(5)标准形式的化简——同除以未知数前面的系数,即ax =b ⇒x =b a. 四、应用迁移,运用新知利用去分母解一元一次方程例1 解方程:(1)x -x -25=2x -53-3; (2)x -32-x +13=16. 解析:(1)首先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程;(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)去分母得15x -3(x -2)=5(2x -5)-45,去括号得15x -3x +6=10x -25-45,移项得15x -3x -10x =-25-45-6,合并同类项得2x =-76,把x 的系数化为1得x =-38;(2)去分母得3(x -3)-2(x +1)=1,去括号得3x -9-2x -2=1,移项得3x -2x =1+9+2,合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.例2 (1)当k 取何值时,代数式k +13的值比3k +12的值小1? (2)当k 取何值时,代数式k +13与3k +12的值互为相反数? 解析:根据题意列出方程,然后解方程即可.解:(1)根据题意可得3k +12-k +13=1, 去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6,移项得9k -2k =6+2-3,合并得7k =5,系数化为1得k =57; (2)根据题意可得k +13+3k +12=0, 去分母得2(k +1)+3(3k +1)=0,去括号得2k +2+9k +3=0,移项得2k +9k =-3-2,合并得11k =-5,系数化为1得k =-511. 方法总结:先按要求列出方程,然后按照去分母解一元一次方程的步骤解题.五、尝试练习,掌握新知课本P 90练习第1~3题.《·》“随堂演练”部分.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了解含有分母的一元一次方程的步骤:(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.注意去分母时,不要漏乘不含分母的项,分子是多项式时,去掉分母要加括号.七、深化练习,巩固新知课本P91习题3.1第5、7题.《·》“课时作业”部分.。
中考数学试题分类汇编考点8一元一次方程(含解析)

考点8 一元一次方程一.选择题(共8小题)1.(2018•恩施州)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.2.(2018•通辽)一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【分析】设盈利的商品的进价为x元,亏损的商品的进价为y元,根据销售收入﹣进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再由两件商品的销售收入﹣成本=利润,即可得出商店卖这两件商品总的亏损20元.【解答】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150﹣x=25%x,150﹣y=﹣25%y,解得:x=120,y=200,∴150+150﹣120﹣200=﹣20(元).故选:A.3.(2018•南通模拟)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【分析】设该队获胜x场,则负了(6﹣x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.4.(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.2【分析】可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.【解答】解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.5.(2018•临安区)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.5【分析】由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.6.(2018•邵阳)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.7.(2018•武汉)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.2013【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.8.(2018•香坊区)某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元【分析】设这种商品每件的进价为x元,根据按标价的八折销售时,仍可获利20%,列方程求解.【解答】解:设这种商品每件的进价为x元,由题意得,270×0.8﹣x=20%x,解得:x=180,即每件商品的进价为180元.故选:A.二.填空题(共2小题)9.(2018•曲靖)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为80 元.【分析】设该书包的进价为x元,根据销售收入﹣成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该书包的进价为x元,根据题意得:115×0.8﹣x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.10.(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0. =x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0. =.将0.写成分数的形式是.【分析】设0. =x,则36. =100x,二者做差后可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设0. =x,则36. =100x,∴100x﹣x=36,解得:x=.