中科院《数字图像处理》课件---08_图像重建

合集下载

《数字图像处理课件》

《数字图像处理课件》

视频增强
视频增强技术可以通过改善视频的亮度和对比度来提高视频的质量。
常见的图像滤波方法和应用
线性滤波
线性滤波技术可以通过改变像 素的亮度和颜色来改善图像的 质量。
图像增强
图像增强技术可以通过增强图 像的对比度和清晰度,使图像 更加清晰和鲜明。
降噪处理
降噪处理可以去除图像中的噪 声,提高图像的质量和可视性。
图像变换与增强技术
1
灰度变换
灰度变换可以通过改变图像的像素灰度级别来调整图像的对比度和亮度。
图像复原
图像复原可以通过去除图像中 的模糊和失真,使图像ቤተ መጻሕፍቲ ባይዱ复到 原始的清晰度和细节。
图像修复
图像修复可以恢复被损坏或丢 失的部分,使图像完整和连续。
视频图像处理的基本原理和算法
帧间压缩
帧间压缩方法通过比较连续的视频帧来减 小视频文件的大小。
运动估计
运动估计可以提取视频中物体的运动信息, 为视频图像处理提供基础。
数字图像处理课件
数字图像处理是一个广泛应用于医学影像、安全监控、航天测量等领域的重 要技术。本课件将全面介绍数字图像处理的概念、方法和应用,并展望其未 来发展趋势。
概述数字图像处理
应用范围广泛
数字图像处理在各行各业都有 广泛的应用,从个人摄影到自 动化生产都离不开它。
基于数学算法
数字图像处理使用数学算法对 图像进行处理和分析,帮助我 们理解和改善图像。
在医学领域中的应用
数字图像处理在医学领域中起 着至关重要的作用,如医学影 像的处理和分析。
图像的数字化表示和存储
像素
通过像素,图像被分割为不同的单元。
压缩技术
图像压缩技术可以减少图像文件的大小,节 省存储空间。

《图像重建》PPT课件

《图像重建》PPT课件
问题:能否从投影中恢复原图? 答复是肯定的。
一条射线沿S方向穿透物体,投影轴与X轴夹角为θ,建立s、t坐标系,(t,s)与(x,y)关系如下式:
x
t
y
s
Pθ(t)
θ
X射线
沿射线积分组成投影 :
物理上X射线到人体有个衰减过程: u(x,y)为x,y点的衰减 Nin :入射X射线(光子)强度 Nd :X射线穿透物体后被检测到的射线强度 u(x,y):反映了人体各部组织的性质,在空间上的分布就形成了人体 各部组织的图象,所以u(x,y)实质上反映了图象灰度分布f(x,y)
x
y
θHale Waihona Puke uv由付氏变换旋转不变性: 得: S (w) = F(w, ) = F(u,v) (一般的S(w)=F(u,v)的证明) 证:f(t,s)是f(x,y)在t,s坐标上为函数
x
t
y
s
θ
u
ω
v
θ
实现流程: 极坐标 直角坐标

将①带入上式,可得到采样点上的值:
k = 0,1…N-1 共N个(即实际投影范围有限)
3、
当w→0时,G(w)~|w|
4. 当ε→0时,G(w)≈|w|
讨论: 取样点N大则τ小;N小则τ大,混迭严重。 因P(T)有限范围,S(W)为无限带宽,混迭必然。 实现方法多种多样,取决于速度与精度,投影个数,K有关。实用为弧面,几何关系更复杂一些。
目前拓展、超声CT、放射性同位素正电子CT、质子CT。 CT其它领域:电子天文学、电子显微镜。
9.3 滤波——逆投影法 极坐标F的付氏反变换:
F(ω,θ)
v
u
θ
v
u
π

《图像重建》课件

《图像重建》课件
支持向量机方法
利用支持向量机的分类和回归功能,对图像进行特征提取和分类,实现图像的重建和识别。
其他方法
稀疏表示方法
利用稀疏表示理论,通过稀疏基函数对 图像进行表示和压缩,实现图像的重建 和去噪。
VS
插值方法
利用插值算法对图像进行放大、缩小、旋 转等变换,实现图像的重建和修复。
03
图像重建算法
反投影算法
01
反投影算法是一种简单的图像重建算法,其基本思想
是将投影数据反向投影到图像平面上,以重建图像。
02
该算法简单、易于实现,但重建图像的质量较差,容
易出现模糊、失真等现象。
03
适用于对图像质量要求不高的场合,如初步的医学影
像分析等。
滤波反投影算法
滤波反投影算法是在反投影算法 的基础上,通过在投影数据上应 用滤波器来提高重建图像的质量
角色建模、场景渲染等方面,提高游戏的视觉效果和沉浸感。
THANKS
未来发展方向
深度学习与人工智能
随着深度学习和人工智能技术的不断 发展,未来可以通过更先进的算法和 模型实现更高质量的图像重建。
实时图像重建
将不同模态的数据融合到图像重建中 ,可以提高重建结果的准确性和丰富 性。
数据驱动方法
利用大量数据进行训练和优化,可以 进一步提高图像重建的准确性和效率 。
多模态融合
基于梯度域的方法
全变分方法
利用图像的全变分信息,通过梯度下降法等优化算法,对图像进行去噪、增强、修复等处理。
拉普拉斯金字塔方法
利用拉普拉斯金字塔的多尺度、多方向性等特性,对图像进行分解和重构,实现图像的放大、去噪、增强等功能 。
基于学习的方法
深度学习方法

