数字信号处理_第一章
合集下载
《数字信号处理》 完整加精版

由于不涉及物理量的改变,数字系统可以
采用抽象算法表达:由软件程序虚拟实现。 在采用硬件电路实现时,由于不需要考虑 物理环境对信号的影响,可以在设计中尽可
能采用低功耗高密度集成。
数字系统的特点
信号采用数字序列表达后,对模拟信号难以 进行的很多处理能够方便地实现,例如: 对信号的乘法调制和各种编码调制、信号的时 间顺序处理、信号的时间压缩/扩张、复杂标准 信号的产生…
时间变量与对应的函数值采用两个相等长度的序列 (一维向量)表示。 两个序列可以进行直接数值设臵:
例:n=[0 1 2 3 4 5 6 7];
x=[1 2 4 6 5 3 1 0];
数字信号的MATLAB表达
坐标区间设臵: n=[n1:n2] 只取整数,设定起点和终点;
信号函数设臵:其序列长度由n序列限定; x=3*n x=exp(j*(pi/8)*n)
设臵好坐标序列t和信号序列x后,可以采 用下列作图语句画出连续时间信号图形: plot(t,x) 该语句通过将离散的信号点之间用直线连 接得到连续图形。
模拟信号的作图表达
例:MATLAB程序
t=[0:0.1:10];x1=[zeros(1,30) ones(1,40) zeros(1,31)]; x2=2-0.3*t;x3=exp(j*(pi/8)*t);x4=exp(-0.2*t).*cos(2*pi*t);
欠采样导致的问题
s N
若原始频谱与镜像频谱混叠,产生混叠失真,则
信号不可恢复!
采样定理
待采样信号必须为带限信号
X 0
M
采样频率应大于信号最高频率的2倍
2 s 2M N Ts
Nyquist 频率
重建滤波器(低通)截止频率应满足:
采用抽象算法表达:由软件程序虚拟实现。 在采用硬件电路实现时,由于不需要考虑 物理环境对信号的影响,可以在设计中尽可
能采用低功耗高密度集成。
数字系统的特点
信号采用数字序列表达后,对模拟信号难以 进行的很多处理能够方便地实现,例如: 对信号的乘法调制和各种编码调制、信号的时 间顺序处理、信号的时间压缩/扩张、复杂标准 信号的产生…
时间变量与对应的函数值采用两个相等长度的序列 (一维向量)表示。 两个序列可以进行直接数值设臵:
例:n=[0 1 2 3 4 5 6 7];
x=[1 2 4 6 5 3 1 0];
数字信号的MATLAB表达
坐标区间设臵: n=[n1:n2] 只取整数,设定起点和终点;
信号函数设臵:其序列长度由n序列限定; x=3*n x=exp(j*(pi/8)*n)
设臵好坐标序列t和信号序列x后,可以采 用下列作图语句画出连续时间信号图形: plot(t,x) 该语句通过将离散的信号点之间用直线连 接得到连续图形。
模拟信号的作图表达
例:MATLAB程序
t=[0:0.1:10];x1=[zeros(1,30) ones(1,40) zeros(1,31)]; x2=2-0.3*t;x3=exp(j*(pi/8)*t);x4=exp(-0.2*t).*cos(2*pi*t);
欠采样导致的问题
s N
若原始频谱与镜像频谱混叠,产生混叠失真,则
信号不可恢复!
