【中小学资料】创新设计(全国通用)2017届高考数学二轮复习 专题一 函数与导数、不等式 第5讲 导数与不等

合集下载

创新设计(全国通用)2017届高考数学二轮复习 教师用书 指导一、二、三 文

创新设计(全国通用)2017届高考数学二轮复习 教师用书 指导一、二、三 文

技巧——巧解客观题的10大妙招(一)选择题的解法选择题是高考试题的三大题型之一,全国卷12个小题.该题型的基本特点:绝大部分选择题属于低中档题目,且一般按由易到难的顺序排列,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识解决数学问题的能力.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧,总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做.方法一 直接法直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后对照题目所给出的选项“对号入座”作出相应的选择,从而确定正确选项的方法.涉及概念、性质的辨析或运算较简单的题目常用直接法. 【例1】 数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m ,n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( ) A.12B.23C.32D.2解析 对任意正整数m 、n ,都有a m +n =a m ·a n ,取m =1, 则有a n +1=a n ·a 1⇒a n +1a n =a 1=13. 故数列{a n }是以13为首项,以13为公比的等比数列,则S n =13⎝ ⎛⎭⎪⎫1-13n 1-13=12⎝⎛⎭⎪⎫1-13n <12,由于S n <a 对任意n ∈N *恒成立, 故a ≥12,即实数a 的最小值为12.答案 A探究提高 直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.【训练1】 (2015·湖南卷)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A.6B.7C.8D.9解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.答案 B 方法二 特例法从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.适用于题目中含有字母或具有一般性结论的选择题.【例2】 (1)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( ) A.3∶1 B.2∶1 C.4∶1D.3∶1(2)已知定义在实数集R 上的函数y =f (x )恒不为零,同时满足f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有( )A.f (x )<-1B.-1<f (x )<0C.f (x )>1D.0<f (x )<1解析 (1)将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有V C -AA 1B =V A 1-ABC =V ABC -A 1B 1C 13.(2)取特殊函数.设f (x )=2x,显然满足f (x +y )=f (x )·f (y )(即2x +y=2x ·2y),且满足x >0时,f (x )>1,根据指数函数的性质,当x <0时,0<2x<1,即0<f (x )<1. 答案 (1)B (2)D探究提高 特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.【训练2】 等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) A.130B.170C.210D.260解析 取m =1,依题意a 1=30,a 1+a 2=100,则a 2=70,又{a n }是等差数列,进而a 3=110,故S 3=210. 答案 C 方法三 排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.【例3】 函数f (x )=(1-cos x )sin x 在[-π,π]上的图象大致为( )解析 由函数f (x )为奇函数,排除B ;当0≤x ≤π时,f (x )≥0,排除A ;又f ′(x )=-2cos 2x +cos x +1,f ′(x )=0,则cos x =1或cos x =-12,结合x ∈[-π,π],求得f (x )在(0,π]上的极大值点为2π3,靠近π,排除D.答案 C探究提高 (1)对于干扰项易于淘汰的选择题,可采用筛选法,能剔除几个就先剔除几个. (2)允许使用题干中的部分条件淘汰选项.(3)如果选项中存在等效命题,那么根据规定——答案唯一,等效命题应该同时排除. (4)如果选项中存在两个相反的或互不相容的判断,那么其中至少有一个是假的. (5)如果选项之间存在包含关系,要根据题意才能判断.【训练3】 (1)方程ax 2+2x +1=0至少有一个负根的充要条件是( ) A.0<a ≤1 B.a <1C.a ≤1D.0<a ≤1或a <0(2)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,则f ′(x )的图象是( )解析 (1)当a =0时,x =-12,故排除A 、D.当a =1时,x =-1,排除B.(2)f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,故f ′(x )=⎝ ⎛⎭⎪⎫14x 2+cos x ′=12x -sin x ,记g (x )=f ′(x ),其定义域为R ,且g (-x )=12(-x )-sin(-x )=-⎝ ⎛⎭⎪⎫12x -sin x =-g (x ),所以g (x )为奇函数,所以排除B ,D 两项,g ′(x )=12-cos x ,显然当x ∈⎝⎛⎭⎪⎫0,π3时,g ′(x )<0,g (x )在⎝⎛⎭⎪⎫0,π3上单调递减,故排除C.选A.答案 (1)C (2)A 方法四 数形结合法根据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断,这种方法叫数形结合法.有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,得出结论,图形化策略是以数形结合的数学思想为指导的一种解题策略.【例4】 函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A.0B.1C. 2D.3解析 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2. 答案 C探究提高 图形化策略是依靠图形的直观性进行研究的,用这种策略解题比直接计算求解更能简捷地得到结果.运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则,错误的图象反而会导致错误的选择.【训练4】 过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33B.-33C.±33D.- 3解析 由y =1-x 2,得x 2+y 2=1(y ≥0),其所表示的图形是以原点O 为圆心,1为半径的上半圆(如图所示).由题意及图形,知直线l 的斜率必为负值,故排除A ,C 选项.当其斜率为-3时,直线l 的方程为3x +y -6=0,点O 到其距离为|-6|3+1=62>1,不符合题意,故排除D 选项.选B. 答案 B 方法五 估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次. 【例5】 已知sin θ=m -3m +5,cos θ=4-2m m +5⎝ ⎛⎭⎪⎫π2<θ<π,则tan θ2等于( ) A.m -39-mB.m -3|9-m |C.-15D.5解析 由于受条件sin 2θ+cos 2θ=1的制约,m 一定为确定的值进而推知tan θ2也是一确定的值,又π2<θ<π,所以π4<θ2<π2,故tan θ2>1.所以D 正确.答案 D探究提高 估算法的应用技巧:估算法是根据变量变化的趋势或极值的取值情况进行求解的方法.当题目从正面解析比较麻烦,特值法又无法确定正确的选项时(如难度稍大的函数的最值或取值范围、函数图象的变化等问题)常用此种方法确定选项.【训练5】 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ) A.1B. 2C.2-12D.2+12解析 由俯视图知正方体的底面水平放置,其正视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12. 答案 C1.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法. 2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.(二)填空题的解法填空题是高考试题的第二题型.从历年的高考成绩以及平时的模拟考试可以看出,填空题得分率一直不是很高.因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分.因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.填空题的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点;(2)填空题与选择题有质的区别:①填空题没有备选项,因此,解答时不受诱误干扰,但同时也缺乏提示;②填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方法比较灵活;(3)从填写内容看,主要有两类:一类是定量填写型,要求考生填写数值、数集或数量关系.由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型,要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.方法一 直接法对于计算型的试题,多通过直接计算求得结果,这是解决填空题的基本方法.它是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果的方法.要善于透过现象抓本质,有意识地采取灵活、简捷的解法解决问题.【例1】 设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________. 解析 设P 点在双曲线右支上,由题意得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=6a ,|PF 1|-|PF 2|=2a , 故|PF 1|=4a ,|PF 2|=2a ,则|PF 2|<|F 1F 2|,得∠PF 1F 2=30°,由2a sin 30°=4asin ∠PF 2F 1,得sin ∠PF 2F 1=1,∴∠PF 2F 1=90°,在Rt△PF 2F 1中,2c =(4a )2-(2a )2=23a , ∴e =c a= 3. 答案3探究提高 直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.【训练1】 (1)设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=________. (2)(2015·全国Ⅱ卷)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关 解析 (1)∵tan ⎝⎛⎭⎪⎫θ+π4=12,∴tan θ=-13,即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,又θ为第二象限角, 解得sin θ=1010,cos θ=-31010. ∴si n θ+cos θ=-105. (2)从2006年起,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A 选项正确;2007年二氧化硫排放量较2006年降低了很多,B 选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C 选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D 选项错误.故选D.答案 (1)-105(2)D 方法二 特殊值法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.【例2】 (1)若f (x )=12 015x-1+a 是奇函数,则a =________. (2)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________. 解析 (1)因为函数f (x )是奇函数,且1,-1是其定域内的值,所以f (-1)=-f (1),而f (1)=12 014+a ,f (-1)=12 015-1-1+a =a -2 0152 014.故a -2 0152 014=-⎝ ⎛⎭⎪⎫a +12 014,解得a =12. (2)把平行四边形ABCD 看成正方形,则点P 为对角线的交点,AC =6,则AP →·AC →=18. 答案 (1)12(2)18探究提高 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.【训练2】 如图,在△ABC 中,点M 是BC 的中点,过点M 的直线与直线AB 、AC 分别交于不同的两点P 、Q ,若AP →=λAB →,AQ →=μAC →,则1λ+1μ=________.解析 由题意可知,1λ+1μ的值与点P 、Q 的位置无关,而当直线PQ 与直线BC 重合时,则有λ=μ=1,所以1λ+1μ=2.答案 2方法三 图象分析法对于一些含有几何背景的填空题,若能数中思形,以形助数,通过数形结合,往往能迅速作出判断,简捷地解决问题,得出正确的结果.韦恩图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.【例3】 (1)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-2x +12|.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |(0<x ≤10),-12x +6(x >10),若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是________.解析 (1)函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.在坐标系中作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.(2)a ,b ,c 互不相等,不妨设a <b <c , ∵f (a )=f (b )=f (c ),如图所示,由图象可知,0<a <1, 1<b <10,10<c <12. ∵f (a )=f (b ), ∴|lg a |=|lg b |. 