┃试卷合集4套┃2020广西省梧州市中考第二次大联考数学试卷

合集下载

广西梧州市 九年级(上)期末数学试卷-(含答案)

广西梧州市 九年级(上)期末数学试卷-(含答案)

2017-2018学年广西梧州市岑溪市九年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共7小题,共21.0分)1.已知反比例函数y=k的图象在一、三象限,则一次函数y=kx-k的图象大致是()xA. B. C. D.2.已知抛物线y═ax2+bx+c的图象如图,则下列结论正确的是()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b<0,c=0D. a<0,b<0,c<03.下列四个命题:①两个角分别相等的两个三角形相似;②两条边对应成比例的两个三角形相似;③相似三角形对应高的比等于相似比;④相似三角形周长的比等于相似比.其中是真命题的共有()A. 1个B. 2个C. 3个D. 3个4.对于二次函数y=x2-2x-3,下列四个结论:①图象开口向上;②顶点坐标为(-1,-4);③当x>1时,y随x的增大而增大;④当-1<x<3时,y<0.其中正确的是()A. ①③B. ②④C. ①②④D. ①③④5.在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,下列结论正确的是()A. b=a⋅sinAB. b=a⋅tanAC. c=a⋅sinAD. a=c⋅cosB6.如图,D是△ABC的边AB上的一点,那么下列四个条件不能单独判定△ABC∽△ACD的是()A. ∠B=∠ACDB. ∠ADC=∠ACBC. ACCD =ABBCD. AC2=AD⋅AB7.下列格点,在反比例函数y=6x图象上的是()A. (3,−2)B. (−3,−2)C. (2,−3)D. (−2,3)二、填空题(本大题共6小题,共18.0分)8.已知线段b是线段a,c的比例中项,若a=1,c=2,则b=______.9.已知点(-2,1)在反比例函数y=k−1x的图象上,则k=______.10.抛物线y=x2-4x-5与x轴有______个交点.11.比较大小:sin40°______cos50°(填“>”、“<”或“=”)12.如图,▱ABCD中,E是边AB的中点,AC、DE相交于点F,若△AEF的面积为20cm2,则△CDF的面积是______cm2.13.已知A、B两点之间的实际距离为100m,要把它画到比例尺为1:200的图纸上,应画线段AB=______cm.三、计算题(本大题共2小题,共16.0分)14.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采取提高售价,减少进货量的办法增加利润,已知这种商品每涨价1元,每天的销售量就要减少10件,设该商人将每件售价定为x元,每天获得的总利润为y元,回答下列问题:(1)提价后,销售每件商品可获利______元,每天少销售______件商品;(2)当每件售价x定为多少元时可使每天所获利润最大?并求出每天的最大利润.15.今年,我市中小学大力倡导中国传统文化教育,小敬同学积极响应,他计划在寒假里读一本96页的《弟子规》.设他读完这本书所用的天数是y(天),平均每天阅读的页数是x(页)(1)求y与x之间的函数关系式,并写出自变量的取值范围;(2)小敬为了腾出一定的时间复习功课,计划用12天读完,那么他平均每天应读多少页?四、解答题(本大题共5小题,共44.0分)16.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,点A的坐标为(2,0),点C的坐标为(0,4),它的对称轴是直线x=-1.(1)求这个二次函数的解析式.(2)连接BC,求线段BC的长.(3)若点P在x轴上,且△PBC为等腰三角形,请直接写出符合条件的所有点P的坐标.17.已知:如图,在矩形ABCD中,点E、F分别在边AD、DC上,且BE⊥EF(1)求证:△ABE∽△DEF;(2)若AB=6,AE=9,DE=2,求DF的长;(3)在(2)的条件下,连接BF,则tan∠EBF=______(直接写出结果).18.当前,我国的城镇建设稳步推进,高楼大厦不断增加.小敏在她家的房顶A处看一栋新建的高楼,测得这栋高楼顶部的仰角为60°,这栋高楼底部的俯角为30°,已知小敏家的楼房与这栋高楼的水平距离为30m,求这栋高楼的高度BC.(结果保留根号)19.计算:sin45°+cos45°.20.如图,反比例函数y=k的图象与一次函数y=ax+b的图象x相交于点A(1,4)和点B(-2,n).(1)求反比例函数的解析式;(2)求n的值;(3)求一次函数的解析式.答案和解析1.【答案】C【解析】解:∵反比例函数y=的图象在一、三象限,∴k>0,∴-k<0,∴一次函数y=kx-k的图象在第一、三、四象限,故选:C.根据把反比例函数的性质可得k>0,从而可判断出-k<0,然后再判断一次函数y=kx-k的图象所在象限即可.此题主要考查了反比例函数的性质,关键是掌握反比例函数y=,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.2.【答案】B【解析】解:由抛物线开口向上可知,a>0,故D错误;对称轴x=-<0,又∵a>0,∴b>0,故C错误;∵抛物线的图象过原点,∴c=0,故A错误;B正确;故选:B.根据抛物线的开口方向,对称轴的位置,利用二次函数的性质一一判断即可.本题考查二次函数的性质、解题的关键是灵活运用所学知识解决问题,学会利用图象信息解决问题.3.【答案】C【解析】解:两个角分别相等的两个三角形相似,①是真命题;两条边对应成比例、夹角相等的两个三角形相似,②是假命题;相似三角形对应高的比等于相似比,③是真命题;相似三角形周长的比等于相似比,④是真命题,故选:C.根据相似三角形的判定定理和性质定理判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.【答案】D【解析】解;∵y=x2-2x-3=(x-1)2-4,∴顶点坐标为(1,-4),∵a=1>0,∴开口向上,x>1时,y随x的增大而增大,∵抛物线与x轴的交点为(-1,0),(3,3),∴当-1<x<3时,y<0.∴①③④正确,故选:D.根据二次函数的性质一一判断即可;本题考查二次函数的性质、解题的关键是熟练掌握二次函数的性质,属于中考常考题型.5.【答案】D【解析】解:在直角△ABC中,∠C=90°,则sinA=,则c=asinA,故A选项错误、C选项错误;tanA=,则b=,故B选项错误;cosB=,则a=ccosB,故D选项正确;故选:D.根据三角函数定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.本题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.6.【答案】C【解析】解:∵∠A是公共角,∴再加上∠B=∠ACD,或∠ADC=∠ACB都可判定△ABC∽△ACD,∵∠A是公共角,再加上AC2=AD•AB,即=,也可判定△ABC∽△ACD,∴选项A、B、D都可判定△ABC∽△ACD.而选项C中的对应两边成比例,但不是相应的夹角相等,所以选项C不能.故选:C.根据相似三角形的判定定理对各个选项逐一分析即可.本题考查了相似三角形的判定,此题主要考查学生对相似三角形判定定理的理解和掌握,难度不大,属于基础题,要求学生应熟练掌握.7.【答案】B【解析】解:反在比例函数y=图象上的点的横坐标与纵坐标的乘积为6,∴(-3,-2)在y=上,故选:B.在反比例函数y=图象上的点的横坐标与纵坐标的乘积为6,即可判断;本题考查反比例函数图象上点的特征,解题的关键是熟练掌握反比例函数y=图象上的点的横坐标与纵坐标的乘积为定值k.8.【答案】√2【解析】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,所以b2=ac,即b2=2,∴b=或-(舍弃),故答案为:.根据比例中项的定义,列出比例式即可求解.此题考查了比例线段;理解比例中项的概念,注意线段不能是负数.9.【答案】-1【解析】解:∵(-2,1)在反比例函数y=的图象上,∴1=,∴k=-1,故答案为-1.利用待定系数法即可解决问题;本题考查反比例函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.10.【答案】两【解析】解:设y=0则0=x2-4x-5∵△=b2-4ac=(-4)2-4×1×(-5)=16+20>0∴方程有两个不相等实数根则抛物线y=x2-4x-5与x轴有两个交点故答案应为:两求抛物线与x轴交点令y=0,研究一元二次方程根的判别式即可.本题考查二次函数的性质,涉及到一元二次方程根的判别式以及数形结合思想.11.【答案】=【解析】解:∵cos50°=sin(90°-50°)=sin40°,∴sin40°=cos50°.故答案为:=.直接利用锐角三角函数关系得出答案.此题主要考查了锐角三角函数关系,正确转换正余弦关系是解题关键.12.【答案】80【解析】解:∵四边形ABCD是平行四边形,∴AB=CD,∵E是AB的中点,∴AE:CD=2,∵四边形ABCD是平行四边形,∴DC∥AE,∴△AEF∽△CDF,∴==2,∴=,∵△AEF的面积为20cm2,∴△DCF的面积为80cm2,故答案为80.根据平行四边形的性质可得AB=CD,DC∥AE,进而可得AE:CD=2,△AEF∽△CDF,再根据相似三角形的面积比等于相似比的平方可得△DCF的面积此题主要考查了相似三角形的判定和性质,关键是掌握相似三角形面积比等于相似比的平方.13.【答案】50【解析】解:100米=10000厘米,10000×=50(厘米);答:应画50厘米.故答案为:50要求A、B两点之间的图上距离是多少厘米,根据“实际距离×比例尺=图上距离”,代入数值,计算即可.此题考查比例线段,解答此题应根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.14.【答案】x-8;200-10x【解析】解:(1)由题意知提价后,销售每件商品可获利(x-8)元,每天少销售100-10(x-10)=200-10x件商品,故答案为:x-8、200-10x;(2)y=(x-8)[100-10(x-10)]=-10(x-14)2+360(10≤a<20),∵a=-10<0∴当x=14时,y有最大值360答:他将售出价(x)定为14元时,才能使每天所赚的利润(y)最大,最大利润是360元.(1)每件利润为x-8元,销售量为100-10(x-10),据此可得答案.(2)根据日利润=销售量×每件利润.利用配方法即可解决问题.本题考查二次函数的应用,解题的关键是理解利润、销售量、每件利润之间的关系,学会构建二次函数解决在问题,属于中考常考题型.15.【答案】解:(1)根据题意知y=96(x>0,且x为整数);x=8,(2)当y=12时,x=9612答:他平均每天应读8页.【解析】(1)根据“所用天数=总页数÷每天阅读的页数”可得;(2)将y=12代入函数解析式求出x即可得.本题主要考查反比例函数的应用,解题的关键是掌握①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.16.【答案】解:(1)根据题意得,{4a +2b +c =0c =4−b 2a=−1, 解得,{a =−12b =−1c =4,∴二次函数的解析式y =-12x 2-x +4;(2)∵点A 的坐标为(2,0),对称轴是直线x =-1,∴B (-4,0),∵C (0,4),∴BC =√(−4)2+42=4√2;(3)设P (m ,0),∵B (-4,0),C (0,4),∴BP 2=(m +4)2,CP 2=m 2+16,∵△PBC 是等腰三角形,∴①当BP =CP 时,∴(m +4)2=m 2+16,∴m =0,∴P (0,0)②当BP =BC 时,∴(m +4)2=32,∴m =-4±4√2, ∴P (-4+4√2,0)或(-4-4√2,0)③当CP =BC 时,m 2+16=32,∴m =4或m =-4(舍),∴P (4,0),即:符合条件的所有点P 的坐标为P (0,0)或(-4+4√2,0)或(-4-4√2,0)或(4,0).【解析】(1)利用待定系数法求出即可得出结论;(2)先求出点B 坐标,最后用两点间距离公式即可得出结论;(3)分三种情况,利用等腰三角形的两腰相等建立方程求解即可得出结论.此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,等腰三角形的性质,用方程的思想解决问题是解本题的关键.17.【答案】13【解析】解:(1)∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠ABE+∠AEB=90°,∵BE⊥EF∴∠BEF=90°,∴∠AEB+∠DEF=90°,∴∠ABE=∠DEF,∵∠A=∠D,∴△ABE∽△DEF;(2)由(1)知,△ABE∽△DEF,∴,∵AB=6,AE=9,DE=2,∴,∴DF=3,(3)由(2)知,AB=6,AE=9,DE=2,DF=3,在Rt△ABE中,根据勾股定理得,BE==3,在Rt△DEF中,根据勾股定理得,EF==,在Rt△BEF中,tan∠EBF==.故答案为:.(1)先判断出∠A=∠D=90°,进而得出∠ABE+∠AEB=90°,再判断出∠AEB+∠DEF=90°,得出∠ABE=∠DEF,即可得出结论;(2)借助(1)得出△ABE∽△DEF,得出比例式代值即可得出结论;(3)利用勾股定理求出BE,EF,最后用锐角三角函数的定义即可得出结论.此题是相似形综合题,主要考查了矩形的性质,同角的余角线段,相似三角形的判定和性质,勾股定理,锐角三角函数的定义,判断出△ABE ∽△DEF 是解本题的关键.18.【答案】解:在Rt △ABD 中,∠BDA =90°,∠BAD =60°,AD =30m , ∴BD =AD tan60°=30×√3=30√3(m ).在Rt △ACD 中,∠ADC =90°,∠CAD =30°,∴CD =AD tan30°=30×√33=10√3(m ). ∴BC =BD +CD =30√3+10√3=40√3(m )答:这栋高楼的高度BC 为40√3m .【解析】求这栋楼的高度,即BC 的长度,根据BC=BD+DC ,在Rt △ABD 和Rt △ACD 中分别求出BD ,CD 就可以.此题主要考查了仰角俯角问题,以及利用三角函数关系解直角三角形,题目难度不大,是中考中常考题型.19.【答案】解:原式=√22+√22=√2.【解析】直接利用特殊角的三角函数值代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 20.【答案】解:(1)∵点A (1,4)在反比例函数y =kx 上,∴k =4,∴反比例函数的解析式为y =4x .(2)∵B (-2,n )在y =4x 上,∴n =-2.(3)设一次函数的解析式为y =kx +b ,则有{−2k +b =−2k+b=4,解得{b =2k=2,∴一次函数的解析式为y =2x +2.【解析】(1)把点A坐标代入解析式y=即可;(2)把点B坐标代入y=即可;(3)利用待定系数法即可解决问题;本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.。