故答案为:.三.解答题(共3小题)11.(2018•随州)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.=0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x=,于是得0. =.同理可得0. = =,1. =1+0. =1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0. = ,5. = ;(2)将0.化为分数形式,写出推导过程;【能力提升】(3)0. 1= ,2.0= ;(注:0. 1=0.315315…,2.0=2.01818…)【探索发现】(4)①试比较0.与1的大小:0.= 1(填“>”、“<”或“=”)②若已知0. 8571=,则3. 1428= .(注:0. 857l=0.285714285714…)【分析】根据阅读材料可知,每个整数部分为零的无限循环小数都可以写成分式形式,如果循环节有n位,则这个分数的分母为n个9,分子为循环节.【解答】解:(1)由题意知0. =、5. =5+=,故答案为:、;(2)0.=0.232323……,设x=0.232323……①,则100x=23.2323……②,②﹣①,得:99x=23,解得:x=,∴0. =;(3)同理0. 1==,2.0=2+=故答案为:,(4)①0. = =1故答案为:=②3. 1428=3+=3+=故答案为:12.(2018•张家界)列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.【解答】解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(员),答:买羊人数为21人,羊价为150元.13.(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.。
专题03 一元一次方程(知识点串讲)(解析版)

专题03 一元一次方程【思维导图】、【知识要点】知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。
注意:1.等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等。
2.不能将等式和代数式概念混淆,等式含有等号,表示两个式子相等关系,而代数式不含等号,你只能作为等式的一边。
方程的概念:含有未知数的等式叫做方程。
特征:它含有未知数,同时又是—个等式。
一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
标准形式:ax+b=0(x为未知数,a、b是已知数且a≠0)【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式,分母中不含未知数。
方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。
一元方程的解又叫根。
1.(2017·福建中考模拟)设某数是x,若比它的2倍大3的数是8,可列方程为()A.2x–3=8B.2x+3=8C.12x–3=8D.12x+3=8【详解】试题解析:根据文字表述可得到其等量关系为:x的2倍+3=8,根据此列方程:2x+3=8.故选B.2.(2018·广西中考真题)用代数式表示:a的2倍与3 的和.下列表示正确的是()A.2a-3 B.2a+3 C.2(a-3) D.2(a+3)【详解】“a的2倍与3 的和”是2a+3.故选:B.3.(2018·湖南中考模拟)下列各方程中,是一元一次方程的是()A.x﹣2y=4B.xy=4C.3y﹣1=4D.【详解】各方程中,是一元一次方程的是3y-1=4,故选C.考查题型一 一元一次方程概念的应用1.(2019·四川中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .4【详解】解:因为关于x 的一元一次方程2x a -2+m=4的解为x=1,可得:a -2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C .2.(2019·内蒙古中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____. 【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,2m 11∴﹣=,即m 1=或m 0=,方程为x 20﹣=或x 20--=,解得:x 2=或x 2=-,当2m -1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为:x=2或x=-2或x=-3.3.(2017·广东中山纪念中学中考模拟)若方程120k kx ++=是关于x 的一元一次方程,则k =___________.【详解】根据一元一次方程的特点可得:011k k ≠⎧⎨+±⎩=,解得:k=-2. 故答案是:-2.考查题型二 利用方程的解求待定字母的方法1.(2019·山东中考模拟)已知关于x 的方程2x+a -9=0的解是x=2,则a 的值为A .2B .3C .4D .5【详解】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0,解得a =5.故选:D .2.(2019·四川中考模拟)若1x =是方程260x m +-=的解,则m 的值是( )A .﹣4B .4C .﹣8D .8【详解】根据方程的解,把x=1代入2x+m -6=0可得2+m -6=0,解得m=4.故选:B.3.(2019·河北中考模拟)已知7x =是方程27x ax -=的解,则a =( )A .1B .2C .3D .7【详解】解:∵x =7是方程2x ﹣7=ax 的解,∴代入得:14﹣7=7a ,解得:a =1,故选:A .4.(2019·山东中考模拟)若11x m =-是方程mx ﹣2m +2=0的根,则x ﹣m 的值为( )A .0B .1C .﹣1D .2【详解】解:把x =1﹣1m 代入方程得:m (1﹣1m )﹣2m +2=0,解得:m =1,∴x =0,∴x ﹣m =0﹣1=﹣1,故选C .5.(2019·福建中考模拟)若x =2是关于x 的一元一次方程ax -2=b 的解,则3b -6a +2的值是( ).A .-8B .-4C .8D .4【详解】把x=2代入ax -2=b ,得2a - 2= b .所以3b -6a=-6.所以,3b -6a +2=-6+2=-4.故选B .知识点二 等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。
