高频电路实验及Multisim仿真

合集下载

高频电路Multisim仿真实验一 高频小信号放大器

高频电路Multisim仿真实验一   高频小信号放大器

实验一 高频小信号放大器
一、 单调谐高频小信号放大器
图1.1 高频小信号放大器
1、 根据电路中选频网络参数值,计算该电路的谐振频率ωp ;
s rad CL w p /936.210580102001
1
612=⨯⨯⨯==--
2、 通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===
357
.0544.10I O v V V A 4.325 输入波形:
输出波形:
3、 利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电
压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通频带。

感谢下载!
欢迎您的下载,资料仅供参考。

Multisim在高频电路课程教学中的应用

Multisim在高频电路课程教学中的应用
TANG e- i ,LI , o yn W ibn U Ba - ig (eto hs s Eet ncIf m tnE gne n,hnloU iesyS ag o Sani 20 0 D p.f yi & l r i no ai nier gS agu nvri , hnl , hax 76 0) P c co r o i t u
An Ap l a i n o u t i o t e Te c i g o p i t fM li m t h a h n f c o s
t e Hi h Fr q e c e t i r u tCo r e h g - e u n y Elc rc Ci c i u s
P pc . WB等 。 Si E e Muti 的前 身是 E et nc rb n h简 lim s l r is co Wok e c (
称E ) WB, 是加拿大图像交互技术公司( t ate I e cv nr i I a eTcnl i m g eh oo e g s简 称 I 公 司 )于 2 世 纪 I T 0 8 0年代 末推 出的以 Wi o s n w 为基础 的仿 真工 具, d 又称 为“ 拟 电子工 作 台 , 用 于板级 的模 拟 虚 , ' 适 改 字 电路 板的设计仿真 工作f 后 来改名 为M ls ” 。 ut i i m, 增加了 3 D元 件 以及 多 种 仿 实 物 的虚 拟 仪 表[ 2 1 。 之后 Mut i ls i m被美 国 国家 仪器 有 限公司 fai a S IE F N tnl o PC 35和 X pe si e的 内核 作 为 仿 真 的 引 擎, 通 Is u n 简 称 N 公 司) 购 。 nt me t r I 收 过 Eet ncw rb n h带 有 的增 强设 计 功 能将 l r i ok e c co

高频电路Multisim仿真实验二 高频功率放大仿真

高频电路Multisim仿真实验二 高频功率放大仿真

实验二 高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors 中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V ,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V ,用同样的设置,观察i c 的波形。

(提示:单击simulate 菜单中中analyses 选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s ,终止时间设置为0.030005s 。

在output variables 页中设置输出节点变量时选择vv3#branch 即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

根据各个电压值,计算此时的导通角θc 。

(提示根据余弦值查表得出)。

srad LCw /299.61012610200116120=⨯⨯⨯==-- =Cθ87.80378.0299.61263000=⨯==Lw R Q L2、线性输出(1)要求将输入信号V1的振幅调至1.414V。

注意:此时要改基极的反向偏置电压V2=1V,使功率管工作在临界状态。

同时为了提高选频能力,修改R1=30KΩ。

(2)正确连接示波器后,单击“仿真”按钮,观察输入与输出的波形;输入端波形:输出端波形:(3)读出输出电压的值并根据电路所给的参数值,计算输出功率P0,PD,ηC;输出电压:12V ;∑==RI V I P m c cm m c 21102121 0C cc D I V P = Dc P P 0=η二、 外部特性1、调谐特性,将负载选频网络中的电容C1修改为可变电容(400pF ),在电路中的输出端加一直流电流表。

当回路谐振时,记下电流表的读数,修改可变电容百分比,使回路处于失谐状态,通过示波器观察输出波形,并记下此时电流表的读数;谐振时,C=200pF ,此时电流为:-256.371输出波形为:将电容调为90%时,此时的电流为-256.389mA 。