即lg a =lg 1b ,a =1b.则ab =1.所以abc =c ∈(10,12).答案 (1)⎝ ⎛⎭⎪⎫0,12 (2)(10,12) 探究提高 图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.【训练3】 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为________.解析 由f (-4)=f (0),得16-4b +c =c . 由f (-2)=-2,得4-2b +c =-2. 联立两方程解得b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0.在同一直角坐标系中,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,即函数g (x )有3个零点.方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.【例4】 如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.答案6π探究提高 构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.【训练4】 已知a =ln 12 013-12 013,b =ln 12 014-12 014,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.解析 令f (x )=ln x -x ,则f ′(x )=1x -1=1-xx.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 013>12 014>12 015>0,∴a >b >c . 答案 a >b >c 方法五 综合分析法对于开放性的填空题,应根据题设条件的特征综合运用所学知识进行观察、分析,从而得出正确的结论.【例5】 已知f (x )为定义在R 上的偶函数,当x ≥0时,有f (x +1)=-f (x ),且当x ∈[0,1)时,f (x )=log 2(x +1),给出下列命题:①f (2 013)+f (-2 014)的值为0;②函数f (x )在定义域上为周期是2的周期函数;③直线y =x 与函数f (x )的图象有1个交点;④函数f (x )的值域为(-1,1).其中正确的命题序号有________.解析 根据题意,可在同一坐标系中画出直线y =x 和函数f (x )的图象如下:根据图象可知①f (2 013)+f (-2 014)=0正确,②函数f (x )在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数f (x )的值域是(-1,1),正确. 答案 ①③④探究提高 对于规律总结类与综合型的填空题,应从题设条件出发,通过逐步计算、分析总结探究其规律,对于多选型的问题更要注重分析推导的过程,以防多选或漏选.做好此类题目要深刻理解题意,捕捉题目中的隐含信息,通过联想、归纳、概括、抽象等多种手段获得结论.【训练5】 给出以下命题:①双曲线y 22-x 2=1的渐近线方程为y =±2x ;②命题p :“∀x ∈R +,sin x +1sin x≥2”是真命题; ③已知线性回归方程为y ^=3+2x ,当变量x 增加2个单位,其预报值平均增加4个单位; ④已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为nn -4+8-n(8-n )-4=2(n ≠4). 则正确命题的序号为________(写出所有正确命题的序号). 解析 ①由y 22-x 2=0可以解得双曲线的渐近线方程为y =±2x ,正确.②命题不能保证sin x ,1sin x为正,故错误; ③根据线性回归方程的含义正确;④根据验证可知得到一般性的等式是正确的. 答案 ①③④1.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果.2.解填空题不要求求解过程,从而结论是判断是否正确的唯一标准,因此解填空题时要注意如下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;(2)要尽量利用已知的定理、性质及已有的结论;(3)要重视对所求结果的检验.规范——解答题的7个解题模板及得分说明1.阅卷速度以秒计,规范答题少丢分高考阅卷评分标准非常细,按步骤、得分点给分,评阅分步骤、采“点”给分.关键步骤,有则给分,无则没分.所以考场答题应尽量按得分点、步骤规范书写.2.不求巧妙用通法,通性通法要强化高考评分细则只对主要解题方法,也是最基本的方法,给出详细得分标准,所以用常规方法往往与参考答案一致,比较容易抓住得分点.3.干净整洁保得分,简明扼要是关键若书写整洁,表达清楚,一定会得到合理或偏高的分数,若不规范可能就会吃亏.若写错需改正,只需划去,不要乱涂乱划,否则易丢分.4.狠抓基础保成绩,分步解决克难题(1)基础题争取得满分.涉及的定理、公式要准确,数学语言要规范,仔细计算,争取前3个解答题及选考不丢分.(2)压轴题争取多得分.第(Ⅰ)问一般难度不大,要保证得分,第(Ⅱ)问若不会,也要根据条件或第(Ⅰ)问的结论推出一些结论,可能就是得分点.模板1 三角变换与三角函数图象性质类考题(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值与最小值.解 (1)f (x )=cos x sin ⎝⎛⎭⎪⎫x +π3-3cos 2x +34=cos x ⎝ ⎛⎭⎪⎫12sin x +32cos x -3cos 2x +34=12sin x cos x -32cos 2x +34=14sin 2x -34(1+cos2x )+34=14sin 2x -34cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上是减函数,在区间⎣⎢⎡⎦⎥⎤-π12,π4上是增函数,f ⎝ ⎛⎭⎪⎫-π4=-14,f ⎝ ⎛⎭⎪⎫-π12=-12,f ⎝ ⎛⎭⎪⎫π4=14,所以函数f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为14,最小值为-12.模板2 三角变换与解三角形类考题且a +b =3c ,2sin 2C =3sin A sin B . (1)求角C ;(2)若S △ABC =3,求边c .解 (1)∵2sin 2C =3sin A sin B ,∴sin 2C =32sin A sin B ,由正弦定理得c 2=32ab ,∵a +b =3c ,∴a 2+b 2+2ab =3c 2,由余弦定理得cos C =a 2+b 2-c 22ab =2c 2-2ab 2ab =3ab -2ab 2ab =12.∵C ∈(0,π),∴C =π3.(2)∵S △ABC =3,∴S △ABC =12ab sin C ,∵C =π3,∴ab =4,又c 2=32ab ,∴c = 6.模板3 数列的通项、求和类考题n 23510100.(1)求数列{a n }的通项公式; (2)求数列{a n ·2an }的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2.所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)由(1)可知a n ·2a n =(2n -1)·22n -1,所以S n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,①4S n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1,②①-②得:-3S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1.∴S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+2×8(1-4n -1)+(6n -3)×22n +19=109+(6n -5)·22n +19.模板4 概率与统计类考题注:年份代码1-7分别对应年份2008-2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01)附注:满分解答得分说明 解题模板 ①根据公式求:第一步 确机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:解(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.模板5 立体几何类考题BC =2.(2分)AMNT 为平行四边形,【训练5】 (2015·北京卷)如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC ,且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点,所以OM ∥VB , 又因为VB ⊄平面MOC ,OM ⊂平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点,所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC ,平面VAB ∩平面ABC =AB ,所以OC ⊥平面VAB .又OC ⊂平面MOC ,所以平面MOC ⊥平面VAB . (3)解 在等腰直角三角形ACB 中,AC =BC =2,所以AB =2,OC =1,所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .所以三棱锥C -VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等, 所以三棱锥V -ABC 的体积为33. 模板6 解析几何中的探索性考题【训练6】 如图,O 为坐标原点,双曲线C 1:a 21-b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝ ⎛⎭⎪⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB →|?证明你的结论.解 (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2,从而a 1=1,c 2=1.因为点P ⎝⎛⎭⎪⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝ ⎛⎭⎪⎫2332-1b 21=1.故b 21=3.由椭圆的定义知 2a 2=⎝ ⎛⎭⎪⎫2332+(1-1)2+⎝ ⎛⎭⎪⎫2332+(1+1)2 =2 3.于是a 2=3,b 22=a 22-c 22=2,故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1.(2)不存在符合题设条件的直线.①若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2. 当x =2时,易知A (2,3),B (2,-3),所以 |OA →+OB →|=22,|AB →|=2 3. 此时,|OA →+OB →|≠|AB →|.当x =-2时,同理可知,|OA →+OB →|≠|AB →|. ②若直线l 不垂直于x 轴,设l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1,得(3-k 2)x 2-2kmx -m 2-3=0.当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km 3-k 2,x 1x 2=m 2+3k 2-3. 于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1,得(2k 2+3)x 2+4kmx +2m 2-6=0.因为直线l 与C 2只有一个公共点,所以上述方程的判别式 Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0. 化简,得2k 2=m 2-3,因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0, 于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →, 即|OA →+OB →|2≠|OA →-OB →|2,故|OA →+OB →|≠|AB →|. 综合①,②可知,不存在符合题设条件的直线.模板7 导数与函数类考题【训练7】 (2016·成都二诊)设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.解 (1)由题设,当m =e 时,f (x )=ln x +e x,则f ′(x )=x -ex2,∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减,当x ∈(e,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x-1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), ∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14(对m =14,h ′(x )=0仅在x =12时成立),∴m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞.回扣——回扣教材,查缺补漏,清除得分障碍1.集合与常用逻辑用语1.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.[回扣问题1] 集合A ={a ,b ,c }中的三个元素分别表示某一个三角形的三边长度,那么这个三角形一定不是( ) A.等腰三角形 B.锐角三角形 C.直角三角形D.钝角三角形答案 A2.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lgx }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集.[回扣问题2] 若集合A ={x ∈R |y =lg(2-x )},B ={y ∈R |y =2x -1,x ∈A },则∁R (A ∩B )=( ) A.R B.(-∞,0]∪[2,+∞) C.[2,+∞)D.(-∞,0]答案 B3.遇到A ∩B =∅时,你是否注意到“极端”情况:A =∅或B =∅;同样在应用条件A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,不要忽略A =∅的情况.[回扣问题3] 集合A ={x |ax -1=0},B ={x |x 2-3x +2=0},且A ∪B =B ,则实数a =________. 答案 0,1,124.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.[回扣问题4] 集合A ={1,2,3}的非空子集个数为( ) A.5 B.6 C.7D.8答案 C5.“否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”。