采样定理
待采样信号必须为带限信号
X 0
M
采样频率应大于信号最高频率的2倍
2 s 2M N Ts
Nyquist 频率
重建滤波器(低通)截止频率应满足:
数字信号处理第一章课后答案

故系统是线性系统。
第 1 章 时域离散信号和时域离散系统
n
(7) y(n)= x(m) 令输入为m0
x(n-n0)
输出为
n
y′(n)= =0[DD)]x(m-n0)
m0
nn0
y(n-n0)= x(m)≠y′(n) m0
故系统是时变系统。 由于
n
T[ax1(n)+bx2(n)]=
[ax1(m)+bx2(m)
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
2n+5
-4≤n≤-1
(x(n)= 6 0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
(2) y(n)=x(n)+x(n+1)
n n0
(3) y(n)= x(k) k nn0
(4) y(n)=x(n-n0) (5) y(n)=ex(n)
第 1 章 时域离散信号和时域离散系统
解:(1)只要N≥1, 该系统就是因果系统, 因为输出 只与n时刻的和n时刻以前的输入有关。
如果|x(n)|≤M, 则|y(n)|≤M, (2) 该系统是非因果系统, 因为n时间的输出还和n时间以 后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
第 1 章 时域离散信号和时域离散系统 题2解图(四)
第 1 章 时域离散信号和时域离散系统
n
(7) y(n)= x(m) 令输入为m0
x(n-n0)
输出为
n
y′(n)= =0[DD)]x(m-n0)
m0
nn0
y(n-n0)= x(m)≠y′(n) m0
故系统是时变系统。 由于
n
T[ax1(n)+bx2(n)]=
[ax1(m)+bx2(m)
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
2n+5
-4≤n≤-1
(x(n)= 6 0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
(2) y(n)=x(n)+x(n+1)
n n0
(3) y(n)= x(k) k nn0
(4) y(n)=x(n-n0) (5) y(n)=ex(n)
第 1 章 时域离散信号和时域离散系统
解:(1)只要N≥1, 该系统就是因果系统, 因为输出 只与n时刻的和n时刻以前的输入有关。
如果|x(n)|≤M, 则|y(n)|≤M, (2) 该系统是非因果系统, 因为n时间的输出还和n时间以 后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
第 1 章 时域离散信号和时域离散系统 题2解图(四)
数字信号处理第1章

A0 A1 z- 1 p1
…
x(n )
01 11
y(n )
11 21
z- 1 z- 1
并联型结构
0F 1F
1F 2F
z- 1 z- 1
…
数字信号处理基础-实现结构(IIR)
FIR的特点:
单位脉冲响应序列为有限个; 可快速实现; 可得到线性相位 滤波器阶数较高 IIR的特点: 滤波器阶数较低 可利用模拟滤波器现有形式
a N- 1 aN
x(n -N)
z- 1 b N
z- 1 y(n -N)
直接Ⅰ型结构
…
数字信号处理基础-实现结构(IIR)
y (n) bi x(n 1) ai y (n i )
i 0 i 1
b0 a1 a2 z- 1 z- 1 b1 b2 x(n ) y(n )
M
N
… … …
若ai不等于0,输出依赖于以前的输出信号, 称为递归系统(有反馈)
y(n) ai y (n i) bl x(n l )
i 1 i 0
N
M
通常此时n趋于无穷大时,h(n)也不为0,对 脉冲响应无限长的系统称为IIR(无限长单 位脉冲响应滤波器)
数字信号处理基础-系统实现结构
数字信号处理基础-实现结构(IIR)
y(n) bi x(n i) ai y (n i)
i 0 i 1
x(n) x(n- 1) x(n- 2) b0 z- 1 b 1 z
- 1
M
N
y(n ) a1 a2 z- 1 z