08_图像重建

08_图像重建

I0
I
µ
I = I0e−µ∆x
I0=输入X射线强度 μ=物体吸收系数 I=输出X射线强度
∆x
∆x
I0
I
µ1 µ2 µ3
I = I e−( µ1+µ2 +µ3 ) ∆x 0
x
第八章 图像重建
刘定生 中科院对地观测与数字地球科学中心 15
图像重建基本原理
不同的物体对X射线具有不同的吸收率—传输式投影 的算法基础
第八章 图像重建
刘定生 中科院对地观测与数字地球科学中心 22
代数重建方法
代数重建基本思想
¾ 代数重建算法和Radon变换算法的区别在于,代数重建算 法一开始就把连续的图像f(x,y)离散化
¾ 通过不同投影截面相互关系的联立,可获得X射线通过区 域截面的物体吸收系数图像
µ1=4 µ2=3 µ3=2 µ4=1
θ
x
xcosθ + ysinθ = t xcosθ + ysinθ = t1
第八章 图像重建
刘定生 中科院对地观测与数字地球科学中心 19
图像重建基本原理
投影理论—Radon变换
¾ 平行投影与扇形投影变换
Pθ 1 (t )
Pθ 2 (t)
y f (x, y)
θ x
Pθ 2 (t)
y f (x, y)

−∝( x
∂Pθ (t )
∂t
cos θ + y sin θ )

dtd θ
t
第八章 图像重建
刘定生 中科院对地观测与数字地球科学中心 21
图像重建基本原理
投影理论—Radon变换-讨论
¾ Radon公式对图像的重建给出了理想化的数学求解途径, 但在实际应用中,存在一系列难题

《数字图像处理》课件

《数字图像处理》课件

数字图像处理的优势及应用前 景
数字图像处理能够提取、增强和分析图像中的信息,具有广泛的应用前景, 包括医学、遥感、安防、影视等领域。
主要应用领域
医学影像
数字图像处理在医学影像诊断中起到了关 键的作用,能够帮助医生更准确地诊断和 治疗疾病。
安防
数字图像处理在视频监控和图像识别中广 泛应用,能够提高安防系统的准确性和效 率。
遥感
遥感图像处理在土地利用、环境保护、气 象预测等方面发挥着重要的作用,能够提 供大量的地理信息。
影视
数字图像处理在电影、动画和游戏等领域 中起到了关键的作用,能够创造出逼真的 视觉效果。
《数字图像处理》PPT课 件
数字图像处理是应用数字计算机来获取、处理和展示图像的技术。它在医学 影像、遥感、安防、影视等领域都有广泛的应用。
背景介绍
随着计算机技术的发展,数字图像处理成为了一门重要的技术和学科,它能 够对图像进行增强、压缩、分割等处理,为人们带来了许多便利。
数字图像处理的定义
数字图像处理是使用计算机算法对数字图像进行各种操作和处理的过程,包 括图像增强、滤波、分割、特征提取等技术。
常见的数字图像处理方法
图像分割
图像压缩
将图像分成多个独立的区域, 用于目标检测和图像分析。
减少图像占用的存储空间, 提高传输速度和存储效率。
图像特征提取
从图像中提取出有用的特征 信息,用于分类和识别。
数字图像处理的未来发展方向
1 人工智能的应用
通过结合人工智能技术,使数字图像处理更加智能化和自动化。
2 虚拟现实与增强现实的结合
将数字图像处理技术与虚拟现实和增强现实相结合,创造出更逼真的虚拟体验。
3 社会影响与挑战随着数字图处理技术的发展,也带来了一些社会影响和挑战,需要加以关注和解决。