《创新设计》2017届高考数学二轮复习(浙江专用)Word版训练+专题一+函数与导数、不等式+第4讲

《创新设计》2017届高考数学二轮复习(浙江专用)Word版训练+专题一+函数与导数、不等式+第4讲

一、选择题1.曲线y =x e x +1在点(0,1)处的切线方程是( )A.x -y +1=0B.2x -y +1=0C.x -y -1=0D.x -2y +2=0解析 y ′=e x +x e x =(x +1)e x ,y ′|x =0=1,∴所求切线方程为:x -y +1=0.答案 A2.(2016·南昌模拟)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23D.1解析 因为y ′=-2e -2x ,∴曲线在点(0,2)处的切线斜率k=-2,∴切线方程为y =-2x +2,该直线与直线y =0和y=x 围成的三角形如图所示,其中直线y =-2x +2与y =x的交点为A ⎝ ⎛⎭⎪⎫23,23,所以三角形面积S =12×1×23=13. 答案 A3.(2016·洛阳模拟)曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( )A.2B.-2C.12D.-12解析 依题意得y ′=1+ln x ,y ′|x =e =1+ln e =2,所以-1a ×2=-1,所以a=2,故选A.答案 A4.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x ,则函数g (x )的零点个数为( )A.1B.2C.0D.0或2解析 令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x >0,所以h ′(x )x>0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0. 答案 C5.已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则下列不等式中成立的是( )A.f (a )<f (1)<f (b )B.f (a )<f (b )<f (1)C.f (1)<f (a )<f (b )D.f (b )<f (1)<f (a )解析 由题意,知f ′(x )=e x +1>0恒成立,所以函数f (x )在R 上是单调递增的,而f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,所以函数f (x )的零点a ∈(0,1);由题意,知g ′(x )=1x +1>0,所以g (x )在(0,+∞)上是单调递增的,又g (1)=ln 1+1-2=-1<0,g (2)=ln 2+2-2=ln 2>0,所以函数g (x )的零点b ∈(1,2).综上,可得0<a <1<b <2.因为f (x )在R 上是单调递增的,所以f (a )<f (1)<f (b ).答案 A二、填空题6.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1.答案 2x +y +1=07.函数f (x )=13x 3-x 2-3x -1的图象与x 轴的交点个数是________.解析 f ′(x )=x 2-2x -3=(x +1)(x -3),函数f (x )在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f (x )极小值=f (3)=-10<0,f (x )极大值=f (-1)=23>0知函数f (x )的图象与x 轴的交点个数为3.答案 38.(2016·济南模拟)关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x 1=0,x 2=2.当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎨⎧-a >0,-4-a <0,解得-4<a <0. 答案 (-4,0)三、解答题9.(2016·武汉模拟)已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围. 解 (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1.(2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x. 因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0,此时函数单调递增;当1<x <e 时,g ′(x )<0,此时函数单调递减.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e , 所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是 ⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0, 解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2. 10.(2016·平顶山二调)已知函数f (x )=ln x -ax +b x ,对任意的x ∈(0,+∞),满足f (x )+f ⎝ ⎛⎭⎪⎫1x =0,其中a ,b 为常数. (1)若f (x )的图象在x =1处的切线经过点(0,-5),求a 的值;(2)已知0<a <1,求证:f ⎝ ⎛⎭⎪⎫a 22>0; (3)当f (x )存在三个不同的零点时,求a 的取值范围.(1)解 在f (x )+f ⎝ ⎛⎭⎪⎫1x =0中,取x =1,得f (1)=0, 又f (1)=ln 1-a +b =-a +b =0,所以b =a .从而f (x )=ln x -ax +a x ,f ′(x )=1x -a ⎝ ⎛⎭⎪⎫1+1x 2, f ′(1)=1-2a .又f ′(1)=-5-f (1)0-1=5,所以1-2a =5,a =-2. (2)证明 f ⎝ ⎛⎭⎪⎫a 22=ln a 22-a 32+2a =2ln a +2a -a 32-ln 2. 令g (x )=2ln x +2x -x 32-ln 2,则g ′(x )=2x -2x 2-3x 22=-3x 4+4(x -1)2x 2. 所以x ∈(0,1)时,g ′(x )<0,g (x )单调递减,故x ∈(0,1)时,g (x )>g (1)=2-12-ln 2>1-ln e =0,所以0<a <1时,f ⎝ ⎛⎭⎪⎫a 22>0. (3)解 f ′(x )=1x -a ⎝ ⎛⎭⎪⎫1+1x 2=-ax 2+x -a x 2. ①当a ≤0时,在(0,+∞)上,f ′(x )>0,f (x )单调递增,所以f (x )至多只有一个零点,不合题意;②当a ≥12时,在(0,+∞)上,f ′(x )≤0,f (x )单调递减,所以f (x )至多只有一个零点,不合题意;③当0<a <12时,令f ′(x )=0,得x 1=1-1-4a 22a<1, x 2=1+1-4a 22a>1. 此时,f (x )在(0,x 1)上单调递减,在(x 1,x 2)上单调递增,在(x 2,+∞)上单调递减,所以f (x )至多有三个零点.因为f (x )在(x 1,1)上单调递增,所以f (x 1)<f (1)=0.又因为f ⎝ ⎛⎭⎪⎫a 22>0,所以∃x 0∈⎝ ⎛⎭⎪⎫a 22,x 1,使得f (x 0)=0. 又f ⎝ ⎛⎭⎪⎫1x 0=-f (x 0)=0,f (1)=0, 所以f (x )恰有三个不同的零点:x 0,1,1x 0. 综上所述,当f (x )存在三个不同的零点时,a 的取值范围是⎝ ⎛⎭⎪⎫0,12. 11.已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.(1)解 由f (x )=e x -ax 2-bx -1,有g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ],当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减.因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln (2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b.综上所述,当a≤1 2时,g(x)在[0,1]上的最小值是g(0)=1-b;当12<a<e2时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b;当a≥e2时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)证明设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤12时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点,不合题意.当a≥e2时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,不合题意.所以12<a<e2.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0. 由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.。