高频超声波滤波电路及其multisim仿真验证

高频超声波滤波电路及其multisim仿真验证

高频超声波滤波电路及其multisim 仿真验证【摘要】 本文设计了一种可应用于中高频超声波工作场合的滤波电路。

利用多重反馈带通滤波电路的特性,使滤波电路具备狭窄的带通,并且在中心频率处的信号增益较高。

并利用multisim 软件对滤波电路的性能进行了仿真验证,得出了较为理想的结果。

【关键词】 带通滤波 中高频 multisim0 引言随着科技的进步,超声波技术越来越多的被应用于实际生产和生活中。

超声波具有定向性好、能量集中、在传输过程中衰减较小,反射能力较强等特点,不受光线、被测物颜色等的影响,在恶劣环境下具有一定的适应能力。

尤其准确度和分辨率更高的中高频超声领域,在某些要求较高的场合体现了不可忽视的作用。

本文设计了一款针对中高频的超声波滤波电路,该电路主要应用于水下1~2MHz 超声波信号处理,并利用multisim 软件对电路特性进行了仿真。

1 滤波电路原理图设计及仿真结果1.1 带通滤波电路设计图1 带通滤波电路图带通滤波电路如上图所示,电路采用多重反馈方式。

该滤波电路采用两个相同的多反馈滤波电路级联的方式进行滤波。

与普通的宽带宽滤器相比,这种过滤器一些独特的功能:1、它有两条反馈路径,所以又被称为多反馈滤波器。

2、运算放大器是工作在反相模式。

一般来说,此种窄带通滤波器是专为特定值的中心频率f c 和Q 来设计的。

图中的R7、R8、R9的作用是为了给运算放大器的正向输入端提供参考电压。

参数计算方法如下(以第一级为例):中心角频率:⎪⎪⎭⎫ ⎝⎛+=212130111R R C R ωω0处电压放大倍数:13uo 2-R R A =302CR Q=ω品质因数Q : f f 00∆==BW Q ω(BW<<ω0时)1.2 电路仿真结果图2 带通滤波电路波特图如图2所示,此带通滤波电路可通过的频率范围为650kHz~2.6MHz ,其中在f=1.3MHz 时增益最大最高可达到18dB 左右。

电容三点式振荡电路详解及multisim仿真实例

电容三点式振荡电路详解及multisim仿真实例

电容三点式振荡电路详解及multisim仿真实例电容三点式振荡电路是一种常见的电路,可以用于产生高频信号或者时钟信号。

本文将详细介绍电容三点式振荡电路的原理、设计方法以及multisim仿真实例。

首先,我们来看一下电容三点式振荡电路的原理。

电容三点式振荡电路由三个元器件组成,包括一个电容器、一个电感器和一个晶体管。

当电容器和电感器组成的LC振荡回路与晶体管共同工作时,就可以产生振荡信号。

具体来说,当电容器充电时,晶体管被激活,导致电容器放电并使振荡回路开始振荡。

随后,电容器重新充电并继续振荡,从而形成连续的高频信号。

接下来,我们来介绍一下电容三点式振荡电路的设计方法。

首先,需要选择电容器和电感器的具体数值,以及晶体管的型号。

在选择电容器和电感器时,需要根据所需的振荡频率来确定。

一般来说,振荡频率越高,所需的电容器和电感器数值就越小。

而在选择晶体管时,需要考虑其放大系数和工作电压等参数。

通过合理选择这些元器件,就可以设计出满足要求的电容三点式振荡电路。

最后,我们来看一下如何通过multisim软件进行电容三点式振荡电路的仿真实验。

首先,需要打开multisim软件,并创建一个新电路。

然后,将所选的电容器、电感器和晶体管拖入电路中并连接起来。

接下来,需要设置电容器和电感器的数值,以及晶体管的型号。

最后,可以进行仿真实验,观察电路的输出信号是否符合要求。

综上所述,电容三点式振荡电路是一种常用的电路,可以用于产生高频信号或时钟信号。

本文介绍了电容三点式振荡电路的原理、设计方法和multisim仿真实例,希望能对读者有所帮助。

高频电路实验及Multisim仿真

高频电路实验及Multisim仿真

实验一 高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;s rad CLw p /936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===357.0544.10I O v V V A输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率〔信号源幅值不变〕,通过示波器或着万用表测量输出电相应的图,压的有效值,计算出输出电压的振幅值,完成以下表,并汇出f~Av5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、以下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0 输入端波形:输出端波形:2、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如下图:(Q1选用元件Transistors中的BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic〔1〕设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

〔2〕将输入信号的振幅修改为1V,用同样的设置,观察i的波形。

c 〔提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可〕〔3〕根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