- 1
y(n- 1) y(n- 2)
b2
…
…
…
…
…
x(n )
01 11
y(n )
11 21
z- 1 z- 1
并联型结构
0F 1F
1F 2F
z- 1 z- 1
…
数字信号处理基础-实现结构(IIR)
FIR的特点:
单位脉冲响应序列为有限个; 可快速实现; 可得到线性相位 滤波器阶数较高 IIR的特点: 滤波器阶数较低 可利用模拟滤波器现有形式
a N- 1 aN
x(n -N)
z- 1 b N
z- 1 y(n -N)
直接Ⅰ型结构
…
数字信号处理基础-实现结构(IIR)
y (n) bi x(n 1) ai y (n i )
i 0 i 1
b0 a1 a2 z- 1 z- 1 b1 b2 x(n ) y(n )
M
N
… … …
若ai不等于0,输出依赖于以前的输出信号, 称为递归系统(有反馈)
y(n) ai y (n i) bl x(n l )
i 1 i 0
N
M
通常此时n趋于无穷大时,h(n)也不为0,对 脉冲响应无限长的系统称为IIR(无限长单 位脉冲响应滤波器)
数字信号处理基础-系统实现结构
数字信号处理基础-实现结构(IIR)
y(n) bi x(n i) ai y (n i)
i 0 i 1
x(n) x(n- 1) x(n- 2) b0 z- 1 b 1 z
- 1
M
N
y(n ) a1 a2 z- 1 z
- 1
y(n- 1) y(n- 2)
b2
…
…
…
…
数字信号处理第一章

-1 0
1
2
n
1/4 -1 0 1 n
2012/11/3
大连海事大学信息学院电子信息基础教 研室
11
7、序列的时间尺度变换运算(2)
(2)插值: x(n/m)
例 m=2,x(n/2)相当于两个点之间插一个点,依此类 推。通常,插值用 I 倍表示,即插入(I-1)个值。
x(n) 2 1/2 -1
2012/11/3
大连海事大学信息学院电子信息基础教 研室
10
7、序列的时间尺度变换运算(1)
若序列为 x(n) ,其时间尺度变换序列为x(mn) 或x(n/m),m是正整数。 (1) 抽取: x(mn) 例m=2,x(2n)相当于两个点取一点,依此类推。
x(n) 2 1/4 -2 1/2 1 1 3 x(2n) 3
2012/11/3
大连海事大学信息学院电子信息基础教 研室
23
•三、单位样值响应与零状态响应 定义:在零初始条件下,输入为单位样值 序列时系统的响应。
即 h(n) T [ (n)] 显然h(n)是系统对 (n)的零状态响应。
• 若已知h(n),则当任意输入x(n),响应为:
y ( n)
x(n) xa (nT ),
2012/11/3
n
n为整数
2
大连海事大学信息学院电子信息基础教 研室
2.
1) 2) 3)
序列的表示方法:
公式表示法; 图形表示法; 集合符号表示法:如果x(n)是通过观测得到的一组离散 数据,则其可以用集合符号表示。
例如:
x(n) x(0) x(-1) x(1) x(-2) x(2) n
当n=0时
x(n)*h(n)=1
数字信号处理 第一章

x(n + N) = Asin[ω0 (n + N) +ϕ]
k N = (2π / ω0 ) K
13
具体正弦序列有以下三种情况: (1) 当2π/ω0为整数时,k=1,正弦序列是以 2π/ω0为周期的周期序列。
2π π π 例如, sin( n) , ω 0 = , = 16 , 该正弦序列 ω0 8 8
δ ( n)
1, δ (n) = 0,
n=0 n≠0
-2 -1 0
1
1 2
n
6
时域离散信号与系统 几种常见的序列 2.单位阶跃序列 2.单位阶跃序列 u (n) u(n)
1, u(n) = 0,
∞
n≥0 n<0
...
-1 0 1 2 3 n
δ (n) = ∇u(n) = u(n) − u(n −1)
38
时域离散信号与系统
[例]:已知两线性时不变系统级联,其单位抽样响应 已知两线性时不变系统级联, 分别为h (n)=δ(n)-δ(n-4); 分别为h1(n)=δ(n)-δ(n-4);h2(n)=an u(n), |a|<1, x(n)=u(n)时 求输出y(n) y(n)。 当输入 x(n)=u(n)时,求输出y(n)。 [解 ]: x(n) w(n)
????