梧州市重点中学2022-2023学年中考数学模拟试题含解析

梧州市重点中学2022-2023学年中考数学模拟试题含解析

2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-22.下列运算正确的是()A.a2•a4=a8B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b63.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④4.“车辆随机到达一个路口,遇到红灯”这个事件是( )A.不可能事件B.不确定事件C.确定事件 D.必然事件5.运用乘法公式计算(4+x)(4﹣x)的结果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x26.等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数 C.反比例函数D.二次函数7.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D .12x(x﹣1)=2108.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为()A.3×109 B.3×108 C.30×108 D.0.3×10109.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.10.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A.B.C.D.11.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°12.在0,π,﹣3,0.6,2这5个实数中,无理数的个数为()A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.长城的总长大约为6700000m,将数6700000用科学记数法表示为______14.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=62,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_____.15.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.16.写出一个一次函数,使它的图象经过第一、三、四象限:______.17.二次函数22y x mx m=++-的图象与x轴有____个交点.18.在函数中,自变量x的取值范围是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.20.(6分)解方程(2x+1)2=3(2x+1)21.(6分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值.22.(8分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽16cmAB=,水面最深地方的高度为4cm,求这个圆形截面的半径.23.(8分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树180棵,由于同学们的积极参与,实际参加的人数比原计划增加了50%,结果每人比原计划少栽了2棵,问实际有多少人参加了这次植树活动?24.(10分)如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,且8cm AB =,6cm BC .动点P ,Q 分别从点C ,A 同时出发,运动速度均为lcm/s .点P 沿C D A →→运动,到点A 停止.点Q 沿A O C →→运动,点Q 到点O 停留4s 后继续运动,到点C 停止.连接BP ,BQ ,PQ ,设BPQ 的面积为()2cm y (这里规定:线段是面积为0的三角形),点P 的运动时间为()x s .(1)求线段PD 的长(用含x 的代数式表示);(2)求514x 时,求y 与x 之间的函数解析式,并写出x 的取值范围;(3)当12BDP y S =△时,直接写出x 的取值范围.25.(10分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P 处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD 的顶端C 处.已知AB ⊥BD 、CD ⊥BD ,且测得AB=1.2m ,BP=1.8m.PD=12m ,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.26.(12分)如图,在平面直角坐标系中,二次函数y=(x-a )(x-3)(0<a<3)的图象与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点D ,过其顶点C 作直线CP ⊥x 轴,垂足为点P ,连接AD 、BC .(1)求点A 、B 、D 的坐标;(2)若△AOD 与△BPC 相似,求a 的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.27.(12分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:△ABE≌△DCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,1),∴,解得,∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.2、D【解析】根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:A、a2•a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确..故选D.考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.3、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

广西梧州市2021年中考数学试卷真题(解析版)

广西梧州市2021年中考数学试卷真题(解析版)
解得:x=4,
经检验,符合题意
则6x+3=23.
答:学生有4人,铅笔23支.
【点睛】此题考查一元一次方程的实际运用,设出人数,表示出铅笔数是解决问题的关键.
23.如图,在Rt△ACD中,∠ACD=90°,点O在CD上,作⊙O,使⊙O与AD相切于点B,⊙O与CD交于点E,过点D作DF∥AC,交AO 延长线于点F,且∠OAB=∠F.
【详解】解:根据题意,
∵A1(2,1),A2(3,2),A3(4,3),A4(5,4),…,An(n+1,n),
∴ ,


……
∴ ;
∴ .
故答案为: .
【点睛】本题考查了一次函数的性质,图像的规律问题,解题的关键是熟练掌握所学的知识,正确的找出规律,得到 .
三、解答题(本大题共8小题,满分66分)
19.计算:(﹣1)2+(﹣8)÷4 (﹣2021)0.
7.在△ABC中,∠A=20°,∠B=4∠C,则∠C等于( )
A.32°B.36°C.40°D.128°
【答案】A
【解析】
【分析】直接根据三角形内角和定理求解即可.
【详解】解:∵ ,且∠A=20°,∠B=4∠C,


∴∠C=32°
故选:和定理的应用以及解一元一次方程,运用方程思想解答此类试题是常用的思想方法.
【答案】A
【解析】
【分析】如图,作 的外接圆 连接 过 作 轴于 作 轴于 则四边形 是矩形,再证明 是等边三角形,再分别求解 即可得到答案.
【详解】解:如图,作 的外接圆 连接 过 作 轴于 作 轴于 则四边形 是矩形,
是等边三角形,
故选:
【点睛】本题考查的是坐标与图形,三角形的外接圆的性质,圆周角定理,等边三角形的判定与性质,矩形的判定与性质,勾股定理分应用,灵活应用以上知识解题是解题的关键.

2020年广西省中考数学试卷(含答案)

2020年广西省中考数学试卷(含答案)

广西省中考数学试卷本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。

注意:答案一律填写在答题卷上,在试题卷上作答无效.........。

考试结束,将本试卷和答题卷一并交回。

第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)请用2B 铅笔在答题卷上将选定的答案标号涂黑。

1.-5的相反数是A .-5B .5C .51D . ±52.我国南海海域面积为38000002km ,用科学记数法表示正确的是A .3.8×1052km B .3.8×1062km C .3.8×1072km D .3.8×1082km3.如图,AB∥CD ,E 在AC 的延长线上,若︒=∠34A ,︒=∠90DEC ,则D ∠的度数为A .︒17B .︒34C .︒56D .o 66 4.在函数31x y x +=-中,自变量x 的取值范围是 A .x ≥-3且1x ≠ B .x >-3且1x ≠ C .x ≥3 D .x >3 5.如图是由4个大小相同的正方体搭成的几何体,其俯视图是6.下列说法中正确的是A .篮球队员在罚球线上投篮一次,未投中是必然事件B .想了解某种饮料中含色素的情况,宜采用普查C .数据5,1,-2,2,3的中位数是-2D .一组数据的波动越大,方差越大7.下列运算正确的是A. 235a a a +=B. 22a a -=C. 632a a a ÷=D. 236()a a =第5题图AB CDCD 第3题图8.不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解的个数有A.1个B.2个C.3个D.4个9.如图,在平行四边形ABCD 中,E 是CD 的中点,AD 、BE 的延长线交于点F ,3DF =,2DE =,则平行四边形ABCD 的周长为A .5B .12C .14D .1610.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是 A .200米 B. 2003米 C. 2203米 D. 100(31)+米11.如图,在平面直角坐标系中,抛物线y =23ax +与y 轴交于点A ,过点A 与x轴平行的直线交抛物线y =213x 于B 、C 两点,则BC 的长为A .1B .2C .3D .612.如图,AB 是⊙O 的直径,AD 是⊙O 的切线, BC ∥OD 交⊙O 于点C , 若AB =2, OD =3,则BC 的长为A .32B .23C .3D .2第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,满分18分;只要求填写最后结果.) 13.分解因式:24x - = .14.小玲在一次班会中参与知识抢答活动,现有语文题6个,第9题图F ED CBA 第10题图第12题图第11题图B OAC y xO CD45°30°BDC ADA数学题5个,综合题9个,她从中随机抽取1个,抽中 数学题的概率是 .15.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为cm 6、cm 8,AE ⊥BC 于点E ,则AE 的长是 cm . 16.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边OBC ∆,将点C 向左平移,使其 对应点C '恰好落在直线AB 上,则点C '的坐标为 .17.如图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π). 18.如图,第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA OB ⊥,cos 3A =,则k 的值为 .三、解答题(本大题共8题,共66分;解答应写出必要的文字说明、演算步骤或推理过程.)19.(本题6分)计算: ()︒-++⎪⎭⎫⎝⎛-+-30tan 35321160120.(本题6分)先化简,再求值:221()111a a a a a -÷+--,其中12+=a .21. (本题8分) 如图,在△ABC 中,AB AC =,点M 在BA 的延长线上. (1)按下列要求作图,并在图中标明相应的字母.①作CAM ∠的平分线AN ;第18题图BO Ayx第17题图BACBAO O O图1图220﹪纪念奖三等奖二等奖一等奖45﹪纪念奖三等奖二等奖600奖项一等奖人数(人)10020030040050063252567②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.22. (本题8分)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有 名学生;(2)在图1中,“三等奖”随对应扇形的圆心角度数是 ; (3)将图2补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.23. (本题8分)某水果销售点用1000元购进甲、乙两种新出产的水果共140千克,这进价(元/千克) 售价(元/千克)甲种 5 8 乙种9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?A B CM24. (本题8分)某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题: (1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?25.(本题10分)如图,︒=∠90C ,⊙O 是Rt △ABC 的内切圆,分别切AB AC BC ,,于点G F E ,,,连接OF OE ,.AO 的延长线交BC 于点D ,2,6==CD AC . (1)求证:四边形OECF 为正方形; (2)求⊙O 的半径; (3)求AB 的长.OGFE DC BA乙甲72015963O y (米)x (天)26.(本题12分) 如图,已知直线121+=x y 与y 轴交于点A ,与x 轴交于点D ,抛物线c bx x y ++=221与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,直接写出点P 的坐标; (3)在抛物线的对称轴上找一点M ,使|MC AM -|的值最大,求出点M 的坐标.21OMN DC BA数学答案评分标准一.选择题BBCA DDDC CDDB 二.填空题13. (2)(2)x x +- 14.1415. 16. (﹣1,2) 17. 3π 18. -4三.解答题19.解:原式=4﹣2+1﹣333⨯4分(对一个知识点给1分) =4﹣2+1﹣1 5分 =2 6分20.解:原式=2(1)(1)(1)(1)(1)(1)(1)(1)a a a a a a a a a a ⎡⎤-+-⋅+-⎢⎥+-+-⎣⎦2分(还有其他做法) =2222(1)(1)(1)(1)a a a aa a a a ---⋅+-+- 3分 =23a a - ……4分 当a =21+时,原式=3223232+--=- ……6分 21.解:(1)作图正确 . ……3分(2)四边形ABCD 是平形四边形,理由如下: ∵AB AC =∴1ABC ∠=∠ 4分 ∵121CAM ABC ∠=∠+∠=∠∴112CAM ∠=∠∵AN 平分CAM ∠∴122CAM ∠=∠ 5分∴12∠=∠∴BC ∥AD ……6分 ∵AC 的中点是O ∴AO CO =又∵AOD COB ∠=∠ ∴AOD COB ∆≅∆∴BC =AD ……7分 ∴四边形ABCD 是平形四边形 ……8分22. 解:(1)1260.……(2分) (2)108°. ……4分(3)三等奖的人数为:1260×(1﹣20%﹣5%﹣45%)=378人,图略……6分 (4)抽到获得一等奖的学生的概率为:63÷1260=5%. ……8分23. 解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得:1分5x +9(140﹣x )=1000, ……3分 解得:x =65,∴140﹣x =75(千克), ……5分 答:购进甲种水果65千克,乙种水果75千克; ……6分 (2)3×65+4×75=495,答:利润为495元. ……8分24解:(1)∵720÷(9-3)=120∴乙工程队每天修公路120米. ……1分(2)设y 乙=kx+b ,则309720k b k b +⎧⎨+⎩== ∴120360k b ⎧⎨-⎩== 2分∴y 乙=120x -360 ……3分当x =6时,y 乙=360设y 甲=kx ,则360=6k ,k =60,∴y 甲=60x ……6分 (3)当x =15时,y 甲=900,∴该公路总长为:720+900=1620(米)设需x 天完成,由题意得,(120+60)x =1620 7分 解得x =9 答:需9天完成 ……8分25. (本题满分10分)解:(1)如图,因为⊙O 是Rt △ABC 的内接圆,分别切BC ,AC ,AB 于点E ,F ,G ∴∠CFO=∠OEC=90°∵∠C=90°...........1分 (三个直角少一个,这一分就不得) ∴则四边形OECF 为 矩形,……………………….2分 又∵OE=OF=r ……………………………3分 ∴四边形OECF 为 正方形 (2) 由四边形OECF 为 正方形∴OE//AC ,CE=CF=r∴△OED ∽△ACD ……………………………4分 ∴AC OE DC DE = ∴622r r =- ………………………5分解得:r=23 ……………………………6分(3) ⊙O 是Rt △ABC 的内切圆,由(2)得DE=21,设BD=x,则BE=BG=x+21 ∵AG=AF=29,∴AB=5+x ,由222AB AC BC =+ 得222)5(6)2(+=++x x ………………8分O GFE DCBA(第21解得:x=25 ……………………………9分 ∴AB =215…………………………………10分 (若设BG=x,则方程为222)29(6)23(+=++x x 得x=3) 26. (1)直线121+=x y 与y 轴交于点A 得A (0,1),将A (0,1)、B (1,0)坐标代入y=x 2+bx+c 得,解得,∴抛物线的解折式为y=x 2﹣x+1;……………………3分(2)满足条件的点P 的坐标为(,0)或(1,0)或(3,0)或(,0); (7)分(3)抛物线的对称轴为,……………………8分∵ B 、C 关于x=对称, ∴ MC=MB ,要使|AM ﹣MC|最大,即是使|AM ﹣MB|最大,由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时|AM ﹣MB|的值最大. (9)分易知直线AB 的解折式为y=﹣x+1………………10分∴ 由,得⎪⎪⎩⎪⎪⎨⎧-==2123y x∴M(1.5,-0.5) ………………12分。