创新设计(全国通用)2017届高考数学二轮复习 考前增分指导二 规范——解答题的7个解题模板及得分说明 模板

创新设计(全国通用)2017届高考数学二轮复习 考前增分指导二 规范——解答题的7个解题模板及得分说明 模板
模板7 函数与导数考题
[真题](2015·全国Ⅱ卷)(满分12分)设函数f(x)=emx+x2-mx. (Ⅰ)证明:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调 递增;
满分解答
(Ⅰ)证明 f′(x)=m(emx-1)+2x.(1分) 若 m≥0 , 则 当 x∈( - ∞ , 0) 时 , emx - 1≤0 , f′(x) < 0 ; 当 x∈(0,+∞)时,emx-1≥0,f′(x)>0.(3分) 若m<0,则当x∈(-∞,0)时,emx-1>0,f′(x)<0;当 x∈(0,+∞)时,emx-1<0,f′(x)>0.(5分)所以, Байду номын сангаас(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(6分)
得分说明
①求导正确得1分; ②分两种情况讨论正确各得2分; ③得出结论得1分.
④找出充要条件得2分; ⑤构造函数,求出“t∈[-1,1]时,g(t)≤0”得2分; ⑥通过分类讨论,得出结果得2分.
解题模板 第一步 求导数:一般先确定函数的定义域,再求f′(x) 第二步 定区间:根据f′(x)的符号确定函数的单调区间. 第三步 寻条件:一般将恒成立问题转化为函数的最值问题. 第四步 写步骤:通过函数单调性探求函数最值,对于最值可 能在两点取到的恒成立问题,可转化为不等式组恒成立. 第五步 再反思:查看是否注意定义域,区间的写法、最值点 的探求是否合理等.
则 φ′(x)=-x2+1=-(x-1)(x+1), 当 x∈(0,1)时,φ ′(x)>0,φ (x)在(0,1)上单调递增; 当 x∈(1,+∞)时,φ ′(x)<0,φ (x)在(1,+∞)上单调递减. ∴x=1 是 φ(x)的唯一极值点,且是极大值点, 因此 x=1 也是 φ(x)的最大值点. ∴φ (x)的最大值为 φ(1)=23. 又 φ(0)=0,结合 y=φ(x)的图象(如图),可知

《创新设计》2017届高考数学(文)二轮复习(江苏专用)课件+Word版训练专题一 函数与导数、不等式 第4讲

《创新设计》2017届高考数学(文)二轮复习(江苏专用)课件+Word版训练专题一 函数与导数、不等式 第4讲

热点聚焦· 题型突破
归纳总结· 思维升华
热点二
利用导数解决与函数零点(或方程的根)有关的问题 讨论函数零点的个数
3
[微题型 1]
1 【例 2-1】 (2015· 全国Ⅰ卷)已知函数 f(x)=x +ax+ , 4 g( x) =-ln x. (1)当 a 为何值时,x 轴为曲线 y=f(x)的切线; (2)用 min{m,n}表示 m,n 中的最小值,设函数 h(x)= min{f(x),g(x)}(x>0),讨论 h(x)零点的个数.
三个 一个
两个 三个
a<0
(f(x1)为极小值,
f(x2)为极大值)
真题感悟· 考点整合
热点聚焦· 题型突破
归纳总结· 思维升华
3.(1)研究函数零点问题或方程根问题的思路和方法 研究函数图象的交点、方程的根、函数的零点,归 根到底还是研究函数的图象,如单调性、值域、与x
轴的交点等,其常用解法如下:
①转化为形如f(x1)· f(x2)<0的不等式:若y=f(x)满足 f(a)f(b)<0,则f(x)在(a,b)内至少有一个零点;
真题感悟· 考点整合
热点聚焦· 题型突破
归纳总结· 思维升华
②转化为求函数的值域:零点及两函数的交点问题即
是方程g(x)=0有解问题,将方程分离参数后(a=f(x))

0 0 t+3
(0,1) -
1 0 t+1
(1,+∞) +
所以,g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的
极小值.
当g(0)=t+3≤0,即t≤-3时,此时g(x)在区间(-∞, 1]和[1,+∞)上分别至多有1个零点,所以g(x)至多有 2个零点.

创新设计(全国通用)2017届高考数学二轮温习 专题一 函数与导数、不等式 第2讲 不等式问题讲义 理

创新设计(全国通用)2017届高考数学二轮温习 专题一 函数与导数、不等式 第2讲 不等式问题讲义 理

解得[-3,1].
g(-1)≥0,
(2)法一 函数法. 若 a>0,则对称轴 x=-21a<0, 故 f(x)在[0,2]上为增函数,且 f(0)=1, 因此在 x∈[0,2]上恒有 f(x)>0 成立. 若 a<0,则应有 f(2)>0,即 4a+3>0,∴a>-34.
∴-34<a<0.综上所述,a 的取值范围是-34,0∪(0,+∞).
时,截距最大,即 z 取得最大值,由2x+x-y=y=30,,得xy==12,,
所以A点坐标为(1,2),可得2x+y的最大值为2×1+2=4. 答案 C
3.(2015·陕西卷)设 f(x)=ln x,0<a<b,若 p=f( ab),q=fa+2 b, r=12(f(a)+f(b)),则下列关系式中正确的是( )




3x-y-3=0, x-2y+4=0,

A(2,3).由图可知(x2+y2)min =

|2-2+2|122=45,(x2+y2)max=|OA|2=22+32=13.
答案 45,13
考点整合 1.简单分式不等式的解法
(1)gf((xx))>0(<0)⇔f(x)g(x)>0(<0); (2)gf((xx))≥0(≤0)⇔f(x)g(x)≥0(≤0)且 g(x)≠0. 2.(1)解含有参数的一元二次不等式,要注意对参数的取值进行 讨论:①对二次项系数与0的大小进行讨论;②在转化为标 准形式的一元二次不等式后,对判别式与0的大小进行讨论; ③当判别式大于0,但两根的大小不确定时,对两根的大小 进行讨论;④讨论根与定义域的关系.
若 x,y 均为正数,则3x+2y的最小值是( )
A.53
B.83
C.8
D.24