数字图像处理ppt课件

数字图像处理ppt课件

04
CATALOGUE
特征提取
颜色特征提取
颜色直方图
通过统计图像中不同颜色像素的数量 ,形成颜色直方图作为图像的颜色特 征。该方法简单、有效,适用于不同 光照和视角变化的场景。
颜色矩
利用图像颜色的分布信息,通过计算 一阶矩(均值)、二阶矩(方差)和 三阶矩(偏度)来表示颜色特征。该 方法对颜色突变和噪声不敏感。
数字图像处理 ppt课件
contents
目录
• 数字图像处理简介 • 图像增强 • 图像分割 • 特征提取 • 图像识别 • 数字图像处理的发展趋势与挑战
01
CATALOGUE
数字图像处理简介
数字图像处理定义
01
02
03
数字图像处理
使用计算机对图像进行加 工和分析,以满足各种应 用需求的技术。
纹理特征提取
灰度共生矩阵
通过分析图像中像素灰度值的空间依赖关系,形成共生矩阵,并从中提取出统 计特征,如对比度、能量和相关性等。该方法适用于描述图像的粗糙程度和方 向性。
小波变换
将图像分解成不同频率和方向的小波分量,通过分析小波系数的统计特性来提 取纹理特征。该方法能够有效地表示图像的细节信息和全局结构。
02
CATALOGUE
图像增强
对比度增强
提高图像的明暗对比度,使图像细 节更加清晰可见。
通过调整像素的亮度或对比度,使图 像的明暗区域更加明显,增强图像的 视觉效果。常用的方法包括直方图均 衡化、对比度拉伸等。
锐化处理
突出图像中的边缘和细节,增强图像的清晰度。
通过增强图像中的高频分量,突出显示图像中的边缘和细节,使图像看起来更加 清晰。常用的方法包括拉普拉斯算子、梯度算子等。

数字图像处理--图像复原与重建 ppt课件

数字图像处理--图像复原与重建 ppt课件
基本原理。1/H(u,v)称为逆滤波器。 逆滤波复原过程可归纳如下:
(1)对退化图像g(x,y)作二维离散傅立叶变换,得到G(u,v); (2)计算系统点扩散函数h(x,y)的二维傅立叶变换,得到
H(u,v);
(3)逆滤波计算 (4)计算
F ( u ,v ) G ( u ,v )/H ( u ,v )
5.1.1 图像的退化 图像的退化是指图像在形成、传输和记录过程中,由于
成像系统、传输介质和设备的不完善,使图像的质量变坏。 图像复原就是要尽可能恢复退化图像的本来面目,它是
沿图像退化的逆过程进行处理。 典型的图像复原是根据图像退化的先验知识建立一个退
化模型,以此模型为基础,采用各种逆退化处理方法进行恢 复,得到质量改善的图像。图像复原过程如下:
几何失真
ห้องสมุดไป่ตู้
系统失真
非系统失真。
系统失真是有规律的、能预测的;非系统失真则是随 机的。
当对图像作定量分析时,就要对失真的图像先进行精 确的几何校正(即将存在几何失真的图像校正成无几何失 真的图像),以免影响定量分析的精度。
16
几何校正方法
图像几何校正的基本方法是先建立几何校正的数学模型; 其次利用已知条件确定模型参数;最后根据模型对图像进行 几何校正。通常分两步:
①图像空间坐标变换;首先建立图像像点坐标(行、列 号)和物方(或参考图)对应点坐标间的映射关系, 解求映射关系中的未知参数,然后根据映射关系对图 像各个像素坐标进行校正;
②确定各像素的灰度值(灰度内插)。
17
5.4.1 空间坐标变换
实际工作中常以一幅图像为基准,去校正另一幅几何 失真图像。通常设基准图像f(x,y)是利用没畸变或畸变较小
i0 j0

(数字图像处理)第七章图像重建

(数字图像处理)第七章图像重建

带通滤波器
允许一定频率范围内的信号通 过,阻止其他频率的信号通过 ,用于提取图像的特定频率成 分。
陷波滤波器
阻止特定频率的信号通过,其 他频率的信号不受影响,用于 消除图像中的周期性噪声。
傅里叶反变换实现图像恢复过程
01
傅里叶反变换定义
将频率域的信号转换回时间域或空间域的过程,是傅里叶变换的逆操作。
80%
模型评估指标
使用峰值信噪比(PSNR)、结构 相似性(SSIM)等指标,客观评 价重建图像的质量。
实例
1 2
超分辨率技术介绍
利用低分辨率图像重建出高分辨率图像的技术, 广泛应用于图像增强和修复领域。
CNN在超分辨率技术中的应用
通过设计多层的卷积神经网络,实现对低分辨率 图像的特征提取和重建,生成高分辨率图像。
频率混叠现象
当采样频率低于信号最高频率的两倍时,会出现频率混叠现象,即高频信号成 分会折叠到低频区域,导致重建出的图像出现失真和伪影。
离散信号与连续信号转换关系
离散信号到连续信号的转换
在图像重建中,需要将离散的采样点转换为连续的图像信号 。这通常通过插值算法实现,如最近邻插值、线性插值、立 方插值等,以在离散采样点之间生成平滑的过渡。
稀疏表示与字典学习的关系
稀疏表示是字典学习的目标,而字典学习是实现稀疏表示的手段。
实例:基于CS-MRI技术医学图像重建
CS-MRI技术
基于压缩感知理论的磁共振成像技术,通过减少采样数据 量和优化重建算法,实现高质量医学图像的快速重建。
实现步骤
首先,利用MRI系统的部分采样数据构建测量矩阵;然后, 通过稀疏表示和字典学习方法得到图像的稀疏系数;最后, 利用重建算法恢复出原始图像。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档