广西梧州市中考数学二模试卷含答案解析

广西梧州市中考数学二模试卷含答案解析

广西梧州市中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.)1.=()A.2 B.﹣2 C. D.﹣2.计算:3x+2x=()A.5 B.5x C.6x2D.5x23.在直角坐标中,有一点A(1,﹣3),点A的坐标在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限4.在直角坐标系中,反比例函数的图象不经过以下的点是()A.(2,3)B.(﹣1,﹣3)C.(﹣3,﹣1)D.(4,)5.在数据分析的过程中,有人对两个不同城市学生的数学成绩进行了分析,结果发现这两座城市统计的方差值都是10.34,那么下列说法中,正确的是()A.两城市学生的成绩一样B.两城市学生的数学平均分一样C.两城市数学成绩的中位数一样D.两城市学生数学成绩波动情况一样6.如图,在下面的立方体中,它的主视图是()A.B.C.D.7.如图,已知:直线a、b被AB所截,交点分别是点A、B,其中a∥b,∠1=72°,点D是线段AB上一点,CD=BD.则∠2=()A.72° B.36°C.64°D.56°8.如图,在▱ABCD中,过A点作高,垂足刚好为点C,AC=2,∠B=30°,则▱ABCD的周长是()A.B.C.8 D.49.二次函数y=ax2+bx+c的图象如图所示,则在下列说法中,与此函数的系数相关的一元二次方程ax2+bx+c=0的根的情况,说法正确的是()A.方程有两个相等的实数根B.方程的实数根的积为负数C.方程有两个正的实数根D.方程没有实数根10.有A、B两个黑色袋子,A袋装有3个黑球、2个白球,B袋装有黑、白两个球,这些球除颜色外,其它一样.在随机抽球中,如果从A袋取一个球,再从B袋取一个球,那么得到两个都是黑球的概率是()A.B.C.D.11.如图,AB是⊙O的直径,它与弦CD交于点E.我们给出下列结论:①AE•BE=CE•DE;②△ADE∽△CBE;③∠A=∠C;④∠AED=∠BEC这些结论中正确的是()A.①②③④B.①②③C.②③D.②③④12.如图,将Rt△ABC以直角顶点C为旋转中心顺时针旋转,使点A刚好落在AB上(即:点A′),若∠A=55°,则图中∠1=()A.110°B.102°C.105°D.125°二、填空题(本大题共6小题,每小题3分,共18分.)13.计算:2=.14.分解因式:2x2﹣8=.15.不等式组的解集是.16.如图所示,⊙O的半径是5,它的弦AB=8,OC⊥AB交AB于点D,则CD=.17.如图,在反比例函数图象上有点A(a,1),过点A作y轴的平行线交某直线于点B,已知△AOB的面积是8,则直线OB的解析式为.18.观察下列关于自然数的等式:第1个式子:32﹣4×12=5;第2个式子:52﹣4×22=9;第3个式子:72﹣4×32=13;…根据上述规律请你写出第个式子的计算结果:.三、解答题(本大题共8小题,满分66分.)19.先化简,再求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=﹣1.20.今年两会期间,“全民阅读”被再次写进《政府工作报告》,成为社会热词.在第20个世界读书日来临之际,我市某中学为了解本校学生每周课外阅读时间t(单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<0.5,0.5≤t<1,1≤t<2,2≤t分为四个等级,分别用A、B、C、D表示,并绘制成了两幅不完整的统计图,由图中给出的信息回答下列问题:(1)填空:A等级的百分率是%;B等级的百分率是%;(2)将不完整的条形统计图补充完整;(3)若该校共有学生2400人,试估计每周课外阅读时间量满足t≥1的人数.21.如图,在Rt△ABC中,∠C=90°,以点C为圆心作⊙C,与AB切于点D,过点A、B分别作⊙C的切线AF、BE,切点为F、E点.求证:AF∥BE.22.如图,阳光下斜坡旁有一棵树AB,它的阴影投在斜坡上为AC=10米,斜坡与平面形成的坡角∠DAC=15°,光线与斜坡形成的∠BCA=75°.求树AB的高度(精确到0.1米)参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73.23.A地至B地的航线长9750km,一架飞机从A地顺风飞往B地需12.5h,它逆风飞行同样的航线需13h,求飞机无风时的平均速度与风速.24.为对荒山进行改造,政府13万元给某村民小组用于购买与种植A、B两种树苗共3000棵.完成这项种植后,剩余的款项作为村民小组的纯收入.已知用160元购买A树苗比购买B树苗多3棵.这两种树苗的单价、成活率及移栽费用见下表:树苗品种A树苗B树苗购买价格(元/棵)a a+12树苗成活率90% 95%移栽费用(元/棵)3 5(1)求表中a的值;(2)设购买A树苗x棵,其它购买的是B树苗,把这些树苗种植完成后,村民小组获得的纯收入为y元,请你写出y与x之间的函数关系式;(3)若要求这批树苗种植后,成活率达到94%以上(包含94%),则最多种植A树苗多少棵?此时,村民小组在这项工作中,所得的纯收入最大值可以是多少元?25.如图,在正方形ABCD中,延长对角线CA到点E,以AE为边作正方形AEFG,连接BG、DE.(1)求证:△ABG≌△ADE;(2)当AB=,AG=3时,求线段BG的长度.26.如图,抛物线y=ax2+bx+4与坐标轴交于A、B、C三点,直线y=x+4与坐标轴交于B、C 点,其中点A(4,0).(1)求此抛物线的解析式;(2)在线段AC、BC上分别取点P、Q,使CP=CQ,连接PQ,以PQ为对称轴对折,点C刚好落在抛物线的C′上,求点C′的坐标;(3)连接AB,在抛物线上是否存在点M,使得∠MBA+∠CBO=45°?若存在,请直接写出适合此条件的点M的坐标;若不存在,请说明理由.广西梧州市中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.)1.=()A.2 B.﹣2 C. D.﹣【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:|﹣|=,故C正确.故选:C.【点评】本题考查了实数的性质,负数的绝对值是它的相反数,零的绝对值是零,正数的绝对值是它本身.2.计算:3x+2x=()A.5 B.5x C.6x2D.5x2【考点】合并同类项.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变作答.【解答】解:3x+2x=(3+2)x=5x.故选B.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.3.在直角坐标中,有一点A(1,﹣3),点A的坐标在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:A(1,﹣3),点A的坐标在第四象限,故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.在直角坐标系中,反比例函数的图象不经过以下的点是()A.(2,3)B.(﹣1,﹣3)C.(﹣3,﹣1)D.(4,)【考点】反比例函数图象上点的坐标特征.【分析】只需把所给点的横纵坐标相乘,结果是3的,就在此函数图象上.【解答】解:∵反比例函数中,k=3,∴只需把各点横纵坐标相乘,结果为3的点在函数图象上,四个选项中只有A符合.故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.5.在数据分析的过程中,有人对两个不同城市学生的数学成绩进行了分析,结果发现这两座城市统计的方差值都是10.34,那么下列说法中,正确的是()A.两城市学生的成绩一样B.两城市学生的数学平均分一样C.两城市数学成绩的中位数一样D.两城市学生数学成绩波动情况一样【考点】方差.【分析】利用方差的意义回答即可.【解答】解:∵方差是反映数据波动的量,方差越大,波动越大,∴两城市学生数学成绩波动情况一样,故选D.【点评】考查了方差的知识,解题的关键是了解方差是反映数据波动情况的量,方差越大,波动越大.6.如图,在下面的立方体中,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有5个正方形,第二层左边有2个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.如图,已知:直线a、b被AB所截,交点分别是点A、B,其中a∥b,∠1=72°,点D是线段AB上一点,CD=BD.则∠2=()A.72° B.36°C.64°D.56°【考点】平行线的性质.【分析】先根据平行线的性质求出∠CBD的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵a∥b,∠1=72°,∴∠CBD=∠1=72°.∵CD=BD,∴∠2=180°﹣2∠CBD=180°﹣144°=36°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.如图,在▱ABCD中,过A点作高,垂足刚好为点C,AC=2,∠B=30°,则▱ABCD的周长是()A.B.C.8 D.4【考点】平行四边形的性质.【分析】由AC⊥AD,∠B=30°,AC=2,根据含30°角的直角三角形的性质,可求得AB的长,然后由勾股定理求得BC的长,继而求得答案.【解答】解:∵AC⊥AD,∠B=30°,AC=2,∴AB=2AC=4,∴BC==2,∴▱ABCD的周长是:2(AB+BC)=8+4.故选A.【点评】此题考查了平行四边形的性质、含30°角的直角三角形的性质以及勾股定理.注意平行四边形的对边相等是解题关键.9.二次函数y=ax2+bx+c的图象如图所示,则在下列说法中,与此函数的系数相关的一元二次方程ax2+bx+c=0的根的情况,说法正确的是()A.方程有两个相等的实数根B.方程的实数根的积为负数C.方程有两个正的实数根D.方程没有实数根【考点】抛物线与x轴的交点.【分析】根据抛物线与x轴交点个数和位置判断一元二次方程ax2+bx+c=0的根的情况即可.【解答】解:根据图象可以看出抛物线与x轴有两个不同的交点,故与此函数的系数相关的一元二次方程ax2+bx+c=0有两个不相等的实数根,由于两交点位于原点的两侧,故一元二次方程ax2+bx+c=0有一正根一负根,故只有B正确;故选:B.【点评】本题考查了抛物线与x轴的交点.根据图象与x轴交点的个数和位置判断一元二次方程根的情况.10.有A、B两个黑色袋子,A袋装有3个黑球、2个白球,B袋装有黑、白两个球,这些球除颜色外,其它一样.在随机抽球中,如果从A袋取一个球,再从B袋取一个球,那么得到两个都是黑球的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】分别求得各自袋子中摸到黑球的概率,然后相乘即可得到两个袋子均为黑球的概率.【解答】解:∵A袋装有3个黑球、2个白球,B袋装有黑、白两个球,∴A袋中摸到黑球的概率为,B袋中摸到黑球的概率为,∴P(两个都是黑球)=×=,故选D.【点评】本题考查了组合概率的求法,解题的关键是了解两个事件同时发生的概率等于两个事件发生概率的积,难度不大.11.如图,AB是⊙O的直径,它与弦CD交于点E.我们给出下列结论:①AE•BE=CE•DE;②△ADE∽△CBE;③∠A=∠C;④∠AED=∠BEC这些结论中正确的是()A.①②③④B.①②③C.②③D.②③④【考点】相似三角形的判定与性质;圆周角定理.【分析】根据圆周角定理得到∠A=∠C,∠D=∠B,由相似三角形的判定定理得到△AED∽△CEB,再根据相似三角形的性质得到AE•BE=CE•DE,由对顶角的性质得到∠AED=∠BEC.【解答】解:∵AB是⊙O的直径,它与弦CD交于点E,∴∠A=∠C,∠D=∠B,∴△AED∽△CEB,∴,∴AE•BE=CE•DE,∵∠AED与∠BEC是对顶角,∴∠AED=∠BEC,∴①②③④都正确.故选A.【点评】本题考查了相似三角形的判定和性质,圆周角定理,对顶角相等,熟练掌握圆周角定理是解题的关键.12.如图,将Rt△ABC以直角顶点C为旋转中心顺时针旋转,使点A刚好落在AB上(即:点A′),若∠A=55°,则图中∠1=()A.110°B.102°C.105°D.125°【考点】旋转的性质.【专题】计算题.【分析】先利用互余计算出∠B=35°,再根据旋转的性质得CA=CA′,∠ACA′=∠BCB′,∠B′=∠B=35°,则利用等腰三角形的性质得∠CA′A=∠CAA′=55°,于是利用三角形内角和可计算出∠ACA′=70°,则∠BCB′=70°,然后根据三角形外角性质计算∠1的度数.【解答】解:在Rt△ABC中,∠B=90°﹣∠A=35°,∵Rt△ABC以直角顶点C为旋转中心顺时针旋转,使点A刚好落在AB上(即:点A′),∴CA=CA′,∠ACA′=∠BCB′,∠B′=∠B=35°,∴∠CA′A=∠CAA′=55°,∴∠ACA′=180°﹣2×55°=70°,∴∠BCB′=70°,∴∠1=∠BCB′+∠B′=70°+35°=105°.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.二、填空题(本大题共6小题,每小题3分,共18分.)13.计算:2=2.【考点】二次根式的乘除法.【分析】根据二次根式的乘除法法则计算即可.【解答】解:2=2=2.故答案为:2.【点评】本题考查了二次根式的乘除法法则,熟记法则是解题的关键.14.分解因式:2x2﹣8=2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.15.不等式组的解集是x>5.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x>5,∴不等式组的解集为x>5,故答案为:x>5.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.16.如图所示,⊙O的半径是5,它的弦AB=8,OC⊥AB交AB于点D,则CD=2.【考点】垂径定理;勾股定理.【分析】连接OA,先根据垂径定理求出AD的长,再由勾股定理求出OD的长,进而可得出结论.