《创新设计》2017届高考理科数学(江苏专用)二轮教师文档讲义:专题8.1函数与方程思想、数形结合思想

《创新设计》2017届高考理科数学(江苏专用)二轮教师文档讲义:专题8.1函数与方程思想、数形结合思想

第1讲函数与方程思想、数形结合思想高考定位函数与方程的思想一般通过函数与导数、三角函数、数列、解析几何等知识进行考查;数形结合思想一般在填空题中考查.1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.3.数形结合是一种数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.热点一 函数与方程思想的应用[微题型1] 不等式问题中的函数(方程)法【例1-1】 (1)f (x )=ax 3-3x +1对于x ∈[-1,1],总有f (x )≥0成立,则a =________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________.解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎝ ⎛⎦⎥⎤12,1上单调递减, 因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4. 当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g (x )=3x 2-1x 3,且g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.(2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )·g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数.又当x <0时,F ′(x )=f ′(x )·g (x )+f (x )g ′(x )>0,所以x <0时,F (x )为增函数.因为奇函数在对称区间上的单调性相同,所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3).所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3).答案 (1)4 (2)(-∞,-3)∪(0,3)探究提高 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.[微题型2] 数列问题的函数(方程)法【例1-2】 已知数列{a n }满足a 1=3,a n +1=a n +p ·3n (n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列.(1)求p 的值及数列{a n }的通项公式;(2)设数列{b n }满足b n =n 2a n,证明:b n ≤49. (1)解 由a 1=3,a n +1=a n +p ·3n ,得a 2=3+3p ,a 3=a 2+9p =3+12p .因为a 1,a 2+6,a 3成等差数列,所以a 1+a 3=2(a 2+6),即3+3+12p =2(3+3p +6),得p =2,依题意知,a n +1=a n +2×3n .当n ≥2时,a 2-a 1=2×31,a 3-a 2=2×32,…,a n -a n -1=2×3n -1.将以上式子相加得a n -a 1=2(31+32+…+3n -1),所以a n -a 1=2×3×(1-3n -1)1-3=3n -3, 所以a n =3n (n ≥2).又a 1=3符合上式,故a n =3n .(2)证明 因为a n =3n,所以b n =n 23n . 所以b n +1-b n =(n +1)23n +1-n 23n =-2n 2+2n +13n +1(n ∈N *), 若-2n 2+2n +1<0,则n >1+32,即当n ≥2时,有b n +1<b n ,又因为b 1=13,b 2=49,故b n ≤49.探究提高 数列最值问题中应用函数与方程思想的常见类型:(1)数列中的恒成立问题,转化为最值问题,利用函数的单调性或不等式求解.(2)数列中的最大项与最小项问题,利用函数的有关性质或不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1求解. (3)数列中前n 项和的最值:转化为二次函数,借助二次函数的单调性或求使a n ≥0(a n ≤0)成立时最大的n 值即可求解.[微题型3] 解析几何问题的方程(函数)法【例1-3】 设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E 、F 两点.(1)若ED→=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k 2.① 由ED →=6DF →知x 0-x 1=6(x 2-x 0), 得x 0=17(6x 2+x 1)=57x 2=1071+4k 2; 由D 在AB 上知x 0+2kx 0=2,得x 0=21+2k.所以21+2k =1071+4k 2, 化简得24k 2-25k +6=0,解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E ,F 到AB 的距离分别为h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2), h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2). 又AB =22+12=5,所以四边形AEBF 的面积为S =12·AB ·(h 1+h 2) =12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k2 =21+4k 2+4k 1+4k 2≤22, 当4k 2=1(k >0),即当k =12时,上式取等号.所以S 的最大值为2 2.即四边形AEBF 面积的最大值为2 2.探究提高 解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.热点二 数形结合思想的应用[微题型1] 利用数形结合思想讨论方程的根或函数零点【例2-1】 (1)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.(2)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为________.解析 (1)由f (x )=|2x -2|-b 有两个零点,可得|2x -2|=b 有两个不等的实根,从而可得函数y =|2x -2|的图象与函数y =b 的图象有两个交点,如图所示.结合函数的图象,可得0<b <2,故填(0,2).(2)根据题意,函数y =f (x )是周期为2的偶函数且0≤x ≤1时,f (x )=x 3,则当-1≤x ≤0时,f (x )=-x 3,且g (x )=|x cos(πx )|,所以当x =0时,f (x )=g (x ).当x ≠0时,若0<x ≤12,则x 3=x cos(πx ),即x 2=cos πx .再根据函数性质画出⎣⎢⎡⎦⎥⎤-12,32上的图象,在同一个坐标系中作出所得关系式等号两边函数的图象,如图所示,有5个根.所以总共有6个.答案 (1)(0,2) (2)6探究提高 用图象法讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解(或函数零点)的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解(或函数零点)的个数.[微题型2] 利用数形结合思想解不等式或求参数范围【例2-2】 (1)若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.解析 (1)如图,分别作出直线y =k (x +2)-2与半圆y =9-x 2.由题意,知直线在半圆的上方,由b -a =2,可知b=3,a =1,所以直线y =k (x +2)-2过点(1,22),则k = 2.(2)作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12. 答案 (1)2 (2)⎝ ⎛⎦⎥⎤-∞,12 探究提高 求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免繁琐的运算,获得简捷的解答.[微题型3] 利用数形结合思想求最值【例2-3】 (1)已知P 是直线l :3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,则四边形PACB 面积的最小值为________.(2)(2015·全国Ⅰ卷)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66),当△APF 周长最小时,该三角形的面积为________.解析 (1)从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt △PAC =12PA ·AC =12PA 越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形PACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S 四边形PACB 应有唯一的最小值,此时PC =|3×1+4×1+8|32+42=3, 从而PA =PC 2-AC 2=2 2.所以(S 四边形PACB )min =2×12×PA ×AC =2 2.(2)设双曲线的左焦点为F 1,连接PF 1,根据双曲线的定义可知PF =2+PF 1,则△APF 的周长为PA +PF +AF =PA +2+PF 1+AF =PA +PF 1+AF +2,由于AF +2是定值,要使△APF 的周长最小,则PA +PF 1最小,即P ,A ,F 1三点共线,如图所示.由于A (0,66),F 1(-3,0),直线AF 1的方程为:x -3+y 66=1, 即x =y 26-3, 代入双曲线方程整理可得y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为2 6.所以S △APF =S △AFF 1-S △PFF 1=12×6×66-12×6×26=12 6.