2018年中考数学专题复习题一元一次方程(一)(含解析)

2018年中考数学专题复习题一元一次方程(一)一、选择题1.已知关于x的一元一次方程,则a的值为A. 3B.C.D.2.若,则下列式子中正确的个数是;;;.A. 1个B. 2个C. 3个D. 4个3.下列各式是等式的是 ( )A. B. C.D.4.下列方程中,其解为的是A. B. C.D.5.若关于x的方程是一元一次方程,则m的值是A. 0B.C. 2D. 任意有理数6.在解方程时,方程两边同时乘以6,去分母后,正确的是A. B.C. D.7.若的值与4互为相反数,则a的值为A. B. C. D.8.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,第一台盈利,另一台亏本,则本次出售中,商场A. 不赚不赔B. 赚160元C. 赔80元D. 赚80元9.一件商品按成本价提高后标价,再打8折标价的销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是A. B.C. D.10.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程A. B. C.D.二、填空题11.如果方程和方程的解相同,则______.12.当 ______ 时,多项式与的乘积不含一次项.13.小明做作业时,不小心把方程中等号右边一个常数污染了:,小明翻看书后的答案,此方程的解为,请你帮小明确定所表示的数是______ .14.关于x的方程是一元一次方程,则k的值是______.15.若方程是关于x的一元一次方程,则代数式的值为______.16.若方程的解是正数,则m的取值范围是____________.17.我们规定一种运算:,例如:按照这种运算的规定,请解答下列问题:当 ______ 时,.18.已知,是二元一次方程的解,则______.19.有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是______小时.20.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是卡车的行驶速度是,客车比卡车早1h到达B地设客车经过x小时到达B地,依题意可列方程______ 不必求解三、计算题21.已知关于x的方程的解是非负数,求k的取值范围.22.已知是关于x的方程的一个解,求的值.23.某商店销售一种衬衫,四月份的营业额为5000元为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元求四月份每件衬衫的售价.24.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面每名师傅比徒弟一天多刷的墙面.求每个房间需要粉刷的墙面面积;张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?【答案】1. A2. B3. B4. A5. C6. B7. C8. C9. D10. A11.12.13.14.15. 116.17.18. 219. 320.21. 解:,,,关于x的方程的解是非负数,,解不等式得:,的取值范围是.22. 解:将代入方程得:,解得:,当时,.23. 解:设四月份每件衬衫的售价为x元,根据相等关系列方程得:,解得.答:四月份每件衬衫的售价是50元.24. 解:设每名徒弟一天粉刷的面积为,师傅为,,解得:,所以每个房间需要粉刷的墙面面积为平方米.答:每个房间需要粉刷的墙面面积为平方米.由可知每名徒弟一天粉刷的面积为,师傅为,则天.答:若请1名师傅带2名徒弟去,需要6天完成.第一种情况:假设1个师傅干3天,则:,师傅的费用是;还余,需要徒弟的人次是:人次,这时不能按时完成任务;第二种情况:假设2个师傅干3天,则:,师傅的费用是元;还余,需要徒弟的人次是:人次,则4个徒弟干3天,,费用是元,总费用是元;第三种情况:设雇m名师傅,n名徒弟,工资为B:式1:,即:,得:,式2:,把n代入得:,,n均为整数,徒弟每天的工资比师傅每天的工资少,师傅2名,再雇4名徒弟才合算.即师傅2人徒弟4人同时干3天省钱.答:在这8个人中雇2个师傅,再雇4名徒弟最合算.。
中考数学一元一次方程试题解析-word

2018年中考数学一元一次方程试题解析以下是查字典数学网为您推荐的2018年中考数学一元一次方程试题解析,希望本篇文章对您学习有所帮助。
2018年中考数学一元一次方程试题解析一、选择题1.(2018重庆江津4分)已知3是关于的方程2 - =1的解,则的值是[A、﹣5B、5C、7D、2【答案】B。
【考点】一元一次方程的解的解一元一次方程。
【分析】首先根据一元一次方程的解的定义,将 =3代入关于的方程2 - =1,然后解关于的一元一次方程即可:6- =1,=5。
故选B。
2.(2018新疆自治区、兵团5分)已知:a=-a,则数a等于A.0B.-1C.1D.不确定【答案】A。
【考点】解一元一次方程。
【分析】因为a=-a,所以a+a=0,即2a=0,则a=0。
故选A。
二、填空题1.(2018广西柳州3分)把方程改写成用含的式子表示的形式,得y= _ ▲ .【答案】3-2 。
【考点】方程变形。
【分析】将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1即可。
2.(2018湖南郴州3分)一元一次方程2 +4=0解是▲ .【答案】 =﹣2。
【考点】解一元一次方程。
【分析】移项得,2 =﹣4,系数化为1得, =﹣2。
3.(2018广东湛江4分)若 =2是关于的方程2 +3m-1=0的解,则m的值等于▲ .【答案】-1。
【考点】方程的解。
【分析】使方程左右两边的值相等的未知数的值是该方程的解.将方程的解代入方程可得关于m的一元一次方程,从而可求出m的值。
4.(2018贵州遵义4分)方程的解为▲ .[来源:学.科.网] 【答案】 = 。