基于Multisim高频电子线路实验平台设计的探讨

基于Multisim高频电子线路实验平台设计的探讨

Dic s i n o h e i n o ih— r q e c l c r n c s u so n t e d sg fh g - e u n y ee t i f o
c r u t e p rme tp af r b s d o l sm ic i x e i n l to m a e n Mu t i i
K e r s: hih— r qu n y ee ti ic i ;M u iii ; smulto x rm e t y wo d g fe e c l crc cr u t lt m s i ain e pe i n
高频 电子线路 作 为 电子信 息 工程 专业 的重 要专
业 课 , 理论性 和技 术 性 很 强 的一 门课 程 。该 课 程 是
学 习起 来 比较 困难 , 而且课 时 紧张 , 用传 统 的教学 采 方 案很 难 达 到理想 的效果 ¨ 。为 了提 高教 学 质 量 , 激发 学生 的积 极性 , 用 了传 统 的 教 学 方案 与 电子 采 教 学 相结 合 的方式 。高频 电子线路 实 验是对 专 业课
理 论 的补 充 、 扩展 、 固 , 够很 好 地 培养 学 生 理 论 巩 能
耿艳 香 ,朱根 生 ,刘志盼 ,管金 学,王新华 ,郑 鹏
( 津 商业 大学 信 息工程 学 院 ,天津 天

30 3 ) 0 14
要 :高频电子线路实验作为 电子信 息类 的基础学科 ,在 教学过程 中受 到课 时 、实验 仪器设 备等 的局 限性 ,因此设 计 了基 于 Mu im高 频 电子 线路教学 实验 的平 台。依靠 其高 hs i
e p rm e twa f c e y t e ta hig h u xe i n sa f td b h e c n o r,e pe m e q pme ta d S n,a d isp a tc e c ・ e x r i nte ui n n O o n t r cie t a h

高频电子仿真实验教程(Multisim)

高频电子仿真实验教程(Multisim)

图 2-1
三极管高频特性分析电路
6
李良荣 编著 项目来源:贵州省教育厅 2008 年教学质量与教学改革工程项目“EDA 教学电子资源的建设”
贵州大学 EDA 技术教学电子资源
4. 实验步骤 (1) f 和 f T 值的测量。 首先用示波器观察电路波形是否失真 。根据实验原理,对电路进行 AC 小信号分析 ,设置 如图 2-2 所示(Y 设置为 Decibel) ,结果如图 2-3 所示,点击 按钮,移动 1、2 号指针,
图 中 指 针 坐 标 约 为 y1 36dB 即 最 大 幅 值 , 其 下 降 3dB 的 点 ( y 2 33dB ) ,这时的
x 2 394MHz 即是 f 。其特征频率(拖动指针,使 y 1 时的 x 值) f T 3.6GHz 。
图 2-2
AC 分析参数设置
李良荣 编著 项目来源:贵州省教育厅 2008 年教学质量与教学改革工程项目“EDA 教学电子资源的建设”
李良荣 编著 项目来源:贵州省教育厅 2008 年教学质量与教学改革工程项目“EDA 教学电子资源的建设”
5
贵州大学 EDA 技术教学电子资源
第二节 仿真实例
一、三极管的高频特性
1.实验目的 (1)理解晶体管的频率特性参数; (2)认识低频管和高频管的频响差异; 2.实验原理 晶体管频率特性主要指晶体管对不同频率信号的放大能力 ,表现为:在低频范围内 ,晶 体管的电流放大系数(α、β)基本上是恒定值 ,但频率升高到一定数值后,α和β将随频率 的升高而下降。 为定量比较晶体管的高频特性,工程上确定了几个频率参数 :共基极截止频率 f ( 又称 α截止频率,是指α降低到其低频值的 0.707 ,即下降 3dB 时的频率 ) 、共发射极截止频率 f ( 又称β截止频率,是指β降低到其低频值的 0.707 时的频率 ) 、特征频率 f T ( 值β下降到 1 时所对应的频率 ) 、最高振荡频率 f max ( 功率增益为 1 时所对应的频率 ) 。 3. 实验电路 实验电路如图 2-1 所示。高频管 BF517 在元件工具条 内的 中选取。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;s rad CLw p /936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===357.0544.10I O v V V A 4.325输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电相应的图,压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0 输入端波形:输出端波形:V1=19.512mV V0=200.912mV Av0=V0/V1=10.197 2、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V,用同样的设置,观察i的波形。