【解答】解:连接OA,∵AB=8,OC⊥AB,OA=5,∴AD=AB=4,∴OD===3,∴CD=OC﹣OD=5﹣3=2.故答案为:2.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.17.如图,在反比例函数图象上有点A(a,1),过点A作y轴的平行线交某直线于点B,已知△AOB的面积是8,则直线OB的解析式为y=x.【考点】反比例函数与一次函数的交点问题.【分析】先求得A点坐标,延长BA交x轴于点C,由△AOB的面积可求得AB的长,则可求得B 点坐标,利用待定系数法可求得直线OB的解析式.【解答】解:∵A(a,1)在反比例函数图象上,∴a=4,∴A(4,1),如图,延长BA交x轴于点C,则OC=4,AC=1,∴S△AOB=OC•AB=×4AB=2AB=8,∴AB=4,∴B(4,5),设直线OB解析式为y=kx,则5=4k,解得k=,∴直线OB的解析式为y=x.故答案为:y=x.【点评】本题主要考查函数图象上点的坐标特征及待定系数法,利用条件求得B点坐标是解题的关键.18.观察下列关于自然数的等式:第1个式子:32﹣4×12=5;第2个式子:52﹣4×22=9;第3个式子:72﹣4×32=13;…根据上述规律请你写出第个式子的计算结果:8061.【考点】规律型:数字的变化类.【分析】由所给三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.【解答】解:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…,所以第n个等式为:(2n+1)2﹣4n2=4n+1,∴第个式子为:(2×+1)2﹣4×2=4×+1=8061,∴第个式子的计算结果为8061,故答案为:8061.【点评】本题主要考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.三、解答题(本大题共8小题,满分66分.)19.先化简,再求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=﹣1.【考点】整式的混合运算—化简求值.【分析】根据整式乘法法则展开,然后合并同类项,最后将x=﹣1代入即可.【解答】解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x∵x=﹣1,∴原式=﹣2﹣1=﹣3.【点评】本题考查整式的乘法法则、加减法则,正确利用法则是解题的关键.20.今年两会期间,“全民阅读”被再次写进《政府工作报告》,成为社会热词.在第20个世界读书日来临之际,我市某中学为了解本校学生每周课外阅读时间t(单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<0.5,0.5≤t<1,1≤t<2,2≤t分为四个等级,分别用A、B、C、D表示,并绘制成了两幅不完整的统计图,由图中给出的信息回答下列问题:(1)填空:A等级的百分率是5%;B等级的百分率是15%;(2)将不完整的条形统计图补充完整;(3)若该校共有学生2400人,试估计每周课外阅读时间量满足t≥1的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)先求出总人数,再求出样本中C等级人数及A等级人数,即可求出A等级的百分率及B等级的百分率,(2)求出C等级人数及A等级人数,补全统计图即可,(3)求出样本中满足t≥1的人数,再求出样本中满足t≥1的百分比,用总人数乘这个百分比即可.【解答】解:(1)样本的总人数:(人),样本中C等级:200×45%=90(人),样本中A等级:200﹣30﹣90﹣70=10(人)A等级的百分率是=5%;B等级的百分率是=15%;故答案为:5,15.(2)样本中A等级:200×5%=10(人),样本中C等级:200×45%=90(人),(3)样本中满足t≥1的人数:90+70=160(人)样本中满足t≥1的百分比为: =80%,该校共有学生2400人,时间量满足t≥1的人数:2400×80%=1920(人).答:该校共有学生2400人,时间量满足t≥1的人数是1920人.【点评】本题主要考查了条形统计图,扇形统计图及用样本估计总体,解题的关键是读懂统计图,从统计图中获得准确的信息.21.如图,在Rt△ABC中,∠C=90°,以点C为圆心作⊙C,与AB切于点D,过点A、B分别作⊙C的切线AF、BE,切点为F、E点.求证:AF∥BE.【考点】切线的性质.【专题】证明题.【分析】根据切线长定理得到∠1=∠2,∠3=∠4,则利用互余得∠2+∠3=90°,所以∠1+∠2+∠3+∠4=180°,于是可根据平行线的判定得到结论.【解答】证明:∵AF、AD是⊙C的切线,∴∠1=∠2,∵BE、BD是⊙C的切线,∴∠3=∠4,又∵∠C=90°,∴∠2+∠3=90°,∴∠1+∠2+∠3+∠4=180°,即∠FAB+∠EBA=180°,∴AF∥BE.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理和平行线的判定.22.如图,阳光下斜坡旁有一棵树AB,它的阴影投在斜坡上为AC=10米,斜坡与平面形成的坡角∠DAC=15°,光线与斜坡形成的∠BCA=75°.求树AB的高度(精确到0.1米)参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73.【考点】解直角三角形的应用-坡度坡角问题.【分析】作CE⊥AB于E,根据平行线的性质求出∠ECA的度数,根据三角函数的概念求出AE的长,求出∠B的度数,求出BE的长,得到答案.【解答】解:作CE⊥AB于E,则CE∥AD,∴∠ECA=∠DAC=15°,cos∠ECA=,∴EC=10×0.97=9.7,sin∠ECA=,AE=10×0.26=2.6,∵∠DCA=15°,∴∠BAC=75°,又∠BCA=75°,∴∠ABC=30°,BE=CE=16.78,AB=AE+BE=2.6+16.78=19.38≈19.4.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,解答时,要把实际问题转化为解直角三角形的问题.23.A地至B地的航线长9750km,一架飞机从A地顺风飞往B地需12.5h,它逆风飞行同样的航线需13h,求飞机无风时的平均速度与风速.【考点】二元一次方程组的应用.【分析】设飞机的平均速度为x千米/时,风速为y千米/时,根据航行问题的数量关系建立方程组求出其解即可.【解答】解:设飞机的平均速度为x千米/时,风速为y千米/时,由题意,得,解得:.答:飞机的平均速度为765千米/时,风速为15千米/时.【点评】本题考查了二元一次方程组的实际运用,掌握行程问题的顺风速度=静风速度+风速和逆风速度=静风速度﹣风速,由此建立方程组是关键.24.为对荒山进行改造,政府13万元给某村民小组用于购买与种植A、B两种树苗共3000棵.完成这项种植后,剩余的款项作为村民小组的纯收入.已知用160元购买A树苗比购买B树苗多3棵.这两种树苗的单价、成活率及移栽费用见下表:树苗品种A树苗B树苗购买价格(元/棵)a a+12树苗成活率90% 95%移栽费用(元/棵)3 5(1)求表中a的值;(2)设购买A树苗x棵,其它购买的是B树苗,把这些树苗种植完成后,村民小组获得的纯收入为y元,请你写出y与x之间的函数关系式;(3)若要求这批树苗种植后,成活率达到94%以上(包含94%),则最多种植A树苗多少棵?此时,村民小组在这项工作中,所得的纯收入最大值可以是多少元?【考点】一次函数的应用;分式方程的应用.【分析】(1)根据题意列出方程解答即可;(2)根据题意列出函数解析式即可;(3)设种植A树苗b棵,列出解析式根据增函数解答即可.【解答】解:(1)根据题意,得:,解得:a1=20,a2=﹣32,经检验,它们都是原方程的解,但a2=﹣32不合题意,舍去,所以a=20;(2)由(1)可知:A树苗购买价格:20元/棵;B树苗购买价格:32元/棵,根据题意,得:y=130000﹣[20x+(3000﹣x)•32+3x+5(3000﹣x)]=14x+19000,即:y与x之间的函数关系式是:y=14x+19000,(3)设种植A树苗b棵,则有:90%b+(3000﹣b)×95%≥94%×3000,解得:b≤600,由(2)可知:y=14x+19000,其中14>0,对于此一次函数,当x取最大值时,纯收入y的值最=14×600+19000=27400(元),大.所以有:y最大值因此:最多种植A树苗600棵,纯收入最大值是27400元.【点评】此题考查一次函数的应用,关键是根据题意列出分式方程和函数解析式进行解答.25.如图,在正方形ABCD中,延长对角线CA到点E,以AE为边作正方形AEFG,连接BG、DE.(1)求证:△ABG≌△ADE;(2)当AB=,AG=3时,求线段BG的长度.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】(1)由四边形ABCD是正方形,得到AB=AD,∠BAD=90°,根据四边形AEFG是正方形,得到AE=AG,∠EAG=90°,于是得到∠BAD=∠EAG,证得∠BAG=∠DAE,于是得到结论;(2)如图,连接BD交AC于点H,根据四边形ABCD是正方形,于是得到AH=DH,∠AHD=90°,由于,求出AH=DH=1,在Rt△EHD中,由勾股定理得:,又由(1)△ABG≌△ADE得到BG=ED,于是结论可得.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵四边形AEFG是正方形,∴AE=AG,∠EAG=90°,∴∠BAD=∠EAG,∴∠BAD+∠DAG=∠EAG+∠DAG,∴∠BAG=∠DAE,在△ABG与△ADE中,,∴△ABG≌△ADE(SAS);(2)解:如图,连接BD交AC于点H,∵四边形ABCD是正方形,∴AH=DH,∠AHD=90°,又∵,∴AH=DH=1,又∵四边形AEFG是正方形,∴AE=AG=3,∴EH=AE+AH=4,在Rt△EHD中,由勾股定理,得:,又由(1)△ABG≌△ADE,∴BG=ED,∴.【点评】本题考查了全等三角形的判定和性质,正方形的性质,勾股定理,证得△ABG≌△ADE 是解题的关键.26.如图,抛物线y=ax2+bx+4与坐标轴交于A、B、C三点,直线y=x+4与坐标轴交于B、C 点,其中点A(4,0).(1)求此抛物线的解析式;(2)在线段AC、BC上分别取点P、Q,使CP=CQ,连接PQ,以PQ为对称轴对折,点C刚好落在抛物线的C′上,求点C′的坐标;(3)连接AB,在抛物线上是否存在点M,使得∠MBA+∠CBO=45°?若存在,请直接写出适合此条件的点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)首先求出点B的坐标,然后利用待定系数法求出抛物线的解析式即可;(2)设CQ=e,根据题意得到CP=QC′=e,对于直线,当x=0时,y=4,在Rt△BCO中,,过点Q作QK⊥x轴,垂足为点K,则有:QK∥OB,得到△CKQ∽△COB,于是得到比例式,求出,,过点C′作,C′H⊥x轴,垂足为点H,得到KH=QC′=e,C′H=KQ=e,于是得到,求出C′(e﹣3, e),根据题意,点C′为抛物线上的点,得到方程,解得,即可得到结论;(3)满足条件的点M有两种情形,需要分类讨论:设M(x,y),①当BM⊥BC时,如图2所示.由∠ABO=45°,得到∠MBA+∠CBO=45°,故点M满足条件.过点M1作M1E⊥y轴于点E,则M1E=x,OE=﹣y,求得BE=4﹣y.由于tan∠M1BE=tan∠BCO=,得到方程=,求出直线BM1的解析式为y=﹣x+4.联立y=﹣x+4与y=﹣x2+x+4,即可得到结果;②当BM与BC关于y轴对称时,如图3所示.由∠ABO=∠MBA+∠MBO=45°,∠MBO=∠CBO,于是得到∠MBA+∠CBO=45°,故点M满足条件过点M2作M2E⊥y轴于点E,则M2E=x,OE=y,求出BE=4﹣y.根据tan∠M2BE=tan∠CBO=,得到方程=求出直线BM2的解析式为:y=﹣x+4.联立y=﹣x+4与y=﹣x2+x+4得﹣x+4=﹣x2+x+4,即可得到结果.【解答】解:(1)当y=0时,由直线得:,解得:x=﹣3,∴点C(﹣3,0),又∵抛物线y=ax2+bx+4经过点A(4,0),所以有:,解得:,∴抛物线的解析式是:;(2)设CQ=e,则根据题意,得:CP=QC′=e,对于直线,当x=0时,y=4,∴点B(0,4),OB=4,又∵点C(﹣3,0),∴CO=3,在Rt△BCO中,,如图1,过点Q作QK⊥x轴,垂足为点K,则有:QK∥OB,∴△CKQ∽△COB,∴,即:,∴,,如图1,过点C′作,C′H⊥x轴,垂足为点H,则有:KH=QC′=e,C′H=KQ=e,∴,又∵CO=3,∴,∴C′(e﹣3, e),根据题意,点C′为抛物线上的点,则有:,解得:,e2=0(不合题意,舍去),∴当时,有:,,∴点C′的坐标是(2.5,2.75);(3)存在这样的点M的坐标,设M(x,y),①当BM⊥BC时,如图2所示.∵∠ABO=45°,∴∠MBA+∠CBO=45°,故点M满足条件.过点M1作M1E⊥y轴于点E,则M1E=x,OE=﹣y,∴BE=4﹣y.∵tan∠M1BE=tan∠BCO=,∴=,∴直线BM1的解析式为:y=﹣x+4.联立y=﹣x+4与y=﹣x2+x+4,得:﹣ x+4=﹣x2+x+4,解得:x1=0,x2=,∴y1=4,y2=,∴M1(,);②当BM与BC关于y轴对称时,如图3所示.∵∠ABO=∠MBA+∠MBO=45°,∠MBO=∠CBO,∴∠MBA+∠CBO=45°,故点M满足条件.过点M2作M2E⊥y轴于点E,则M2E=x,OE=y,∴BE=4﹣y.∵tan∠M2BE=tan∠CBO=,∴=∴直线BM2的解析式为:y=﹣x+4.联立y=﹣x+4与y=﹣x2+x+4得:﹣ x+4=﹣x2+x+4,解得:x1=0,x2=5,∴y1=4,y2=﹣,∴M2(5,﹣).综上所述,满足条件的点M的坐标为:(,)或(5,﹣).【点评】本题考查了二次函数的图象与性质,待定系数法求函数的解析式,解直角三角形,一次函数的性质,解方程等知识点,正确的作出图形是解题的关键.。