答案 (1)22 (2)12 6探究提高 破解圆锥曲线问题的关键是画出相应的图形,注意数形结合的相互渗透,并从相关的图形中挖掘对应的信息加以分析与研究.直线与圆锥曲线的位置关系的转化有两种,一种是通过数形结合建立相应的关系式,另一种是通过代数形式转化为二元二次方程组的解的问题进行讨论.1.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.2.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.3.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.4.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过图形分析这些数量关系,达到解题的目的.5.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的.6.利用数形结合解题,有时只需把图象大致形状画出即可,不需要精确图象.一、填空题1.直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m=________.解析圆的方程(x-1)2+y2=3,圆心(1,0)到直线的距离等于半径⇒|3+m|3+1=3⇒|3+m|=23⇒m=3或m=-3 3.答案-33或 32.已知函数f(x)满足下面关系:①f(x+1)=f(x-1);②当x∈[-1,1]时,f(x)=x2,则方程f(x)=lg x解的个数是________.解析由题意可知,f(x)是以2为周期,值域为[0,1]的函数.又f(x)=lg x,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.答案93.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________.解析f′(x)>2转化为f′(x)-2>0,构造函数F(x)=f(x)-2x,得F(x)在R上是增函数.又F(-1)=f(-1)-2×(-1)=4,f(x)>2x+4,即F(x)>4=F(-1),所以x>-1.答案(-1,+∞)4.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是________.解析 如图,设OA→=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA→⊥CB →, ∴O ,A ,C ,B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC→|= 2. 答案 25.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________.解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x=a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案 (-∞,1]∪[2,+∞)6.(2015·全国Ⅱ卷改编)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为________.解析 如图,设双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则AB =2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴BM =AB =2a ,∠MBN =60°,∴y 1=MN =BM sin ∠MBN =2a sin 60°=3a ,x 1=OB +BN =a +2a cos 60°=2a .将点M (2a ,3a )的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2= 2.答案 2 7.已知e 1,e 2是平面内两个相互垂直的单位向量,若向量b 满足|b |=2,b ·e 1=1,b ·e 2=1,则对于任意x ,y ∈R ,|b -(x e 1+y e 2)|的最小值为________.解析 |b -(x e 1+y e 2)|2=b 2+x 2e 21+y 2e 22-2x b ·e 1-2y b ·e 2+2xy e 1·e 2=4+x 2+y 2-2x -2y =(x -1)2+(y -1)2+2≥2,当且仅当x =1,y =1时,|b -(x e 1+y e 2)|2取得最小值2,此时|b -(x e 1+y e 2)|取得最小值 2.答案 28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________.解析 设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2),把直线l 的方程代入抛物线方程y 2=4x 并整理得y 2-4ty -4m =0,则Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m ,那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m ,则线段AB 的中点M (2t 2+m ,2t ).由题意可得直线AB 与直线MC 垂直,且C (5,0).当t ≠0时,有k MC ·k AB =-1,即2t -02t 2+m -5·1t =-1,整理得m =3-2t 2, 把m =3-2t 2代入Δ=16t 2+16m >0,可得3-t 2>0,即0<t 2<3.由于圆心C 到直线AB 的距离等于半径,即d =|5-m |1+t 2=2+2t 21+t2=21+t 2=r , 所以2<r <4,此时满足题意且不垂直于x 轴的直线有两条.当t =0时,这样的直线l 恰有2条,即x =5±r ,所以0<r <5.综上,可得若这样的直线恰有4条,则2<r <4.答案 (2,4)二、解答题9.已知数列{a n }是一个等差数列,且a 2=1,a 5=-5.(1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.解 (1)设{a n }的公差为d ,由已知条件,⎩⎨⎧a 1+d =1,a 1+4d =-5,解得a 1=3,d =-2. 所以a n =a 1+(n -1)d =-2n +5.(2)S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2. 所以n =2时,S n 取到最大值4.10.椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP→=3PB →. (1)求椭圆C 的方程;(2)求m 的取值范围.解 (1)设椭圆C 的方程为y 2a 2+x 2b 2=1(a >b >0),设c >0,c 2=a 2-b 2,由题意,知2b =2,c a =22,所以a =1,b =c =22.故椭圆C 的方程为y 2+x 212=1.即y 2+2x 2=1.(2)当直线l 的斜率不存在时,由题意求得m =±12;当直线l 的斜率存在时,设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2), 由⎩⎨⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +m 2-1=0, Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0,(*)解上述方程后易得:x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2. 因为AP →=3 PB →,所以-x 1=3x 2. 所以⎩⎨⎧x 1+x 2=-2x 2,x 1x 2=-3x 22.所以3(x 1+x 2)2+4x 1x 2=0.所以3·⎝ ⎛⎭⎪⎫-2km k 2+22+4·m 2-1k 2+2=0. 整理得4k 2m 2+2m 2-k 2-2=0,即k 2(4m 2-1)+(2m 2-2)=0.当m 2=14时,上式不成立;当m 2≠14时,k 2=2-2m 24m 2-1, 由(*)式,得k 2>2m 2-2,又k ≠0,所以k 2=2-2m 24m 2-1>0. 解得-1<m <-12或12<m <1.综上,所求m 的取值范围为⎝ ⎛⎦⎥⎤-1,-12∪⎣⎢⎡⎭⎪⎫12,1. 11.设函数f (x )=ax 3-3ax ,g (x )=bx 2-ln x (a ,b ∈R ),已知它们在x =1处的切线互相平行.(1)求b 的值;(2)若函数F (x )=⎩⎨⎧f (x ),x ≤0,g (x ),x >0,且方程F (x )=a 2有且仅有四个解,求实数a 的取值范围.解 函数g (x )=bx 2-ln x 的定义域为(0,+∞),(1)f ′(x )=3ax 2-3a ⇒f ′(1)=0,g ′(x )=2bx -1x ⇒g ′(1)=2b -1,依题意得2b -1=0,所以b =12.(2)x ∈(0,1)时,g ′(x )=x -1x <0,即g (x )在(0,1)上单调递减,x ∈(1,+∞)时,g ′(x )=x -1x >0,即g (x )在(1,+∞)上单调递增,所以当x =1时,g (x )取得极小值g (1)=12;当a =0时,方程F (x )=a 2不可能有四个解;当a <0,x ∈(-∞,-1)时,f ′(x )<0,即f (x )在(-∞,-1)上单调递减,x ∈ (-1,0)时,f ′(x )>0,即f (x )在(-1,0)上单调递增,所以当x =-1时,f (x )取得极小值f (-1)=2a ,又f (0)=0,所以F (x )的图象如图(1)所示,从图象可以看出F (x )=a 2不可能有四个解.当a >0,x ∈(-∞,-1)时,f ′(x )>0,即f (x )在(-∞,-1)上单调递增,x ∈(-1,0)时,f ′(x )<0,即f (x )在(-1,0)上单调递减,所以当x =-1时,f (x )取得极大值f (-1)=2a .又f (0)=0,所以F (x )的图象如图(2)所求,从图(2)看出,若方程F (x )=a 2有四个解,则12<a 2<2a , 得22<a <2,所以,实数a 的取值范围是⎝ ⎛⎭⎪⎫22,2.。