c (提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

根据各个电压值,计算此时的导通角θc 。

(提示根据余弦值查表得出)。

s rad LCw /299.61012610200116120=⨯⨯⨯==--=C θ87.82、线性输出(1)要求将输入信号V1的振幅调至1.414V 。

注意:此时要改基极的反向偏置电压V2=1V ,使功率管工作在临界状态。

同时为了提高选频能力,修改R1=30K Ω。

(2)正确连接示波器后,单击“仿真”按钮,观察输入与输出的波形; 输入端波形:0378.0299.61263000=⨯==L w R Q L输出端波形:(3)读出输出电压的值并根据电路所给的参数值,计算输出功率P 0,P D ,ηC ; 输出电压:12V ;∑==R I V I P m c cm m c 21102121 0C cc D I V P = D c P P 0=η二、 外部特性1、调谐特性,将负载选频网络中的电容C1修改为可变电容(400pF ),在电路中的输出端加一直流电流表。

当回路谐振时,记下电流表的读数,修改可变电容百分比,使回路处于失谐状态,通过示波器观察输出波形,并记下此时电流表的读数;谐振时,C=200pF ,此时电流为:-256.371输出波形为:将电容调为90%时,此时的电流为-256.389mA。

波形图如下:2、负载特性,将负载R1改为电位器(60k),在输出端并联一万用表。

根据原理中电路图知道,当R1=30k,单击仿真,记下读数U01,修改电位器的百分比为70%,重新仿真,记下电压表的读数U02。

修改电位器的百分比为(1当电位器的百分比为30%时,通过瞬态分析方法,观察ic的波形。

3、振幅特性,在原理图中的输出端修改R1=30KΩ并连接上一直流电流表。

将原理图中的输入信号振幅分别修改为1.06V, 0.5V,并记下两次的电流1、倍频特性,将原理图中的信号源频率改为500KHz,谐振网络元件参数不变,使电路成为2倍频器,观察并记录输入与输出波形,并与第2个实验结果比较,说明什么问题?通过傅里叶分析,观察结果。

(提示:在单击Simulate菜单中中Analyses选项下的Fourier Analysis...命令,在弹出的对话框中设置。

在Analysis Parameters标签页中的Fundamental frequency中设置基波频率与信号源频率相同,Number Of Harmonics 中设置包括基波在内的谐波总数,Stop time for sampling 中设置停止取样时间,通常为毫秒级。

在Output variables页中设置输出节点变量)和第二个实验相比,输出波形产生了一定程度的失真。

傅里叶分析图:实验三正弦波振荡器一、正反馈LC振荡器1)电感三端式振荡器通过示波器观察其输出波形,并说明该电路的不足3.1 电感三端式振荡不足:振荡器的输出功率很低,输出信号是非常微小的值,未达到振幅起振条件。

2)电容三端式振荡器(a)(b)3.2 电容三端式振荡器(1)分别画出(a)(b)的交流等效图,计算其反馈系数(2)通过示波器观察输出波形,与电感三端式振荡器比较电路(a)的输出波形:电路(b)的输出波形:比较:电容三点式反馈电压中高次谐波分量很小,因而输出波形好,接近正弦波,电感三点式反馈电压中高次谐波分量较多,输出波形差。

3)克拉泼振荡器3.3 克拉泼振荡器(1) 通过示波器观察输出(2)在该电路的基础上,将其修改为西勒振荡器,并通过示波器观察波形希勒振荡器输出波形:二、晶体振荡器(a)(b)3.4 晶体振荡器(1)(a)(b)分别是什么形式的振荡器?(a)是并联型型晶体振荡器,(b)是串联型单管晶体振荡器电路。

(2)通过示波器观察波形,电路的振荡频率是多少?电路波形图如下:由图可得T=2.339ms,则f=1/T=427.5Hz整体趋势部分趋势(1)振荡器的电路特点?电路组成?答:并联型晶体振荡器中晶体起等效电感的作用,它和其他电抗元件组成决定频率的并联谐振回路与晶体管相连,工作原理和三点式振荡器相同,只是把其中一个电感元件换成晶体。