【考点】解一元一次方程。
【分析】移项,合并同类项,系数化1,求出的值:3 -1= ,2 =1, = 。
三、解答题1.(2018山东滨州7分)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为 ( )去分母,得3(3 +5)=2(2 ﹣1).( )去括号,得9 +15=4 ﹣2.( )( ),得9 ﹣4 =﹣15﹣2.( )合并,得5 =﹣17.( 合并同类项法则 )( ),得 = .( )【答案】解:原方程可变形为 (分式的基本性质)去分母,得3(3 +5)=2(2 ﹣1).(等式性质2)去括号,得9 +15=4 ﹣2.(去括号法则或乘法分配律)(移项),得9 ﹣4 =﹣15﹣2.(等式性质1)合并,得5 =﹣17.( 合并同类项法则 )(系数化为1),得 = .(等式性质2)【考点】解一元一次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考备考专题复习:一元一次方程一、单选题1、(2016•大连)方程2x+3=7的解是()A、x=5B、x=4C、x=3.5D、x=22、(2016•梧州)一元一次方程3x﹣3=0的解是()A、x=1B、x=﹣1C、x=D、x=03、若关于x的方程(k-1)x2+x-1=0是一元一次方程,则k=( )A、0B、1C、2D、34、(2016•泰安)当1≤x≤4时,mx﹣4<0,则m的取值范围是()A、m>1B、m<1C、m>4D、m<45、已知方程2x-3=+x的解满足|x|-1=0,则m的值是()A、-6B、-12C、-6与-12D、任何数6、(2016•包头)若2(a+3)的值与4互为相反数,则a的值为()A、﹣1B、﹣C、﹣5D、7、下列各式中,是方程的个数为()(1)-3-3=-7 (2)3x-5=2x+1 (3)2x+6(4)x-y=0 (5)a+b>3 (6)a2+a-6=0A、1个B、2个C、3个D、4个8、如果等式ax=b成立,则下列等式恒成立的是().A、abx=abB、x=C、b-ax=a-bD、b+ax=b+b9、已知关于x的方程x2+bx+a=0有一个根是-a(a≠0) ,则a-b的值为().A、-1B、0C、1D、210、(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A、27B、51C、69D、7211、(2016•荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A、120元B、100元C、80元D、60元12、(2016•台湾)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3,二楼售出与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为何?()A、2:1B、7:5C、17:12D、24:1713、(2016•哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A、2×1000(26﹣x)=800xB、1000(13﹣x)=800xC、1000(26﹣x)=2×800xD、1000(26﹣x)=800x14、(2016•赤峰)8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A、东风B、百惠C、两家一样D、不能确定15、(2016•株洲)在解方程时,方程两边同时乘以6,去分母后,正确的是()A、2x﹣1+6x=3(3x+1)B、2(x﹣1)+6x=3(3x+1)C、2(x﹣1)+x=3(3x+1)D、(x﹣1)+x=3(x+1)二、填空题16、已知方程(a-2)x|a|-1=1是一元一次方程,则a=________,x=________ .17、(2016•上海)如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是________.18、(2016•龙东)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元.19、(2016•荆门)为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有________台.20、(2016•绍兴)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元.三、计算题21、(2016•曲靖)先化简:÷ + ,再求当x+1与x+6互为相反数时代数式的值.四、解答题22、(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?23、(2016•海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.五、综合题24、(2016•葫芦岛)在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?25、(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.26、(2016•湖州)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;答案解析部分一、单选题1、【答案】 D【考点】一元一次方程的解【解析】【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D【分析】方程移项合并,把x系数化为1,即可求出解.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2、【答案】 A【考点】一元一次方程的解【解析】【解答】解:3x﹣3=0,3x=3,x=1,故选:A.【分析】直接移项,再两边同时除以3即可.此题主要考查了一元一次方程的解,关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3、【答案】B【考点】一元一次方程的定义【解析】【解答】根据题意得:k-1=0,解得:k=1.故答案是:B.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.