33
时域离散信号与系统
二:时不变系统
若系统响应与激励加于系统的时刻无关, 若系统响应与激励加于系统的时刻无关,则为时不变 系统,又称移不变系统。 系统,又称移不变系统。
T [ x ( n )] = y ( n ) T [ x ( n − m )] = y ( n − m )
例:判断y(n)=ax(n)+b所的系统是否为时不变系统? 判断y(n)=ax(n)+b所的系统是否为时不变系统? y(n)=ax(n)+b所的系统是否为时不变系统
数字信号处理第一章离散时间信号和离散时间

离散卷积的计算
计算它们的卷积的步骤如下: (1)折叠:先在哑变量坐标轴k上画出x(k)和h(k),将h(k)以纵坐标为对称轴折 叠成 h(-k)。 (2)移位:将h(-k)移位n,得h(n-k)。当n为正数时,右移n;当n为负数时,左 移n。 (3)相乘:将h(n-k)和x(k)的 对应取样值相乘。 (4)相加:把所有的乘积累加 起来,即得y(n)。
第一章 时域离散信号和时域离散系统
内容提要
离散时间信号和离散时间系统的基本概念 –序列的表示法和基本类型 –用卷积和表示的线性非移变系统 –讨论系统的稳定性和因果性问题 –线性常系数差分方程 –介绍描述系统的几个重要方式
离散时间信号的傅里叶变换和系统的频率响应 模拟信号的离散化
–讨论了模拟信号、取样信号和离散时间信号(数字 序列)的频谱之间的关系
根据线性系统的叠加性质 y(n) x(m)T[ (n m)] m
根据时不变性质:T[ (n m)] h(n m)
y(n) x(m)h(n m) x(n) h(n) m=-
(1.3.7)
通常把式(1.3.7)称为离散卷积或线性卷积。这一关系常用符 号“*”表示,即:
y(n n0 ) T[kx(n n0 )], 是移不变系统 (2) y(n) nx(n), 即y(n n0 ) (n n0 )x(n n0 ) 而T[x(n n0 )] nx(n n0 ) y(n n0 ),不是移不变系统
1.3.3 线性时不变系统及输入与输出的关系 既满足叠加原理,又满足非移变条件的系统,被称为线性 非移变系统。这类系统的一个重要特性,是它的输入与输 出序列之间存在着线性卷积关系。
§1. 2 时域离散信号
数字信号处理_第一章_概述

第 26 页
1.序列
�离散时间信号又称作序列。 �离散时间信号的间隔为T,且均匀采样,可用x(nT) 表示在时刻nT的值。当T隐含时,可表示为x(n)。 �为了方便,通常用直接用x(n)表示序列{x(n)}。
x(0) x(-1) x(1) x(-2) x(2) -2 -1 0 1 2 n
:x ( n)
第 6 页
数字信号-镭射唱片
�数字信号是通过0和1的数字串所构成的数字流来 传输的,幅度变化是跳变的。 �离散+量化
镭射唱片,又名雷射唱片、压缩盘,简称CD。是一种用以储 存数码资料的光学盘片,在1982年面世,是商业录音的标准 储存格式。 声音镭射唱片包括一条或以上的立体声轨(在CD母盘感光材 料上照出了很多凹凸的位置,这样凸表示1,凹表示0,按照 2进读法读出来之后解码即可读到数据了),以16比特PCM编 码技术,采样率为44.1 kHz。标准镭射唱片的直径为120 毫 米或80 毫米,120 毫米镭射唱片可储存约80分钟的声音。 80 毫米的镭射唱片,可储存约20分钟的声音资料。 镭射唱片技术被用作储存资料,称为CD-ROM。可录式光盘随 后面世,包括只可录写一次的CD-R及可重复录写的CDRW,,成为个人电脑业界最为广泛采用的储存媒体之一。镭 射唱片及其衍生格式取得极大的成功,2004年,全球声音镭 射唱片、CD-ROM、CD-R等的合计总销量达到300亿只。
�关系
RN ( n )
0
1
n N-1
N −1
RN ( n ) = u ( n) − u ( n − N ) = ∑ δ ( n − m)
m =0
第 32 页
实指数序列
�定义为:
x(n) = a u (n)
n
数字信号处理 (1)

【解】
用2e-jw乘以分子和分母,得
则