《创新设计》2017届高考数学(文)二轮复习(全国通用)Word版训练+专题四+立体几何+第2讲

《创新设计》2017届高考数学(文)二轮复习(全国通用)Word版训练+专题四+立体几何+第2讲

一、选择题1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.答案 C2.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.答案 A3.若a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的为()A.若a∥α,b∥α,则a∥bB.若α∥a,β∥a,则α∥βC.若a⊥α,b⊥α,则a∥bD.若α⊥β,α⊥γ,则β∥γ解析对于A,空间中平行于同一个平面的两直线可能异面、相交或平行,故A错误;对于B,空间中平行于同一条直线的两面平行或相交,故B错误.对于C,空间中垂直于同一个平面的两条直线平行,故C正确;对于D,空间中垂直于同一个平面的两平面相交或平行,故D错误.答案 C4.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面γ,γ⊥α,γ∥β;②存在一条直线a,a⊂α,a⊥β;③存在两条垂直的直线a,b,a⊥β,b⊥α.其中,所有能成为“α⊥β”的充要条件的序号是()A.①B.②C.③D.①③解析对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B、C.对于③,存在两条垂直的直线a,b,则直线a,b所成的角为90°,因为a⊥β,b⊥α,所以α,β所成的角为90°,即α⊥β,反之也成立,即“存在两条垂直的直线a,b,a⊥β,b⊥α”是“α⊥β”的充要条件,所以③对,可排除A,选D.答案 D5.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,CD⊂平面BCD,所以CD⊥平面ABD,又AB⊂平面ABD,则CD⊥AB,又AD⊥AB,AD∩CD=D,所以AB⊥平面ADC,又AB⊂平面ABC,所以平面ABC⊥平面ADC,故选D.答案 D二、填空题6.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线P A垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:①P A ∥平面MOB ;②MO ∥平面P AC ;③OC ⊥平面P AC ;④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).解析 ①错误,P A ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面P AC .答案 ②④7.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,AC ∩EF=G ,现在沿AE 、EF 、F A 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为P ,则在四面体P -AEF 中必有________(填序号).①AP ⊥△PEF 所在平面;②AG ⊥△PEF 所在平面;③EP ⊥△AEF 所在平面;④PG ⊥△AEF 所在平面.解析 在折叠过程中,AB ⊥BE ,AD ⊥DF 保持不变.∴ ⎭⎬⎫AP ⊥PE AP ⊥PF PE ∩PF =P ⇒AP ⊥面PEF .答案 ①8.(2016·东北三校联考)点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为________.解析 如图所示,O 为球的球心,由AB =BC =2,AC =2可知∠ABC =π2,即△ABC 所在的小圆的圆心O 1为AC 的中点,故AO 1=1,S △ABC =1,当D 为O 1O 的延长线与球面的交点时,D 到平面ABC 的距离最大,四面体ABCD 的体积最大.连接OA ,设球的半径为R ,则DO 1=R +R 2-1,此时V D -ABC =13×S △ABC ×DO 1=13(R +R 2-1)=23,解得R =54,故这个球的表面积为4π⎝ ⎛⎭⎪⎫542=25π4.答案 25π4三、解答题9.(2016·北京卷)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面P AC ;(2)求证:平面P AB ⊥平面P AC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC .又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面P AC ,AC ⊂平面P AC ,∴CD ⊥平面P AC .(2)证明 ∵AB ∥CD ,CD ⊥平面P AC ,∴AB ⊥平面P AC ,AB ⊂平面P AB ,∴平面P AB ⊥平面P AC .(3)解 棱PB 上存在点F ,使得P A ∥平面CEF .证明如下:取PB 的中点F ,连接EF ,CE ,CF ,又因为E 为AB 的中点, ∴EF 为△P AB 的中位线,∴EF ∥P A .又P A ⊄平面CEF ,EF ⊂平面CEF ,∴P A ∥平面CEF .10.(2015·山东卷)如图,三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)法一连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.又因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,GE,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF ∥HE .又CF ⊥BC ,所以HE ⊥BC .又HE ,GH ⊂平面EGH ,HE ∩GH =H ,所以BC ⊥平面EGH .又BC ⊂平面BCD ,所以平面BCD ⊥平面EGH .11.(2016·南昌5月模拟)如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,∵AE ⊂平面ABE ,∴AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ACE ,∴AE ⊥BF .∵BC ∩BF =B ,BC ,BF ⊂平面BCE ,∴AE ⊥平面BCE .又BE ⊂平面BCE ,∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE ,∴MG ∥平面ADE .同理,GN ∥平面ADE .又∵GN ∩MG =G ,GN ,MG ⊂平面MGN ,∴平面MGN ∥平面ADE .又MN⊂平面MGN,∴MN∥平面ADE.∴N点为线段CE上靠近C点的一个三等分点.。