2024年广西中考数学真题试卷及解析

2024年广西中考数学真题试卷及解析

2024年广西中考数学真题试卷一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是()A. B. C. D.2. 端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A. B.C. D.3. 广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为()A. 90.84910⨯ B. 88.4910⨯ C. 784.910⨯ D. 684910⨯4. 榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是()A. B. C. D.5. 不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A. 1B. 13C.12D.236. 如图,2时整,钟表的时针和分针所成的锐角为()A. 20︒B. 40︒C. 60︒D. 80︒7. 如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A. ()3,0B. ()0,2C. ()3,2D. ()1,28. 激光测距仪L 发出的激光束以5310km ⨯的速度射向目标M ,s t 后测距仪L 收到M 反射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( ) A. 53102d t ⨯= B. 5310d t =⨯ C. 52310d t =⨯⨯ D. 6310d t =⨯ 9. 已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( ) A. 120y y << B. 210y y << C. 120y y << D. 120y y << 10. 如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A. 0B. 1C. 4D. 911. 《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( ) A. 1345x x x ++= B. 100345x x x ++= C. 3451x x x ++= D. 345100x x x ++=12. 如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A. 1B. 2C. 5D. 10二、填空题(本大题共6小题,每小题2分,共12分.)13. 已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.14.________.15. 八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的400种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.16. 不等式7551x x +<+的解集为______.17. 如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm .18. 如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.) 19. 计算:()()2342-⨯+-20. 解方程组:2321x y x y +=⎧⎨-=⎩ 21. 某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:(1)求被抽取的20名女同学进球数的众数、中位数、平均数(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.22. 如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.23. 综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg 水.浓度关系式:0.50.5d d w=+前后.其中d 前,d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.24. 如图,已知O 是ABC ∆的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形(2)求证:AF 与O 相切 (3)若3tan 4BAC ∠=,12BC =,求O 的半径. 25. 课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式②求当x 取何值时,函数y 有最小值,并写出此时的y 值【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.26. 如图1,ABC 中,90B ,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.图1 图2(1)求证:ABC CBO △∽△(2)如图2,将AOC ∆绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M ' ①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由①当A MC ''△是直角三角形时,请直接写出旋转角α的度数.2024年广西中考数学真题试卷解析一、单项选择题.1. 【答案】A2. 【答案】B3. 【答案】B4. 【答案】A5. 【答案】D6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】A10. 【答案】D11. 【答案】B12. 【答案】C【解析】解:∵四边形ABCD 是正方形∴AB BC CD DA ===,AB CD ∥,AD BC ∥,90DAB ABC BCD CDA ∠=∠=∠=∠=︒ ∵E ,F ,G ,H 分别为各边中点 ∴12CG DG CD AH ===,12AE AB = ∴DG CG AE ==∴四边形AECG 是平行四边形∴AG CE ∥同理//DF BH∴四边形MNPQ 是平行四边形∵AG CE ∥ ∴1DQ DG PQ CG== ∴DQ PQ =同理AM QM =∵DG AH =,90ADG BAH ∠=∠=︒,AD BA =∴()SAS ADG BAH ≌∴DAG ABH ∠=∠∵90DAG GAB ∠+∠=︒∴90ABH GAB ∠+∠=︒∴90QMN AMB ∠=∠=︒,同理90AQD ∠=︒∴平行四边形MNPQ 是矩形∵90AQD AMB ∠=∠=︒,DAG ABH ∠=∠,AD BA =∴()AAS ADQ BAM ≌∴DQ AM =又DQ PQ =,AM QM =∴DQ AM PQ QM ===∴矩形MNPQ 是正方形在Rt ADQ △中,222AD DQ AQ =+∴()22252QM QM =+∴25QM =∴正方形MNPQ 的面积为5故选:C . 二、填空题.13. 【答案】3514. 【答案】2(答案不唯一)15. 【答案】8016. 【答案】<2x -17. 【答案】18. 【答案】353【解析】解:①出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m . 设抛物线解析式为:()254y a x =-+把点70,4⎛⎫ ⎪⎝⎭代入得:72544a +=解得:9100a =- ①抛物线解析式为:()2954100y x =--+ 当0y =时,()29540100x --+= 解得,153x =-(舍去),2353x = 即此次实心球被推出的水平距离OM 为35m 3. 故答案为:353三、解答题.19. 【答案】8-20. 【答案】212x y =⎧⎪⎨=⎪⎩21. 【答案】(1)众数为1,中位数为2,平均数为1.9(2)估计为“优秀”等级的女生约为50人22. 【答案】(1)见详解 (2)【小问1详解】解:如下直线l 即为所求.【小问2详解】连接BE 如下图:①DE 为线段AB 的垂直平分线①BE AE =①45EBA A ∠=∠=︒①90BEA ∠=︒①ABE 为等腰直角三角形①sin BE A AB ==①822BE AB =⋅=⨯=23. 【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水. (2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习【小问1详解】解:把0.01%d =后,0.2%d =前代入0.50.5d d w =+前后 得.0.50.2%0.01%05w=+⨯ 解得9.5w =.经检验符合题意∴只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水.【小问2详解】解:第一次漂洗:把2kg w =,0.2%d =前代入0.50.5d d w =+前后 ∴0.50.2%0.04%0.52d ⨯==+后第二次漂洗:把2kg w =,0.04%d =前代入0.50.5d d w =+前后 ∴0.50.04%0.008%0.52d ⨯==+后 而0.008%0.01%<∴进行两次漂洗,能达到洗衣目标【小问3详解】解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水 ∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.24. 【答案】(1)证明见解析(2)证明见解析 (3)10【小问1详解】证明:①点D ,E 分别是BC ,AC 的中点∴BD CD =,AE CE =又∵AEF CED ∠=∠,DE EF =∴AEF CED △≌△∴AF CD =,F EDC ∠=∠∴AF BD =,∥AF BD∴四边形ABDF 是平行四边形【小问2详解】证明:如图,连接AD①AB AC =,D 为BC 中点①AD BC ⊥①AD 过圆心①∥AF BD∴AF AD ⊥而OA 为半径∴AF 为O 的切线【小问3详解】解:如图,过B 作BQ AC ⊥于Q ,连接OB①3tan 4BAC ∠= ①34BQ AQ = 设BQ 3x =,则4AQ x =①5AC AB x ===①CQ AC AQ x =-=①BC ==12=①5x ==①5AB x ==∵AB AC =,12BC =,AD BC ⊥①6BD CD ==∴18AD ==设O 半径为r∴18OD r =-①()222186r r =-+解得:10r =①O 的半径为10.25. 【答案】(1)①287y x x =--;②当4x =时,y 有最小值为23-(2)见解析(3)正确,114-【解析】解:(1)①把4a =-代入223y x ax a =++-,得: ()()22244387y x x x x =+⋅-+--=--∴287y x x =--②∵()2287423y x x x =--=--∴当4x =时,y 有最小值为23-(2)∵()222233y x ax a x a a a =+-+-=++-∵抛物线的开口向上∴当x a =-时,y 有最小值∴甲的说法合理(3)正确∵()222233y x ax a x a a a =+-+-=++-∴当x a =-时,y 有最小值为23a a -+-即:22min 111324y a a a ⎛⎫=-+-=--- ⎪⎝⎭ ∴当12a =时,min y 有最大值,为114-.26. 【答案】(1)见解析 (2)①180α=︒;②120︒或240︒【小问1详解】证明:∵MO 垂直平分AC∴OA OC =∴A ACO ∠=∠∵CO 平分ACB ∠∴ACO OCB ∠=∠∴A OCB ∠=∠又B B ∠=∠∴ABC CBO △∽△【小问2详解】解:①∵90B∴90A ACO OCB ∠+∠+∠=︒∴30A ACO OCB ∠=∠=∠=︒ ∴1122BO CO AO == 又6AB AO BO =+=∴2BO =,4AO =∵MO 垂直平分AC ∴122OM AO ==,2AC AM =,∴AM∴AC =取A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N由旋转的性质知AOC A OC ''≌,OM '为OM 旋转α所得线段∴OM A C '''⊥,A C AC ''==,2OM OM '==根据垂线段最短知MN MM '≤又MM OM OM ≤'+'∴当M,O ,M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+= 此时180α=︒∴A MC ''△面积的最大值为142⨯=②∵246MC MO OC ''≤+=+=,A C ''=∴MC A C '''<同理MA A C '''<∴A MC ''△为直角三角形时,只有90A MC ''∠=︒当A 和C '重合时,如图∵AOC A OA '≌∴30A CAO '∠=∠=︒,30OAA OCA '∠=∠=︒∴120A OA '∠=︒∵90AMO ∠=︒∴60AOM ∠=︒∴180A OA AOM '∠+∠=︒∴A ',O ,M 三点共线∴A MC ''△为直角三角形此时旋转角120A OA α'=∠=︒当A '和C 重合时,如图同理30OCC CAO '∠=∠=︒,30C OCA '∠=∠=︒ ∴120COC '∠=︒ ∵AO CO =,60AOM ∠=︒ ∴60COM AOM ∠=∠=︒ ∴180COM COC '∠+∠=︒ ∴C ',O ,M 三点共线 又90AMO ∠=︒∴A MC ''△为直角三角形 此时旋转角360240A OA α'=︒-∠=︒综上,旋转角α的度数为120︒或240︒时,A MC ''△为直角三角形.。

2022年广西梧州市中考数学试卷(解析版)

2022年广西梧州市中考数学试卷(解析版)

2022年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选对得3分,选错、不选或多选均得零分。

)1.(3分)(2022•梧州)的倒数是()A.B.C.D.2.(3分)(2022•梧州)在下列立体图形中,主视图为矩形的是()A.B.C.D.3.(3分)(2022•梧州)下列命题中,假命题是()A.﹣2的绝对值是﹣2B.对顶角相等C.平行四边形是中心对称图形D.如果直线a∥c,b∥c,那么直线a∥b4.(3分)(2022•梧州)一元二次方程x2﹣3x+1=0的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定5.(3分)(2022•梧州)不等式组的解集在数轴上表示为()A.B.C.D.6.(3分)(2022•梧州)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,过点D 分别作DE⊥AB,DF⊥AC,垂足分别是点E,F,则下列结论错误的是()A.∠ADC=90°B.DE=DF C.AD=BC D.BD=CD7.(3分)(2022•梧州)已知一组数据3,3,5,6,7,8,10,那么6是这组数据的()A.平均数但不是中位数B.平均数也是中位数C.众数D.中位数但不是平均数8.(3分)(2022•梧州)下列计算错误的是()A.a3•a5=a8B.(a2b)3=a6b3C.3+2=5D.(a+b)2=a2+b29.(3分)(2022•梧州)如图,在平面直角坐标系中,直线y=2x+b与直线y=﹣3x+6相交于点A,则关于x,y的二元一次方程组的解是()A.B.C.D.10.(3分)(2022•梧州)如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在上取点D(不与点A,B重合),连接BD,AD,则∠BAD+∠ABD的度数是()A.60°B.62°C.72°D.73°11.(3分)(2022•梧州)如图,以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,已知=,若四边形ABCD的面积是2,则四边形A′B′C′D′的面积是()A.4B.6C.16D.1812.(3分)(2022•梧州)如图,已知抛物线y=ax2+bx﹣2的对称轴是直线x=﹣1,直线l ∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误的是()A.b2>﹣8aB.若实数m≠﹣1,则a﹣b<am2+bmC.3a﹣2>0D.当y>﹣2时,x1•x2<0二、填空题(本大题共6小题,每小题2分,满分12分.)13.(2分)(2022•梧州)若x=1,则3x﹣2=.14.(2分)(2022•梧州)在平面直角坐标系中,请写出直线y=2x上的一个点的坐标.15.(2分)(2022•梧州)一元二次方程(x﹣2)(x+7)=0的根是.16.(2分)(2022•梧州)如图,在△ABC中,∠ACB=90°,点D,E分别是AB,AC边上的中点,连接CD,DE.如果AB=5m,BC=3m,那么CD+DE的长是m.17.(2分)(2022•梧州)如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣2,2),B(n,﹣1).当y1<y2时,x的取值范围是.18.(2分)(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大于OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA=1,则,AE,AB所围成的阴影部分面积为.三、解答题(本大题共8小题,满分72分.)19.(12分)(2022•梧州)(1)计算:﹣5+(﹣3)×(﹣2)2.(2)化简:3a+2(a2﹣a)﹣2a•3a.20.(6分)(2022•梧州)解方程:1﹣=.21.(6分)(2022•梧州)如图,在▱ABCD中,E,G,H,F分别是AB,BC,CD,DA上的点,且BE=DH,AF=CG.求证:EF=HG.22.(8分)(2022•梧州)某校团委为了解学生关注“2022年北京冬奥会”情况,以随机抽样的方式对学生进行问卷调查,学生只选择一个运动项目作为最关注项目,把调查结果分为“滑雪”“滑冰”“冰球”“冰壶”“其他”五类,绘制成统计图①和图②.(1)本次抽样调查的学生共人;(2)将图①补充完整;(3)在这次抽样的学生中,挑选了甲,乙,丙,丁四名学生进行相关培训,最后从这四名学生中随机抽取2名进行“爱我北京冬奥”主题演讲.请用画树状图法或列表法求出抽中两名学生分别是甲和乙的概率.23.(8分)(2022•梧州)今年,我国“巅峰使命”2022珠峰科考团对珠穆朗玛峰进行综合科学考察,搭建了世界最高海拔的自动气象站,还通过释放气球方式进行了高空探测.某学校兴趣小组开展实践活动,通过观测数据,计算气球升空的高度AB.如图,在平面内,点B,C,D在同一直线上,AB⊥CB,垂足为点B,∠ACB=52°,∠ADB=60°,CD=200m,求AB的高度.(精确到1m)(参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28,≈1.73)24.(10分)(2022•梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg.在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.25.(10分)(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.(1)求此抛物线的解析式;(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A 的对应点是点E.①写出点E的坐标,并判断点E是否在此抛物线上;②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.26.(12分)(2022•梧州)如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD=OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.2022年广西梧州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。