[1+2.2e-jw+e-2jw]Y(ejw)=2X(ejw)
利用性质,求得差分方程为
y(n)+2.2y(n-1)+y(n-2)=2x(n)
3.系统单位采样响应h(n)=&(n)-a&(n-1),a是实数,求系统的幅值、相位和群时延。
【解】H(ejw)=1-ae-jw=1-acosw +jasin w
②|z|>2时,右边序列
x(n)=[3×( )n+2×2n]u(n)
③0.5<|z|<2时,双边序列
x(n)=3×( )nu(n)-2×2nu(-n-1)
2.一个线性时不变系统具有频率响应H(e)= ,求表示输入输出关系的系统方程。
【分析】为把H(e)变换为一个差分方程,首先将H(ejw)表示为复数的形式,然后利用性质求解。
【分析】①有限长序列收敛域为
0<|z|<∞,n1≤n≤n2
特殊情况:
当n1≥0,n2>0时,ROC:0<|z|≤∞
当n1<0,n2≤0时,ROC:0≤|z|<∞
当n1<0,n2>0时,ROC:0<|z|<∞
②右边序列:
n≥n1≥0,ROC:Rx-<|z|≤∞
当n1<0时,ROC:Rx-<|z|<∞
左边序列:
所以,幅值平方是
|H(ejw)|2=H(ejw)H*(ejw)=(1-aejw)(1-ae-jw)=1+a2-2acosw
相位: ψk(w)=arctan
群时延 τ(w)=
3.一个离散线性时不变系统的差分方程y(n)=0.5y(n-1)+bx(n),求出b使得|H(e)jw|在w=0时等于1,并求出半功率点(即|H(ejw)|2等于其峰值一半时的频率,这个峰值出现在w=0)。
用2e-jw乘以分子和分母,得
则
[1+2.2e-jw+e-2jw]Y(ejw)=2X(ejw)
利用性质,求得差分方程为
y(n)+2.2y(n-1)+y(n-2)=2x(n)
3.系统单位采样响应h(n)=&(n)-a&(n-1),a是实数,求系统的幅值、相位和群时延。
【解】H(ejw)=1-ae-jw=1-acosw +jasin w
②|z|>2时,右边序列
x(n)=[3×( )n+2×2n]u(n)
③0.5<|z|<2时,双边序列
x(n)=3×( )nu(n)-2×2nu(-n-1)
2.一个线性时不变系统具有频率响应H(e)= ,求表示输入输出关系的系统方程。
【分析】为把H(e)变换为一个差分方程,首先将H(ejw)表示为复数的形式,然后利用性质求解。
【分析】①有限长序列收敛域为
0<|z|<∞,n1≤n≤n2
特殊情况:
当n1≥0,n2>0时,ROC:0<|z|≤∞
当n1<0,n2≤0时,ROC:0≤|z|<∞
当n1<0,n2>0时,ROC:0<|z|<∞
②右边序列:
n≥n1≥0,ROC:Rx-<|z|≤∞
当n1<0时,ROC:Rx-<|z|<∞
左边序列:
所以,幅值平方是
|H(ejw)|2=H(ejw)H*(ejw)=(1-aejw)(1-ae-jw)=1+a2-2acosw
相位: ψk(w)=arctan
群时延 τ(w)=
3.一个离散线性时不变系统的差分方程y(n)=0.5y(n-1)+bx(n),求出b使得|H(e)jw|在w=0时等于1,并求出半功率点(即|H(ejw)|2等于其峰值一半时的频率,这个峰值出现在w=0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么在理想采样频谱中,各次谐波频谱就会互
相交叠,出现频谱的“混淆”现象,称作混叠
(图1.4)。为简明起见,图中将xa(j)作为标量处理,一般
xa(j)为复数,交叠也是复数相加。当出现频谱混叠后, 一般不能无失真地滤出基带频谱,用基带滤波
恢复出来的信号就要失真。
23
表1.1 一些典型的数字信号处理系统
)t
dt
因此有,
Xˆ a ( j)
1 T
X a ( j
m
jms )
所以,理想采样信号的频谱是连续信号频谱的周期延拓,重复
周期为s(采样频率)。
21
如果满足条件:
X
a
(
j)
X
a
(
j)
0
s 2 s 2
22
如果不满足以上条件,信号最高频谱超过 s/2
9