据此可得出关于k的方程,继而可求出k的值.4、【答案】 B【考点】一元一次方程的解【解析】【解答】解:设y=mx﹣4,由题意得,当x=1时,y<0,即m﹣4<0,解得m<4,当x=4时,y<0,即4m﹣4<0,解得,m<1,则m的取值范围是m<1,故选:B.【分析】设y=mx﹣4,根据题意列出一元一次不等式,解不等式即可.本题考查的是含字母系数的一元一次不等式的解法,正确利用函数思想、数形结合思想是解题的关键.5、【答案】 C【考点】一元一次方程的解,含绝对值符号的一元一次方程【解析】【解答】∵|x|-1=0∴x=±1当x=1时,把x=1代入方程2x-3=+x2-3=+1∴m=-6;当x=-1时,把x=-1代入方程2x-3=+x-2-3=-1∴m=-12∴m的值是-6与-12.【分析】根据方程的解满足|x|-1=0就可得到x=±1,即±1是方程的解.把x=±1分别代入方程2x-3= m 3 +x就得到关于m的方程,从而求出m的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.6、【答案】C【考点】相反数,解一元一次方程【解析】【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C【分析】先根据相反数的意义列出方程,解方程即可.此题是解一元一次方程,主要考查了相反数的意义,一元一次方程的解法,掌握相反数的意义是解本题的关键.7、【答案】C【考点】一元一次方程的定义,二元一次方程的定义,一元二次方程的定义【解析】【解答】根据方程的定义依次分析即可。
是方程的有(2)3x-5=2x+1,(4)x-y=0,(6)a2+a-6=0共3个,故选C.【分析】解答本题的关键是熟练掌握方程的定义:方程就是含有未知数的等式.8、【答案】 D【考点】等式的性质【解析】【解答】由ax=b,根据等式的性质2,两边同时×b,得abx=b2,故A错误;由ax=b,根据等式的性质2,两边同时÷a(a≠0)才可得x=,B缺少条件,故错误;由ax=b,根据等式的性质2,两边同时×(-1)得-ax=-b,两边同时+b得b-ax=b-b,故C错误;由ax=b,根据等式的性质2,两边同时+b得b+ax=b+b,故D正确;故选D.【分析】根据等式的性质判断即可.9、【答案】A【考点】等式的性质,一元二次方程的解【解析】【解答】∵方程x2+bx+a=0有一个根是-a(a≠0),∴(-a)2+b(-a)+a=0,又∵a≠0,∴等式的两边同除以a,得a-b+1=0,故a-b=-1.故选A.【分析】本题根据一元二次方程的根的定义,把x=-a代入方程,即可求解.10、【答案】D【考点】一元一次方程的应用【解析】【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11、【答案】 C【考点】一元一次方程的应用【解析】【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷ =200,解得:x=80.∴该商品的进价为80元/件.故选C.【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷ =200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.12、【答案】C【考点】一元一次方程的应用【解析】【解答】解:设一楼座位总数为7x,则一楼售出座位4x个,未售出座位3x个,二楼座位总数为5y,则二楼售出座位3y个,未售出座位2y个,根据题意,知:3x=2y,即y= x,则= = = ,故选:C.【分析】设一楼座位总数为7x,二楼座位总数为5y,分别表示出一、二楼售出、未售出的座位数,由一、二楼未售出的座位数相等得到y关于x的表达式,再列式表示此场音乐会售出与未售出的座位数比,将y 代入化简即可得.本题主要考查方程思想及分式的运算,根据一、二楼未售出的座位数相等得到关于y关于x的表达式是解题的关键.13、【答案】C【考点】一元一次方程的应用,根据数量关系列出方程【解析】【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.14、【答案】 A【考点】一元一次方程的应用【解析】【解答】解:依题意,若在东风书店购买,需花费:60+(300﹣60)×50%=180(元),若在百惠书店购买,需花费:50+(300﹣50)×60%=200(元).∵180<200∴郝爱同学在东风书店购买学习用品或工具书便宜.故选:A【分析】本题是一道简单的实际问题,主要考查有理数的运算和有理数的大小比较,正确应用有理数的运算法则便可得到答案.分析:本题可以直接求出郝爱在两家书店购买学习用品或工具书的钱数,比较一下便可得到答案.15、【答案】 B【考点】解一元一次方程【解析】【解答】解:方程两边同时乘以6得:2(x﹣1)+6x=3(3x+1),故选B.【分析】方程两边同时乘以6,化简得到结果,即可作出判断.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.二、填空题16、【答案】-2;-【考点】一元一次方程的定义,一元一次方程的解【解析】【解答】一元一次方程未知数的最高次数为一次,所以|a|-1=1;方程含有一个未知数,所以a-2≠0,所以a=-2;所以原方程为-4x=1,所以x=-.【分析】应用一元一次方程的定义求解相关参数,是一元一次方程定义的基本应用.17、【答案】【考点】解一元一次方程,根的判别式【解析】【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k= .故答案为:.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.18、【答案】 180【考点】一元一次方程的应用【解析】【解答】解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.【分析】设该件服装的成本价是x元.根据“利润=标价×折扣﹣进价”即可得出关于x的一元一次方程,解方程即可得出结论.本题考查了一元一次方程的应用,解题的关键是列出方程300×﹣x=60.