专题14 不等式选讲解答题30题 学生版--高考数学专题训练

专题14 不等式选讲解答题30题 学生版--高考数学专题训练

专题14不等式选讲解答题30题1.(2022-2023学年高三上学期一轮复习联考(五)理科数学试题(全国卷))已知函数() 2 1f x x a x =-++,() 21g x x =-+.(1)当a =2时画出函数()f x 的图象,并求出其值域;(2)若()()f x g x ≥恒成立,求a 的取值范围.2.(陕西省榆林市2023届高三上学期一模文科数学试题)已知函数()23f x x a x =+-++.(1)当0a =时,求不等式()9f x ≥的解集;(2)若()2f x >,求a 的取值范围.3.(陕西省渭南市富平县2022-2023学年高三下学期期末文科数学试题)已知函数()|1||2|f x x x =++-的最小值为m .(1)求不等式()5f x ≤的解集;(2)若a ,b 都是正数且ab m =,求2a b +的最小值.4.(江西省吉安市2023届高三上学期1月期末质量检测数学(文)试题)已知a ,b 均为正数,且2226a b +=,证明:(1)2a b +≤(2)12a b +≥5.(河南省郑州市2023届高三第一次质量预测理科数学试题)已知()223f x x x =++-.(1)求不等式()5f x ≤的解集;(2)若()f x 的最小值为m ,正实数a ,b ,c 满足a b c m ++=,求证:11192a b b c a c m++≥+++.6.(河南省洛平许济联考2022-2023学年高三上学期第一次质量检测理科数学试题)已知函数()121f x x x =++-.(1)求不等式()8f x <的解集;(2)设函数()()1g x f x x =--的最小值为m ,且正实数a ,b ,c 满足a b c m ++=,求证:2222a b c b c a++≥.7.(河南省部分名校2022-2023学年高三下学期学业质量联合检测理科数学试题)已知函数()12f x x x a =--+.(1)当12a =时,求不等式()0f x 的解集;(2)当1a -时,若函数()12g x x b =+的图象恒在()f x 图象的上方,证明:232b a ->.8.(河南省洛阳市第八高级中学2023届高三下学期开学摸底考试理科数学试题)已知函数()|||4|f x x a x =-++.(1)当2a =时,求不等式()8f x ≥的解集;(2)若()21>+f x a 恒成立,求a 的取值范围.9.(青海省西宁市大通回族土族自治县2022-2023学年高三下学期开学摸底考试数学(文)试题)已知函数()|2||22|(0,0)f x x a x b a b =++->>.(1)若2a =,2b =,求不等式()8f x >的解集;(2)若()f x 的最小值为1,求1123a b b++的最小值.10.(2023届甘肃省高考理科数学模拟试卷(四))已知函数()223f x x a x =-++,()12g x x =-+.(1)解不等式()5g x <.(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.11.(甘肃省兰州市第五十七中学2022-2023学年第一次模拟考试数学(文科)试题)已知函数()|21|,()||f x x g x x a=+=+(1)当0a =时,解不等式()()f x g x ≥;(2)若存在x ∈R ,使得()()f x g x ≤成立,求实数a 的取值范围.12.(安徽省江淮名校2022届高三下学期5月联考理科数学试题)已知函数()22212f x x m x m =-++-.(1)当3m =时,求不等式()10f x 的解集;(2)若()4f x 恒成立,求实数m 的取值范围.13.(河南省商开大联考2022-2023学年高三下学期考试文科数学试题)设函数()1f x x a x a =-+++.(1)当0a =时,求不等式()21f x x <+的解集;(2)若关于x 的不等式()2f x <有解,求实数a 的取值范围.14.(山西省太原市第五中学2022届高三下学期二模文科数学试题)(1)解不等式217x x -+-;(2)若正实数,a b 满足1a b +=,求2211a b b a +++的最小值.15.(山西省太原市2022届高三下学期模拟三理科数学试题)已知函数()2R f x x m m =+-∈,,且()0f x <的解集为[3,1]--.(1)求m 的值;(2)设a ,b ,c 为正数,且a b c m ++=,的最大值.16.(山西省吕梁市2022届高三三模理科数学试题)已知函数()22f x x a a x =---.(1)当1a =-时,求不等式()8f x <的解集;(2)当[]1,2x ∈时,()0f x ≥,求a 的取值范围.17.(内蒙古自治区包头市2022-2023学年高三上学期期末数学试题)已知()()4f x x m x x x m =-+--(1)当2m =时,求不等式()0f x ≥的解集;(2)若(),2x ∈-∞时,()0f x <,求m 的取值范围.18.(内蒙古自治区赤峰市2022-2023学年高三上学期10月月考数学文科试题)已知函数()|||2|f x x a x =++-,其中a 为实常数.(1)若函数()f x 的最小值为3,求a 的值;(2)若当[]1,2x ∈时,不等式()|4|f x x ≤-恒成立,求a 的取值范围.19.(内蒙古自治区呼和浩特市2023届高三上学期质量普查调研考试理科数学试题)已知m ≥0,函数()212f x x x m =--+的最大值为4,(1)求实数m 的值;(2)若实数a ,b ,c 满足2a b c m -+=,求222a b c ++的最小值.20.(宁夏石嘴山市第三中学2023届高三上学期期未考试数学(理)试题)已知函数f (x )=2|x +1|+|x -3|.(1)求不等式f (x )>10的解集;(2)若函数()()3g x f x x =+-的最小值为M ,正数a ,b ,c 满足a +b +c =M ,证明2228a b c c a b++≥.21.(河南省名校联盟2021-2022学年高三下学期2月大联考理科数学试卷)已知函数()1f x x =+.(1)求不等式()52f x x ≥--的解集;(2)记()1y f x x =+-的最小值为m ,若0a >,0b >,20a b m +-=,证明:189a b+≥.22.(新疆部分学校2023届高三下学期2月大联考(全国乙卷)数学(理)试题)已知函数()()22R f x ax x a =---∈.(1)当2a =时,求不等式()2f x >的解集;(2)若存在[]2,4x ∈,使得()0f x ≤,求a 的取值范围.23.(江西省部分学校2023届高三上学期1月联考数学(理)试题)已知函数()31f x x =-+.(1)求不等式()82f x x ≤-+的解集;(2)若对任意的0x >,关于x 的不等式()f x ax ≥恒成立,求a 的取值范围.24.(江西省赣州市2023届高三上学期1月期末考试数学(理)试题)已知函数()212f x x x =+++的最小值为m .(1)求m 的值;(2)设,,a b c 为正数,且a b c m ++=,求证:2222222a b c a b c c b a+++++≥.25.(2020届广西柳州市高三毕业班4月模拟(三模)文科数学试题)已知函数()11f x x x =-++.(1)求不等式()3f x <的解集;(2)若二次函数22y x x m =--+与函数()y f x =的图象恒有公共点,求实数m 的取值范围.26.(广西玉林、贵港、贺州市2023届高三联合调研考试(一模)数学(文)试题)已知函数()21,R f x x a a =-+∈,(1)当3a =时,求()f x 的最小值;(2)若对()0,6,R,m x ∀∈∀∈,不等式()f x >a 的取值范围.27.(贵州省贵阳市普通中学2023届高三上学期期末监测考试数学(文)试题)已知0,0a b >>,函数()|2||2|1f x x a x b =++-+的最小值为3.(1)求a b +的值;(2)求证:3221log 42b a ab ⎛⎫++≥- ⎪⎝⎭.28.(贵州省毕节市2023届高三年级诊断性考试(一)数学(文)试题)已知函数()2f x a x x =-++.(1)当1a =付,求不等式()4f x ≤的解集;(2)若()2f x a >-恒成立,求实数a 的取值范围.29.(贵州省铜仁市2023届高三上学期期末质量监测数学(文)试题)设不等式|21||21|4x x ++-<的解集为,,M a b M ∈.(1)求证:115236a b -<;(2)试比较|2|a b -与|2|ab -的大小,并说明理由.30.(广西柳州市、梧州市2023届高中毕业班2月大联考数学(文)试题)已知函数()|21||1|f x x ax =++-.(1)当2a =时,求不等式()3f x ≥的解集;(2)若0a >时,存在x ∈R ,使得()12a f x <+成立,求实数a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年数学中考模拟试卷一、选择题1.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 比赛成绩/分 9.5 9.6 9.7 9.8 9.9 参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是( ) A.9.7,9.5B.9.7,9.9C.9.6,9.5D.9.6,9.62.如图,向正六边形的飞镖游戏盘内随机投掷一枚飞镖则该飞镖落在阴影部分的概率( ).A. B. C. D.3.在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( ) A .众数B .方差C .中位数D .平均数4.下列运算正确的是( ) A.235a a a +=B.248•a a a =C.()3263a ba b = D.22a a a ÷=5.cos45°的值等于( ) A .2B .1C .3 D .226.如图,点A 、B 、C 在半径为2的圆O 上,且∠BAC=60°,作OM ⊥AB 于点M ,ON ⊥AC 于点N ,连接MN ,则MN 的长为( )A.13 C.237.一元二次方程2660x x --=配方后化为( ) A.()2315x -=B.()2315x +=C.()2315x +=D.()233x +=8.如图,在菱形ABCD 中,60ABC ∠=︒,E 为BC 边的中点,M 为对角线BD 上的一个动点。

则下列线段的长等于12AM BM +最小值的是( )A .ADB .AEC .BD D .BE9.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H .给出下列结论:①BE =2AE ;②△DFP ~△BPH ;③35PF PH =;④DP 2=PH•PC;其中正确的是( )A .①②③④B .①③④C .②③D .①②④10.关于x 、y 的方程组239x y mx y m +=⎧⎨-=⎩的解是方程3x+2y =34的一组解,那么m 的值是( )A .﹣2B .﹣1C .1D .2 11.若一元二次方程26-0x kx +=的一个根是2x =,则原方程的另一个根是( )A .3x =B .3x =-C .4x =D .4x =-12.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C.D.二、填空题13.方程322x-=的解是_______________.14.已知∠A是锐角,且tanA=33,则∠A=_____.15.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为_______。