1.1.2 序列的运算
1、序列的相加 z(n)=x(n)+y(n)
2、序列的相乘 f(n)=x(n)y(n)
3、序列的移位 y(n)=x(n-n0)
4、序列的能量以及序列的绝对值 S x(n) 2
n
平方可和序列 绝对可和序列
x(n) 2
n
x(n)
一个离散序列 x(n)的z变换定义为: X (z) x(n)z n n
其中z为复变量,以其实部为横坐标,虚部为纵坐 标构成的平面为 z 平面。
37
常用Z[x(n)]表示对序列x(n)的 z 变换,即
Z[ x(n)] x(n) z n n
这种变换也称为双边 z 变换,与此相应还有单边 z 变换,单边 z 变换只是对单边序列(n>=0部分)进 行变换的z变换,其定义为
e jm st
T m
Xˆ a ( j) Fxˆa (t) Fxa (t)M (t)
xa
(t)M
(t)e
jt
dt
1
T
xa (t)
e jmst e jt dt
m
1
T M
xa
(t )e
j (ms
DTFT的一些主要性质见表1.2。
36
1.3.2 z变换
一 、 z变换定义
利用差分方程可求离散系统的结构及瞬态解,为了分析系 统的另外一些重要特性,如稳定性和频率响应等,需要研究离散
时间系统的z变换,它是分析离散系统和离散信号的重要 工具。
连续时间系统:傅里叶变换拉普拉斯变换 离散时间系统:傅里叶变换z变换
g(t
)d
xa ( )g(t ) ( nT )d xa (nT )g(t nT )
n
n
这里,g(t-nT) 称为内插函数
下面对g(t-nT)作进一步了解
29
我们知道: g(t) F 1[G( j)]
g(t) 1
即:理想采样可看作是对冲激脉冲载波的调幅过
程。我们用M(t)表示这个冲激载波:
M (t) (t nT )
n
则有
xˆa (t) xa (t)M (t)
xa (t) (t nT) xa (nT) (t nT)
n
n
17
实际情况下,τ=0达不到,但 τ<<T 时 , 实 际 采 样 接 近 理 想 采 样 , 理想采样可看作是实际采样物理过程 的抽象,便于数学描述,可集中反映 采样过程的所有本质特性,理想采样 对Z变换分析相当重要。
m
m
s
2
T
2f s
1
am T
T
2 M (t )e jmst dt
T 2
1
T 2
(t nT )e jmst dt
T T 2 n
1
T 2
(t )e jmst dt
1
T T 2
T
20
所以
M (t ) 1
以由它的采样值 xa(nT ) 来表示,它等于 xa(nT ) 乘上对应
的内插函数的总和,如图1.7所示。
31
采样内插恢复
在每一个采样点上,由于只有该采样值对应的内 插函数不为零,所以保证了各采样点上信号值不变, 而采样点之间的信号则由各采样值内插函数的波形延 伸迭加而成。
32
内插公式的意义:
证明了只要满足采样频率高于两 倍信号最高频率的条件,整个连续信 号就可以用它的采样值完全代表,而 不损失任何信息——奈奎斯特定律。
x p (t) xa (t) p(t)
一般τ 很小, τ 越小,采样输出脉冲的 幅度越接近输入信号在离散时间点上的瞬 时值。
16
2. 理想采样
开关闭合时间τ→0时,为理想采样。(如图1.1)
特点:采样序列表示为冲激函数的序列,这些冲
激函数准确地出现在采样瞬间,其积分幅度准确
地等于输入信号在采样瞬间的幅度。
n
有界序列 x(n) Bx
10
5、实序列的偶部和奇部
偶对称序列:x(n)=x(-n) 奇对称序列:x(n)=-x(-n)
x(n) xe (n) xo (n)
xe
(n)
1 [x(n) 2
x(n)]
xo
(n)
1 [x(n) 2
x(n)]
11
6、序列的单位脉冲序列表示
x(n) anu(n)
6
(5)正弦序列
x(n) = sin(nω0)
sin(n0)
-1
7
(6)复指数序列
x(n) Ae( j0 )n Aen (cos0n j sin 0n)
当 0时x(n)的实部和虚部分别是
余弦和正弦序列。
8
x(n) = (0.65 + j0.5)nu(n).