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.19、【答案】 16【考点】一元一次方程的应用【解析】【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为(100﹣x)台,依题意得:x= (100﹣x)﹣5,即20﹣ x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.【分析】设购置的笔记本电脑有x台,则购置的台式电脑为(100﹣x)台.根据笔记本电脑的台数比台式电脑的台数的还少5台,可列出关于x的一元一次方程,解方程即可得出结论.本题考查了一元一次方程的应用,解题的关键是列出方程x= (100﹣x)﹣5.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.20、【答案】 248或296【考点】一元一次方程的应用【解析】【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+ ×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+ ×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.本题考查了一元一次方程的应用,解题的关键是分段考虑,结合熟练关系找出每段x区间内的关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.三、计算题21、【答案】解:原式= •+= += ,∵x+1与x+6互为相反数,∴原式=﹣1.【考点】分式的化简求值,解一元一次方程【解析】【分析】先把分子分母因式分解和除法运算化为乘法运算,再约分得到原式= ,然后利用x+1与x+6互为相反数可得到原式的值.本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、解答题22、【答案】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【考点】一元一次方程的应用【解析】【分析】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.23、【答案】解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,依题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元【考点】一元一次方程的应用【解析】【分析】设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元.根据“购书价格=《汉语成语大词典》的标价×折率+《中华上下五千年》的标价×折率”可列出关于x的一元一次方程,解方程即可得出结论.本题考查了一元一次方程的应用,解题的关键是列出50%x+60%(150﹣x)=80.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.五、综合题24、【答案】(1)解:设乙种门票每张x元,则甲种门票每张(x+6)元,根据题意得10(x+6)+15x=660,解得x=24.答:甲、乙两种门票每张各30元、24元(2)解:设可购买y张甲种票,则购买(35﹣y)张乙种票,根据题意得30y+24(35﹣y)≤1000,解得y≤26 .答:最多可购买26张甲种票【考点】一元一次方程的应用,一元一次不等式的应用【解析】【分析】(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据“买甲种票10张,乙种票15张共用去660元”列方程即可求解;(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据购票费用不超过1000元列出不等式即可求解.本题考查了一元一次方程与一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系,列出方程或不等式,再求解.25、【答案】(1)解:第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)解:第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.【考点】一元一次方程的应用【解析】【分析】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系直接求值;(2)根据数量关系找出关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出不等式(方程或方程组)是关键.(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.26、【答案】(1)解:设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)解:设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3(100﹣3t)=200,解得:t=25.答:t的值是25.②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?解:设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30),∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260(个),当t=30时,y的最小值为300﹣4×30=180(个).答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.【考点】一元一次方程的应用,一元二次方程的应用,一次函数的应用【解析】【分析】本题考查了一次函数的应用、解一元一次方程以及解一元二次方程,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)①根据数量关系找出关于t的一元一次方程;②根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x 的一元二次方程,解方程即可得出结论;(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.。