16.(2016四川省甘孜州)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4,若点P1,P2的坐标分别为(0,﹣1),(﹣2,0),则点P4的坐标为______________.17.如图,△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别时OA,OB,OC的中点,若△DEF的周长是2,则△ABC的周长是_____.18.将一副直角三角板ABC和DEF如图放置(其中∠A=60︒,∠F=45︒),使点E落在AC边上,且ED∥BC,则∠CEF的度数为 .三、解答题19.垃圾分类处理利国利民,造子孙后代应引起社会的共同关注生活A(可回收垃圾)、B(厨余垃级)、C(有害垃圾)、D、(其他垃圾)四类进行回收处理,观某市对部分居民小区一段时间内生活垃圾的分类情况进行抽样调查,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解决下列问题:(1)在抽样数据中,总共产生垃圾吨,其中产生的有害垃圾共吨;(2)请将条形统计图补充完整;(3)调查发现,在可回收垃圾中,塑料类垃圾占13,每回收1吨塑料类垃圾可获得0.7吨二级原料,若该市每日产生的生活垃圾为5000吨,且全部分类处理,请通过计算,估计每日回收的塑料类垃圾可以获得多少吨二级原料?20.计算:2sin30°+32﹣2019021.如图,AB是⊙O的直径,C为⊙O上一点,点D是»BC的中点,DE是⊙O的切线,DF⊥AB于F,点G 是»AB的中点(1)求证:△ADE≌△ADF;(2)若OF=3,AB=10,求图中阴影部分的面积.22.计算:(12)﹣1﹣2sin45°+|1﹣2|+(π﹣3.14)023.阅读有助于提高孩子的学习兴趣和积极性,但近年来出现很多中学生在学校看武侠小说的现象,某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生在校看武侠小说”这一现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)本次调查的学生家长有名,“不赞同”初中生在校看武侠小说的家长所对应的圆心角度数是;(2)请补全条形统计图(标上柱高数值);(3)该学校共3000名学生家长,请估计该校抱“不赞同”态度的学生家长人数.24.某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.若不够卡购物和使用优惠卡购物分别视为方式一购物和方式二购物,且设顾客购买商品的金额为x 元. (Ⅰ)根据题意,填写下表: 商品金额(元) 300 600 1000 (x)方式一的总费用(元) 300 600 1000 … 方式二的总费用(元)540…(Ⅲ)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(Ⅳ)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利25%,那么这台冰箱的进价是多少元?25.2019年央视315晚会曝光了卫生不达标的“毒辣条”,“食品安全”受到全社会的广泛关注,“安全教育平台”也推出了“将毒食品拋出窗外”一课我校为了了解九年级家长和学生参“将毒食品抛出窗外”的情况,在我校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形: A 仅学生自己参与;B .家长和学生一起参与;C 仅家长自己参与;D .家长和学生都未参请根据图中提供的信息解答下列问题(1)在这次抽样调查中,共调查了______名学生(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数(3)根据抽样调查结果,估计我校九年级2000名学生中“家长和学生都未参与”的人数【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B C C D B A B D D AB13.x=2 14.30° 15.83.3810⨯ 16.(8,0). 17.4 18.︒ 三、解答题19.(1)50,3(2)15(3)630【解析】【分析】(1)先根据D的数量及其百分比求出总数量,再求得在抽样数据中,有害垃圾有多少吨;(2)根据题意可以求得B的吨数,从而可以将条形统计图补充完整;(3)根据题意可以求得每月回收的塑料类垃圾可以获得的二级原料有多少吨.【详解】解:(1)总共产生垃圾5÷10%=50(吨),在抽样数据中,产生的有害垃圾有:50×(1﹣10%﹣30%﹣54%)=3(吨),故答案为:50,3;(2)由题意可得,B有:5÷10%×30%=15(吨),补全的条形统计图如右图所示,(3)由题意可得,每月回收的塑料类垃圾可以获得的二级原料有:5000×54%×13×0.7=630(吨),即每月回收的塑料类垃圾可以获得的二级原料有630吨.【点睛】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.42【解析】【分析】按顺序先分别代入特殊角的三角函数值,化简二次根式,进行0次幂运算,然后再按运算顺序进行计算即可.【详解】3220190=2×1422+﹣1=2.【点睛】本题考查了实数的综合运算能力,涉及了特殊角的三角函数值,二次根式的化简,0次幂,熟练掌握各运算的运算法则是解题的关键.21.(1)详见解析;(2)251742π+.【解析】【分析】(1)连接OD,证明DE∥BC,进而得∠E=∠DFA=∠ACB=90°,由D是¶BC的中点得∠DAE=∠DAF,再结合公共边,由AAS定理得结论;(2)连接OD,OG,过O作OH⊥AC于H,过C作CK⊥OA于点K,由勾股定理求得 DF,便可得OH,再求AH,AK,再由相似三角形求得OM,最后求出扇形OAG,△OGM和△ACM的面积便可.【详解】(1)证明:连接OD,如图1,∵点D是¶BC的中点,∴∠DAF=∠DAE,OD⊥BC,∵DE是⊙O的切线,∴OD⊥DE,∴DE∥BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠AED=∠ACB=90°,∵AD=AD,∴:△ADE≌△ADF(AAS);(2)连接OD,OG,过O作OH⊥AC于H,过C作CK⊥OA于点K,如图2,则AH=CH,∠GOA=∠GOB=90°,OA=OB=OD=5,∴OH=DE=DF2222534OD OF-=-=,∴CH=AH223OA AC-=,∴BC228AB AC-=,∵1122ABCS AC BC AB CK∆==g g,∴CK=245AC BCAB=g,∴AK18 5∴OK=OA﹣AK=75,∵OG∥CK,∴△OGM∽△KCM,∴OG OMCK KM=,即524755OMOM=-,∴OM=75,∴AM=5﹣53077 =,∴13024722757ACMS∆=⨯⨯=,152552714OGMS∆=⨯⨯=,∴2525722517 =414742OGM ACMOAGS S S Sππ∆∆-+=-+=+阴影扇形【点睛】本题考查的是切线的性质、扇形面积的计算,矩形的性质与判定,勾股定理的应用,相似三角形的性质与判定,掌握圆的切线垂直于经过切点的半径是解题的关键.求阴影部分的面积常把阴影部分面积转化为易求图形面积的和差进行计算.22.4【解析】【分析】根据特殊角的三角函数值进行计算即可.【详解】解:原式=4﹣2×2﹣1+1=4﹣1+1=4.【点睛】本题主要考查特殊角的三角函数的计算,这是基本知识点,应当熟练的掌握.23.(1)200, 162°;(2)见解析;(3)1350.【解析】【分析】(1)根据统计图中的数据可以求得本次调查的人数,进而可以求得“不赞同”初中生在校看武侠小说的家长所对应的圆心角度数;(2)根据题意和(1)中的结果可以求得无所谓和很赞同的人数,本题得以解决;(3)根据统计图中的数据可以求得该校抱“不赞同”态度的学生家长人数.【详解】解:(1)本次调查的学生家长有:50÷25%=200(名),“不赞同”初中生在校看武侠小说的家长所对应的圆心角度数是360°×90200=162°, 故答案为:200,162°;(2)“无所谓”的人数是200×20%=40(名), “很赞同”的人数是200﹣50﹣40﹣90=20(名), 补全条形统计图如右图所示; (3)3000×90200=1350(名). 答:估计该校抱“不赞同”态度的学生家长人数有1350名.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.(Ⅰ)见解析;(Ⅱ)当顾客消费等于1500元时买卡与不买卡花钱相等;(Ⅲ)小张买卡(方式二购物)合算,能节省400元钱;(Ⅳ)这台冰箱的进价是2480元. 【解析】 【分析】(Ⅰ)根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,进行计算即可 (Ⅱ)根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,得出方程求出即可; (Ⅲ)根据方案一:总费用=标价.方案二:费用=300 +标价0.8⨯.据此可得出方案一和方案二总费用和购物金额之间的函数关系式,再得出当x 3500=时,y 的值即可得出答案. (Ⅳ)首先假设进价为a 元,则可得出(300+3500×0.8)-a=25%a 进而求出即可. 【详解】 解:(Ⅰ) 商品金额(元) 300 600 1000 ... x 方式一的总费用(元) 300 600 1000 (x)方式二的总费用(元)5407801100…3000.8x +根据题意,得3000.8x x +=, 解得:x 1500=,所以,当顾客消费等于1500元时买卡与不买卡花钱相等; (Ⅲ)依题意可知:方式一购物的总费用为1y x =; 方式二购物的总费用为2y 3000.8x =+,当x 3500=时,1y x 3500==(元);2y 3000.8x 3000.835003100=+=+⨯=(元); ∴12y y 35003100400-=-=(元),所以,小张买卡(方式二购物)合算,能节省400元钱;(Ⅳ)设这台冰箱的进价为a 元,根据题意,(300+3500×0.8)-a=25%a 得:a 2480=.答:这台冰箱的进价是2480元. 【点睛】本题考查一次函数的应用—方案选择问题,以及一元一次方程的应用,解答本题的关键是明确题意,利用一次函数的性质解答.25.(1)400;(2)见解析,54°;(3)我校九年级2000名学生中“家长和学生都未参与”的人数约100人. 【解析】 【分析】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图; 【详解】解:(1)本次调查总人数 80÷20%=400(人), 故答案为400;(2)B 类人数400-(80+60+20)=240(人), 补全统计图如下C 类所对应扇形的圆心角的度数60360400⨯=54°; (3)我校九年级2000名学生中“家长和学生都未参与”的人数2000×0N F N ==100(人), 答:我校九年级2000名学生中“家长和学生都未参与”的人数约100人. (1)本次调查总人数 80÷20%=400(人);(2)B 类人数400-(80+60+20)=240(人),C 类所对应扇形的圆心角的度数60360400⨯=54°; (3)我校九年级2000名学生中“家长和学生都未参与”的人数2000×0N F N ==100(人). 【点睛】利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2019-2020学年数学中考模拟试卷一、选择题1.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x﹣2x 2=570 2.若4<k <5,则k 的可能值是( )A .23B .8C .23D .45+3.如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△ABC ,M 是BC 的中点,P 是A’B’的中点,连接PM .若BC =4,∠BAC =30°,则线段PM 的最大值是( )A .8B .6C .4D .54.如图,四边形ABCD 内接于⊙O ,已知∠ADC=140°,则∠AOC 的大小是( )A.100oB.80oC.60oD.40o 5.如图,不等式组的解集在数轴上表示正确的是( ) A.B. C.D. 6.如图,ABC ∆内接于⊙O ,25OAC ∠=︒,则ABC ∠的度数为()A .110°B .115°C .120°D .125°7.如图,在平面直角坐标系中,函数y =x 和y =﹣2x 的图象分别为直线l 1,l 2,过点(﹣1,0)作x 轴的垂线交l 2于点A 1…过点A 1作y 轴的垂线交l 1于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 1于点A 4,……依次进行下去,则点A 2019的坐标是( )A .(﹣21008,21009)B .(21008,﹣21009)C .(21009,﹣21010)D .(21009,21010)8.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD ,若测得A ,C 之间的距离为12cm ,点B ,D 之间的距离为16m ,则线段AB 的长为( )A.9.6cmB.10cmC.20cmD.12cm9.如图,△ABC 是等边三角形,AB =4,D 为AB 的中点,点E ,F 分别在线段AD ,BC 上,且BF =2AE ,连结EF 交中线AD 于点G ,连结BG ,设AE =x (0<x <2),△BEG 的面积为y ,则y 关于x 的函数表达式是( )A .3y =x 2+3xB .23y x =+3xC .232y x =+23xD .23y x =-+43x10.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A .B .C .D .11.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =k x 的图象恰好经过点A′、B ,则k 的值是( )A .9B .133C .16915D .3312.我国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年收入500美元,预计2019年年收入将达到1000美元,设2017年到2019年该地区居民年人均收入平均增长率为x ,可列方程为A .()500121000x +=B .()250011000x += C .()250011000x += D .50021000x += 二、填空题13.关于x ,y 的二元一次方程组321x y x y +=⎧⎨-=-⎩,则4x 2﹣4xy+y 2的值为_____. 14.5的整数部分是____________.15.已知2x (x+1)=x+1,则x=_________.16.如图,⊙O 的半径OD 垂直于弦AB ,垂足为点C ,连接AO 并延长交⊙O 于点E ,连接EC.若AB =8,CD =2,则EC 的长为________.17.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1﹣S 2为_____.18.函数131y x =-中,自变量x 的取值范围是______. 三、解答题 19.如图,反比例函数y =k x (k≠0)的图象与反比例函数y =2x 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,连接BC .(1)求k的值及点B的坐标;(2)求tanA的值;(3)当△ABC是直角三角形时,求点C的坐标.20.如图,已知⊙O的半径为R,AB是⊙O的直径,C是»AB的中点,动点M在»BC上运动(不与B、C重合),AM交OC于点P,OM与PB交于点N.(1)求证:AP•AM是定值;(2)请添加一个条件(要求添加的条件是图中两条线段或多条线段之间的数量关系),使OM⊥PB.并加以证明.21.把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.22.如图,一次函数y=x﹣2的图象与反比例函数y=kx(k>0)的图象相交于A、B两点,与x轴交于点C,连接OA、OB,且tan∠AOC=13.(1)求反比例函数的解析式;(2)D是y轴上一点,且△BOD是以OB为腰的等腰三角形,请你求出所有符合条件的D点的坐标.23.如图,在四边形ABCD中,AC平分∠BAD,∠ABC=90°,AC=AD=2,M、N分别为AC、CD的中点,连接BM、MN、BN.