的两倍。
Ωs≥2Ωmax
实际工作中,考虑到有噪声的存在,为避免
频谱混叠,我们总是将采样频率选得比两倍信号
最高频率max更大些,比如Ωs >(3~5)max。 同时,为避免高于折叠频率的噪声信号进入
采样器造成频谱混淆,采样器前常常加一个保护
性的前置低通滤波器(目的:抗混叠滤波,阻止
高于S/2的频率分量进入) 。
2了
这里:
ω:数字域角频率; Ω:模拟域角频率
26
4.采样信号恢复为模拟信号
如果理想采样满足奈奎斯特定理,即信号最高频率谱不
超过折叠频率
X
a
(
j)
X
a
(
j)
0
s 2 s 2
则理想采样的频谱就不会产生混叠,因此有
Xˆ a (
j)
1 T
Xa(
m
j
jms )
取其主瓣
:Xˆ a (
j)
1 T
Xa(
j)
将采样信号 xˆa (t) 通过一个理想低通滤波器(只让基带频 谱通过),其带宽等于折叠频率S/2,特性如图
27
G(j) T
0
S/2
xa(t) G(j) y(t)=xa(t) g(t)
G(
j)
T
0
s 2 s 2
x(n) x(m) (n m) m
提示:
(n)
1, 0,
n0 n0
12
1.2 采样
对信号进行时间上的离散化,这是对信号作 数字化处理的第一个环节。
研究内容:
• 信号经采样后发生的变化(如频谱的变化) • 信号内容是否丢失(采样序列能否代表原始
信号、如何不失真地还原信号) • 由离散信号恢复连续信号的条件
18
3、采样信号的频谱
X a ( j) F
xa (t)
xa
(t
)e
jt
dt
xa (t) F 1
X a ( j)
1
2
X
a
(
j)e
jt
d
X a ( j) xa (t)
19
M (t)
(t nT )
a e jmst m
应用系统 地质勘探
上限频率 fmax 500 Hz
采样频率 fs 1-2 kHz
生物医学
1kHz
2-4kHz
机械振动
2kHz
4-10 kHz
语音 音乐
4kHz 20 kHz
8-16 kHz 40-96 kHz
视频
4MHz
8-10 MHz
24
奈奎斯特采样定理:要使实信号采样后能够
不失真地还原,采样频率必须大于信号最高频率
35
必须注意:
(1)由于 e j e j(2 ) ,所以 X (e j ) 是以2π为周期
的周期函数。
(2)DTFT:
X (e j ) x(n)e jn
n
正是周期函数 X (e j ) 的付氏级数展开,而x(n)是付氏
级数的系数。这一概念在以后滤波器设计中有用。
2
G( j)e jtd T
2
s
2 s
e
jt d
2
s in s t
sin t