《创新设计》2017届高考数学(理)二轮复习(江苏专用)Word版训练 专题一 函数与导数、不等式 第3讲

《创新设计》2017届高考数学(理)二轮复习(江苏专用)Word版训练 专题一 函数与导数、不等式 第3讲

一、填空题1.(2016·苏州调研)函数f (x )=12x 2-ln x 的单调递减区间为________.解析 由题意知,函数的定义域为(0,+∞),又由f ′(x )=x -1x ≤0,解得0<x ≤1,所以函数f (x )的单调递减区间为(0,1].答案 (0,1]2.已知函数f (x )=4ln x +ax 2-6x +b (a ,b 为常数),且x =2为f (x )的一个极值点,则a 的值为________.解析 由题意知,函数f (x )的定义域为(0,+∞),∵f ′(x )=4x +2ax -6,∴f ′(2)=2+4a -6=0,即a =1.答案 13.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是____________.解析 f ′(x )=mx +1x -2≥0对一切x >0恒成立,∴m ≥-⎝ ⎛⎭⎪⎫1x 2+2x . 令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x ,则当1x =1时,函数g (x )取最大值1.故m ≥1. 答案 [1,+∞)4.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则a b 的值为________.解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎨⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎨⎧a =-2,b =1或 ⎩⎨⎧a =-6,b =9,经检验⎩⎨⎧a =-6,b =9满足题意,故a b =-23. 答案 -235.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________.解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k-1x ≥0在(1,+∞)上恒成立,由于k ≥1x ,而0<1x <1,所以k ≥1.即k 的取值范围为[1,+∞).答案 [1,+∞)6.(2016·泰州期末)函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是________.解析 f ′(x )=3x 2-3a =3(x 2-a ).当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值.当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增;当x ∈(-a ,a )时,f (x )单调递减, 所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.答案 (0,1)7.已知函数f (x )=13x 3+ax 2+3x +1有两个极值点,则实数a 的取值范围是________.解析 f ′(x )=x 2+2ax +3.由题意知方程f ′(x )=0有两个不相等的实数根,所以Δ=4a 2-12>0,解得a >3或a <- 3.答案 (-∞,-3)∪(3,+∞)8.(2016·北京卷)设函数f (x )=⎩⎨⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________.解析 (1)当a =0时,f (x )=⎩⎨⎧x 3-3x ,x ≤0,-2x ,x >0.若x ≤0,f ′(x )=3x 2-3=3(x 2-1).由f ′(x )>0得x <-1,由f ′(x )<0得-1<x ≤0.∴f (x )在(-∞,-1)上单调递增,在(-1,0]上单调递减,∴f (x )最大值为f (-1)=2.若x >0,f (x )=-2x 单调递减,所以f (x )<f (0)=0.综上,f (x )最大值为2.(2)函数y =x 3-3x 与y =-2x 的图象如图.由(1)知,当a ≥-1时,f (x )取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值.且-2a >2.所以a <-1.答案 (1)2 (2)(-∞,-1)二、解答题9.(2016·北京卷)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.解 (1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b .依题设,⎩⎨⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎨⎧2e a -2+2b =2e +2,-e a -2+b =e -1. 解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞),综上可知,f ′(x )>0,x ∈(-∞,+∞).故f (x )的单调递增区间为(-∞,+∞).10.(2016·全国Ⅱ卷)(1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -a x 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0, 且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增.因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0.(2)证明 g ′(x )=(x -2)e x +a (x +2)x 3=x +2x 3(f (x )+a ). 由(1)知f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减;当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增.因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e xa -a (x a +1)xa=e xa +f (x a )(x a +1)x 2a=e xa x a +2. 于是h (a )=e xa x a +2,由⎝ ⎛⎭⎪⎫e x x +2′=(x +1)e x (x +2)2>0,e x x +2单调递增. 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e xa x a +2≤e 22+2=e 24. 因为e x x +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24. 11.设函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.解 (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3. 由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈[0,+∞).因为g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增.故f (x )在(0,2)内不存在两个极值点;当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减. x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增.所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ).函数f (x )在(0,2)内存在两个极值点当且仅当⎩⎨⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e <k <e 22, 综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝ ⎛⎭⎪⎫e ,e 22.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 函数与导数、不等式 第5讲 导数与不等式的证明、恒成立及能成立问题练习 理一、选择题1.设f (x )是定义在R 上的奇函数,当x <0时,f ′(x )>0,且f (0)=0,f ⎝ ⎛⎭⎪⎫-12=0,则不等式f (x )<0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <12B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <12C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12或0<x <12D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12≤x ≤0或x ≥12解析 如图所示,根据图象得不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12或0<x <12.答案 C2.若不等式2x ln x ≥-x 2+ax -3恒成立,则实数a 的取值范围为( ) A.(-∞,0) B.(-∞,4] C.(0,+∞)D.[4,+∞)解析 条件可转化为a ≤2ln x +x +3x恒成立.设f (x )=2ln x +x +3x,则f ′(x )=(x +3)(x -1)x2(x >0). 当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增, 所以f (x )min =f (1)=4.所以a ≤4. 答案 B3.若存在正数x 使2x(x -a )<1成立,则a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞)D.(-1,+∞)解析 ∵2x(x -a )<1,∴a >x -12x .令f (x )=x -12x ,∴f ′(x )=1+2-xln 2>0.∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1,∴a 的取值范围为(-1,+∞),故选D. 答案 D4.(2015·全国Ⅱ卷)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)解析 令F (x )=f (x )x,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,所以F (x )=f (x )x在(0,+∞)上单调递减,根据对称性,F (x )=f (x )x在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).故选A. 答案 A5.(2016·山东师范大学附中二模)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x的解集为( ) A.(-2,+∞) B.(0,+∞) C.(1,+∞)D.(4,+∞)解析 由f (x +2)为偶函数可知函数f (x )的图象关于x =2对称,则f (4)=f (0)=1.令F (x )=f (x )ex,则F ′(x )=f ′(x )-f (x )ex<0.∴函数F (x )在R 上单调递减.又f (x )<e x等价于f (x )ex<1,∴F (x )<F (0),∴x >0.答案 B 二、填空题6.已知不等式e x-x >ax 的解集为P ,若[0,2]⊆P ,则实数a 的取值范围是________. 解析 由题意知不等式e x-x >ax 在x ∈[0,2]上恒成立. 当x =0时,显然对任意实数a ,该不等式都成立.当x ∈(0,2]时,原不等式即a <e xx -1,令g (x )=e xx -1,则g ′(x )=e x(x -1)x2,当0<x<1时,g ′(x )<0,g (x )单调递减,当1<x <2时,g ′(x )>0,g (x )单调递增,故g (x )在(0,2]上的最小值为g (1)=e -1, 故a 的取值范围为(-∞,e -1). 答案 (-∞,e -1)7.已知函数f (x )=ln x -a ,若f (x )<x 2在(1,+∞)上恒成立,则实数a 的取值范围是________.解析 ∵函数f (x )=ln x -a ,且f (x )<x 2在(1,+∞)上恒成立, ∴a >ln x -x 2,x ∈(1,+∞). 令h (x )=ln x -x 2,有h ′(x )=1x-2x .∵x >1,∴1x-2x <0,∴h (x )在(1,+∞)上为减函数,∴当x ∈(1,+∞)时,h (x )<h (1)=-1,∴a ≥-1. 答案 [-1,+∞) 8.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是________. 解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]上能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.答案 ⎣⎢⎡⎭⎪⎫94,+∞ 三、解答题9.已知函数f (x )=x 2e x. (1)求f (x )的单调区间;(2)证明:∀x 1,x 2∈(-∞,0],f (x 1)-f (x 2)≤4e 2.(1)解 f ′(x )=x (x +2)e x.令f ′(x )=x (x +2)e x=0,则x 1=-2,x 2=0. 当x 变化时,f ′(x ),f (x )的变化情况如下表所以函数f (x )的单调递减区间为(-2,0),单调递增区间为(-∞,-2),(0, +∞).(2)证明 由(1)知f (x )的单调递增区间为(-∞,-2),单调递减区间为(-2,0), 所以当x ∈(-∞,0]时,f (x )最大值=f (-2)=4e 2.因为当x ∈(-∞,-2]时,f (x )>0,f (0)=0, 所以当x ∈(-∞,0]时,f (x )最小值=f (0)=0. 所以f (x )最大值-f (x )最小值=4e2.所以对∀x 1,x 2∈(-∞,0],都有f (x 1)-f (x 2)≤f (x )最大值-f (x )最小值=4e2.10.(2016·潍坊一模)已知函数f (x )=ln x +x 2-ax (a 为常数). (1)若x =1是函数f (x )的一个极值点,求a 的值; (2)当0<a ≤2时,试判断f (x )的单调性;(3)若对任意的a ∈(1,2),x 0∈[1,2],不等式f (x 0)>m ln a 恒成立,求实数m 的取值范围.解 f ′(x )=1x+2x -a .(1)由已知得:f ′(1)=0,所以1+2-a =0,所以a =3.(2)当0<a ≤2时,f ′(x )=1x +2x -a =2x 2-ax +1x=2⎝ ⎛⎭⎪⎫x -a 42+1-a 28x.因为0<a ≤2,所以1-a 28>0,而x >0,即f ′(x )=2x 2-ax +1x>0,故f (x )在(0,+∞)上是增函数.(3)当a ∈(1,2)时,由(2)知,f (x )在[1,2]上的最小值为f (1)=1-a ,故问题等价于:对任意的a ∈(1,2),不等式1-a >m ln a 恒成立,即m <1-a ln a恒成立.记g (a )=1-a ln a (1<a <2),则g ′(a )=-a ln a -1+aa (ln a )2.令M (a )=-a ln a -1+a ,则M ′(a )=-ln a <0, 所以M (a )在(1,2)上单调递减, 所以M (a )<M (1)=0,故g ′(a )<0, 所以g (a )=1-aln a 在a ∈(1,2)上单调递减,所以m ≤g (2)=1-2ln 2=-log 2e ,即实数m 的取值范围为(-∞,-log 2e].11.已知函数f (x )=ax +bx+c (a >0)的图象在点(1,f (1))处的切线方程为y =x -1. (1)用a 表示出b ,c ;(2)若f (x )≥ln x 在[1,+∞)上恒成立,求a 的取值范围; (3)证明:1+12+13+…+1n >ln(n +1)+n2(n +1)(n ≥1).(1)解 f ′(x )=a -bx 2,则有⎩⎪⎨⎪⎧f (1)=a +b +c =0,f ′(1)=a -b =1,解得⎩⎪⎨⎪⎧b =a -1,c =1-2a .(2)解 由(1)知,f (x )=ax +a -1x+1-2a . 令g (x )=f (x )-ln x =ax +a -1x+1-2a -ln x ,x ∈[1,+∞), 则g (1)=0,g ′(x )=a -a -1x 2-1x =ax 2-x -(a -1)x 2=a (x -1)⎝⎛⎭⎪⎫x -1-a a x 2,(ⅰ)当0<a <12时,1-aa>1.若1<x <1-aa,则g ′(x )<0,g (x )是减函数,所以g (x )<g (1)=0,即f (x )<ln x . 故f (x )≥ln x 在[1,+∞)上不成立. (ⅱ)当a ≥12时,1-aa≤1.若x >1,则g ′(x )>0,g (x )是增函数, 所以g (x )>g (1)=0,即f (x )>ln x ,故当x ≥1时,f (x )≥ln x .综上所述,所求a 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞. (3)证明 法一 由(2)知:当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎝ ⎛⎭⎪⎫x -1x ≥ln x (x ≥1),且当x >1时,12⎝ ⎛⎭⎪⎫x -1x >ln x .令x =k +1k ,有ln k +1k <12⎝ ⎛⎭⎪⎫k +1k -k k +1= 12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+1k -⎝ ⎛⎭⎪⎫1-1k +1, 即ln(k +1)-ln k <12⎝ ⎛⎭⎪⎫1k +1k +1,k =1,2,3,…,n .将上述n 个不等式依次相加得ln(n +1)<12+⎝ ⎛⎭⎪⎫12+13+…+1n +12(n +1),整理得1+12+13+…+1n >ln(n +1)+n2(n +1).法二 用数学归纳法证明.①当n =1时,左边=1,右边=ln 2+14<1,不等式成立.②假设n =k 时,不等式成立,即 1+12+13+…+1k >ln(k +1)+k 2(k +1). 那么1+12+13+…+1k +1k +1>ln(k +1)+k 2(k +1)+1k +1=ln(k +1)+k +22(k +1).由(2)知:当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎝ ⎛⎭⎪⎫x -1x ≥ln x (x ≥1).令x =k +2k +1,得:12⎝ ⎛⎭⎪⎫k +2k +1-k +1k +2≥ln k +2k +1=ln(k +2)-ln(k +1).∴ln(k +1)+k +22(k +1)≥ln(k +2)+k +12(k +2).∴1+12+13+…+1k +1k +1>ln(k +2)+k +12(k +2).这就是说,当n =k +1时,不等式也成立. 根据①和②,可知不等式对任何n ∈N *都成立.。

相关文档
最新文档