(1)求证:BM=MA;(2)若∠BAD=60°,求BN的长;(3)当∠BAD=°时,BN=1.(直接填空)24.计算:021(2019)12()2π---+-25.如图,在平面直角坐标系中,抛物线2(0)y ax bx ca =++≠与x 轴交于点(2,0)A -,(4,0)B ,与直线3y =x 32-交于点(0,3)C -,直线3y =x 32-与x 轴交于点D . (1)求该抛物线的解析式.(2)点P 是抛物线上第四象限上的一个动点,连接PC ,PD ,当PCD ∆的面积最大时,求点P 的坐标.(3)将抛物线的对称轴向左平移3个长度单位得到直线l ,点E 是直线l 上一点,连接OE ,BE ,若直线l 上存在使sin BEO ∠最大的点E ,请直接写出满足条件的点E 的坐标;若不存在,请说明理由.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A D B B B B C B B CC B 13.414.215.﹣1或1216.21317.13124π-18.x≠13三、解答题 19.(1)k 的值是2,点B 的坐标为(﹣1,﹣2);(2)1tan 2A =;(3)点C 的坐标是(1,﹣2)或(1,﹣3).【解析】【分析】(1)代入法,求A 的坐标,再求反比例函数的解析式,再求B 的坐标;(2)根据正切的定义直接求解;(3)根据直角三角形的性质,结合三角函数,求出各顶点坐标.【详解】解:(1)∵点A (1,a )在直线y =2x 上,∴a =2×1=2,即点A 的坐标为(1,2),∵点A (1,2),点B 是反比例函数y =k x(k≠0)的图象与反比例函数y =2x 图象的交点, ∴k =1×2=2,点B 的坐标为(﹣1,﹣2),即k 的值是2,点B 的坐标为(﹣1,﹣2);(2)∵点A (1,2),∴tanA =12; (3)∵点C 在第四象限,CA ∥y 轴,点A (1,2),点B (﹣1,﹣2),∴当△ABC 是直角三角形,∠ACB =90°时,点C 的坐标为(1,﹣2);当△ABC 是直角三角形,∠ABC =90°时,设点C 的坐标为(1,c ),cosAAB AC=, ∵点A (1,2),点B (﹣1,﹣2),2AB AC c ∴==-2c=-解得,c =﹣3, 即点C 的坐标为(1,﹣3),由上可得,当△ABC 是直角三角形时,点C 的坐标是(1,﹣2)或(1,﹣3).【点睛】考核知识点:反比例函数与几何的综合.理解反比例函数和直角三角形的性质是关键.20.(1)见解析;(2)当AM OM OM PM =时,OM ⊥PB ,见解析. 【解析】【分析】(1)要证明AP•AM 是定值,就要证明它们的积与圆的半径的关系,在圆中往往不变的量是圆的半径,本题中证明△AMO ∽△ABP 就可以.(2)是一个条件开放试题,要证明OM ⊥PB ,就与90°有联系,只要证明这两直线相交的四个角中有 一个角是直角就可以了,如图就只要证明∠1+∠3=90°,∵∠1+∠2=90°,只要证明∠2=∠B ,要证明∠2=∠B ,只要证明△AOM ∽△OPM ,结论可以得出,而证这两个三角形相似就联想到了需要加的条件是边的关系,利用两边对应成比例且夹角相等的两三角形相似,就有AM OM =OM PM,而问题解决. 【详解】(1)证明:∵C 是弧AB 的中点,且AB 是直径,∴弧AC=弧BC,∴∠AOC =∠BOC =90°∵AO=BO∴CO是AB的垂直平分线∴AP=BP∴∠A=∠B∵AO=MO∴∠A=∠M∴∠B=∠M,且∠A=∠A ∴△AOM∽△APB∴AM AO AB AP=,∴AM•AP=AB•AO∵AO=R,AB=2R∴AM•AP=2R2在圆O中R是定值,∴2R2也是定值, ∴AM•AP=2R2是定值;(2)解:当AM OMOM PM=时,OM⊥PB.证明:∵AM OMOM PM=,∠M=∠M,∴△AOM∽△OPM∴∠2=∠A∴∠2=∠B∵∠2+∠1=∠BOC=90°∴∠1+∠B=90°∴∠3=90°∴OM⊥PB.【点睛】本题考查了相似三角形的判定与性质,圆心角与弧的关系,垂径定理的运用,直角三角形的判定等多个知识点.21.见解析,49.【解析】【分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.(1)3yx=;(2)点D坐标为(0,10)或(0,﹣10)或(0,﹣6).【解析】【分析】如图,作AE⊥OC于E, 由13AEtan AOCOE∠==,可以假设3AE a OE a==,,可得3A a a(,),再利用待定系数法即可解决问题.(2)分两种情况分别求解即可解决问题.【详解】解:(1)如图,作AE⊥OC于E.∵13AEtan AOCOE∠==,∴可以假设3AE a OE a==,,∴3A a a(,),∵点A在直线2y x=﹣上,∴32a a=﹣,∴a=1,∴A(3,1),把A(3,1)代入kyx=上,∴3k=,∴3yx=.(2)由23y xyx=-⎧⎪⎨=⎪⎩,解得3113x xy y==-⎧⎧⎨⎨==-⎩⎩或,∴13B(﹣,﹣),∴10OB①当OD OB=时,12010(001)D D(,),,-,② 当BO BD 时,6OD =,∴3)(06D ,- ,综上所述,满足条件的点D 坐标为12010(001)D D (,),,-或3)(06D ,-. 【点睛】本题主要考查了反比例函数综合题,反比例函数的应用,一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握基本知识,学会用分类讨论的思想思考问题是解题关键.23.(1)证明见解析;(2)BN =2;(3)40°.【解析】【分析】(1)根据直角三角形斜边中线定理得BM=12AC ,由此即可证明. (2)首先证明∠BMN=90°,根据BN 2=BM 2+MN 2即可解决问题;(3)根据等边三角形的判定和性质定理即可得到结论.【详解】解:(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,MN =12AD , 在Rt △ABC 中,∵M 是AC 中点,∴BM =12AC , ∵AC =AD ,∴MN =BM ;(2)∵∠BAD =60°,AC 平分∠BAD ,∴∠BAC =∠DAC =30°,由(1)可知,BM =12AC =AM =MC , ∴∠BMC =∠BAM+∠ABM =2∠BAM =60°,∵MN ∥AD ,∴∠NMC =∠DAC =30°,∴∠BMN =∠BMC+∠NMC =90°∴BN 2=BM 2+MN 2,由(1)可知MN =BM =1,∴BN 2;(3)∵∠BAD =40°,AC 平分∠BAD ,∴∠BAC =∠DAC =20°,由(1)可知,BM =12AC =AM =MC ,∴∠BMC =∠BAM+∠ABM =2∠BAM =40°,∵MN ∥AD ,∴∠NMC =∠DAC =20°,∴∠BMN =∠BMC+∠NMC =60°由(1)可知MN =BM =1,∴BN =1.故答案为:40°.【点睛】题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.24.5-23 【解析】 【分析】 运用负指数幂、零次方以及二次根式的化简的知识进行化简,然后计算即可. 【详解】 解:原式=1-23+4=5-23.【点睛】本题考查了负指数幂、零次方以及二次根式的化简,其解题关键在于运用相关知识对原式进行化简.25.(1)233384y x x =--;(2)P (3,﹣815);(3)点E 的坐标为(﹣2,23)或(﹣2,﹣23).【解析】【分析】(1)用交点式函数表达式得:y=a (x+2)(x-4)=a (x 2-2x-8),即可求解;(2)由S △PCD =S △PDO +S △PCO -S △OCD ,即可求解;(3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,即可求解.【详解】解:(1)用交点式函数表达式得:y =a (x+2)(x ﹣4)=a (x 2﹣2x ﹣8),即﹣8a =﹣3,解得:a =38,则函数的表达式为:233384y x x =--; (2)y =32x ﹣3,令y =0,则x =2,即点D (2,0),连接OP ,设点P (x ,233384x x --), S △PCD =S △PDO +S △PCO ﹣S △OCD=22133113272(3)323(3)2842288x x x x ⨯-+++⨯⨯-⨯⨯=--+, ∵﹣38<0,∴S △PCD 有最大值,此时点P (3,﹣815); (3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,过圆心F 作HF ⊥x 轴于点H ,则OH =12OB =2=OA ,OF =EF =4, ∴HF =3E 的坐标为(﹣2,﹣3);同样当点E 在x 轴的上方时,其坐标为(﹣2,3);故点E 的坐标为(﹣2,3)或(﹣2,﹣3【点睛】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本知识,三角函数等,其中(3),正确确定点E 的位置,是本题的难点.2019-2020学年数学中考模拟试卷一、选择题1.一个塑料袋丢弃在地上的面积约占0.023m 2,如果100万个旅客每人丢一个塑料袋,那么会污染的最大面积用科学记数法表示是( )A .2.3×104m 2B .2.3×106m 2C .2.3×103m 2D .2.3×10﹣2m 22.如图,正方形ABCD 中,E 、F 分别为BC 、CD 的中点,AF 与DE 交与点G .则下列结论中:①AF ⊥DE ;②AD =BG ;③GE+GF =2GC ;④S △AGB =2S 四边形ECFG .其中正确的是( )A.1个B.2个C.3个D.4个3.下列计算正确的是( )A .2a a a +=B .()32626a a =C .22(1)1a a -=-D .32a a a ÷= 4.下列说法正确的是( )A .用适当的统计图表示某班同学戴眼镜和不戴眼镜所占的比例,应绘制折线统计图B .为了解我市某区中小学生每月零花钱的情况,随机抽取其中800名学生进行调查,这次调查的样本是800名学生C .“任意画出一个平行四边形,它是中心对称图形”是必然事件D .若点(1,2)A a b +-在第二象限,则点(1,)B b a --在第一象限5.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球,2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是2个黑球,1个白球B .摸出的是3个黑球C .摸出的是2个白球,1个黑球D .摸出的是3个白球 6.下列运算正确的是( )A .3a 2•a 3=3a 6B .5x 4﹣x 2=4x 2C .(2a 2)3•(﹣ab )=﹣8a 7bD .2x 2÷2x 2=0 7.如图,在△ABC 中,∠ABC =60°,∠C =45°,点D ,E 分别为边AB ,AC 上的点,且DE ∥BC ,BD =DE=2,CE =52,BC =245.动点P 从点B 出发,以每秒1个单位长度的速度沿B→D→E→C 匀速运动,运动到点C 时停止.过点P 作PQ ⊥BC 于点Q ,设△BPQ 的面积为S ,点P 的运动时间为t ,则S 关于t 的函数图象大致为( )A .B .C .D .8.如图,反比例函数y 1=1x与二次函数y 1=ax 2+bx+c 图象相交于A 、B 、C 三个点,则函数y =ax 2+bx ﹣1x+c 的图象与x 轴交点的个数是( )A .0B .1C .2D .39.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则K 的值不可能是( )A .-5B .-2C .3D .510.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )A.30°B.45°C.60°D.70°11.若关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是( )①方程23+20x x -=是倍根方程;②若(2)()0x mx n --=是倍根方程,则4n m =或n m =③若点()p q ,在双曲线2y x =的图像上,则关于x 的方程230px x q ++=是倍根方程; A .① B .①② C .①③ D .①②③12.如图,在ABC ∆中,8AB =,6BC =,10AC =,D 为边AC 上一动点,DE AB ⊥于点E ,A .2.4B .3C .4.8D .5二、填空题 13.若|a-2|+3b -=0,则a 2-2b=______.14.关于x 的方程2x ax 2a 0+-=的一个根为3,则该方程的另一个根是________.15.二次函数y=x 2+2x ﹣3的最小值是_____.16.如图,Rt △ABC 中,若∠C=90°,BC=4,tanA=43,则AB=___.17.如图,▱ABCO 中,OA=2,AB=6,将▱ABCO 绕点A 逆时针旋转得▱ADEF ,AD 经过原点O ,点F 落在x 轴上,若双曲线y=k x经过点D ,则k 的值为____.18.计算:=_____.三、解答题 19.先化简,再求值:22121()111x x x x x -+÷+--,其中x 满足方程x (x ﹣1)=2(x ﹣1). 20.如图,在平面直角坐标系中,一次函数y=kx+b 的图象与x 轴、y 轴交于A 、B 两点,交反比例函数于C 、D 两点,DE ⊥x 轴于点E ,已知C 点的坐标是(6,-1),DE=3.(1)求反比例函数与一次函数的解析式(2)根据图象直接回答:当x 为何值时,一次函数的值大于反比例函数的值.(3)求△OAD 的面积S △OAD .21.如图,一次函数y =kx+3的图象分别交x 轴、y 轴于点B 、点C ,与反比例函数y x n的图象在第四象限的相交于点P ,并且PA ⊥y 轴于点A ,已知A (0,﹣6),且S △CAP =18.(1)求上述一次函数与反比例函数的表达式; (2)设Q 是一次函数y =kx+3图象上的一点,且满足△OCQ 的面积是△BCO 面积的2倍,求出点Q 的坐标.22.已知:在△ABC 中,AB =AC ,点D 是AB 上一点,以BD 为直径的⊙0与AC 边相切于点E ,交BC 于点F ,FG ⊥AC 于点G .(1)如图l ,求证:GE =GF ;(2)如图2,连接DE ,∠GFC =2∠AED ,求证:△ABC 为等边三角形;(3)如图3,在(2)的条件下,点H 、K 、P 分别在AB 、BC 、AC 上,AK 、BP 分别交CH 于点M 、N ,AH =BK ,∠PNC ﹣12∠BAK =60°,CN =6,CM =3BC 的长. 23.计算:(13)﹣1+2tan45°﹣(π﹣2019)0 24.某商场将进价为1800元的电冰箱以每台2400元售出,平均每天能售出8台,为了配合国家"家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台(1)设每台冰箱降价x 元,商场每天销售这种冰箱的利润为y 元,求y 与x 之间的函数关系式(不要求写自变量的取值范围)(2)商场想在这种冰箱的销售中每天盈利8000元,同时又要使顾客得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少元?25.如图,矩形ABCD 中,E 是AD 的中点,延长CE ,BA 交于点F ,连接AC ,DF .(1)判断四边形ACDF的形状;(2)当BC=2CD时,求证:CF平分∠BCD.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A D D C D C D D B C D C13.-214.-915.-416.17318.3三、解答题19.x2+1,5【解析】【分析】找出原式括号中两项的最简公分母,通分并利用同分母分式的加法法则计算,除式的分母利用平方差公式分解因式,并利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后得到最简结果,然后将已知的方程移项提取公因式x−1,左边化为积的形式,右边化为0,利用两数相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程,求出方程的解得到x的值,将满足题意x的值代入化简后的式子中计算,即可得到原式的值.【详解】解:原式=()()()()() 2121x1 11x xxx x-++-+-n=x2﹣2x+1+2x=x2+1,方程x(x﹣1)=2(x﹣1),移项变形得:(x﹣1)(x﹣2)=0,解得:x=1或x=2,当x=1时,原式没有意义;则当x=2时,原式=22+1=5.。

相关文档
最新文档