串联型晶体振荡器中晶体以低阻抗接入电路,晶体相当于高选择性的短路线,通常将石英晶体接在正反馈支路中,利用其串联谐振时等效为短路元件的特性,电路反馈作用最强,满足起振条件。

(2)并联型和串联型晶体振荡器中的晶体分别起什么作用?在并联型晶体振荡器中晶体起等效电感的作用,和其他电抗元件组成决定频率的并联谐振回路与晶体相连。

在串联型晶体振荡器中,晶体起到控制频率的作用。

实验四调制一、AM调制1、低电平调制1)二极管平衡调制电路图4.1 二极管平衡调制AM电路(1)观察电路的特点,V1,V2中哪一个是载波,哪一个是调制信号?V1是载波信号,V2是调制信号;(2)通过示波器观察电路波形,并计算电路的调幅系数maVmax=100.946mV Vmin=89.606mVMa=(Vmax-Vmin)/(Vmax+Vmin)=(100.946-89.606)/(100.946+89.606)=0.059 2)模拟乘法器调制电路图4.2 模拟乘法器调制AM电路(1)通过示波器观察电路波形,并计算电路的调幅系数ma ;Ma=(Vmax-Vmin)/(Vmax+Vmin)=(2.874-0.494)/(2.874+0.494)=0.706 (2)乘法器原则上只能实现DSB调制,该电路为什么可以实现AM调制?答:因为该电路将一个直流电源与交流电源串联,之后又与另一个交流电源并联,所以它可以实现AM3)集电极调幅电路图4.3 集电极调幅AM电路(1)通过示波器观察电路波形,并计算电路的调幅系数ma;(2)将电路中的V4去掉,R1=30Ω,再通过示波器观察输出波形,通过瞬态分析,观察集电极电流波形说明此时电路是什么工作状态?(注意:在设置输出变量时,选择vv3#branch即可)工作在过电压状态电流波形:4)基极调幅电路图4.4 基极调幅AM电路(1)通过示波器观察电路波形,并计算电路的调幅系数ma;(2)将电路中的V4去掉,R1=30Ω,再通过示波器观察输出波形,并通过瞬态分析,观察集电极电流波形说明此时电路是什么工作状态?瞬态分析结果:电压不停的在放大饱和截止区循环。

二、DSB调制1)二极管平衡调制图4.5 二极管平衡调制DSB电路(1)通过示波器观察波形(2)与图4.1比较电路的变化;从理论上分析该电路实现DSB调制的原理;在传输前将无用的载波分量抑制掉,仅发送上,下两个边频带从而在不影响传输信息的情况下,节省发射功率,实现DSB调制。

2)乘法器调制图4.6 乘法器调制DSB电路(1)通过示波器观察波形(2)与图4.1比较电路的变化;从理论上分析该电路实现DSB调制的原理;思考:(1)下图是二极管调制电路,与图4.1比较,这两个电路的区别,从理论上分图4.7析该电路实现的是AM调制还是DSB调制?答:在V1=V2大于0时,D1工作在导通状态,D2处于截止状态,V1=V2小于0时,D2工作在导通状态,D1处于截止状态,V3为大信号,V1=V2为小信号,该电路实现的是DSB调制。

实验五检波一、包络检波器1、二极管峰值包络检波器电路图5.1 二极管包络检波电路(1)通过示波器观察输入输出的波形输入波形:输出波形:输入输出在同一窗体中显示:(2)修改检波电路中的C1=0.5μF,R1=500KΩ,再观察输入输出波形的变化,说明这种变化的原因;输入波形:输出波形:输入输出在同一窗体中显示:原因:由于C R L =放τ过大,导致时间常数太大,在一段时间内输入信号电压总是低于电容C 上的电压,二极管始终处于截止状态,输出电压不受输入信号的控制,而是取决于放电,产生了惰性失真。

(3) 在图5.1中修改输入调制信号V1的调制系数ma=0.8,再观察输入输出波形的变化,说明这种变化的原因;原因:不产生惰性失真的条件是a a L M M C R Ω-≤21,当a M 增大时则会使电容C 的惰性减小,使得解调信号更接近包络变化。

2、同步检波1)模拟乘法器同步检波图5.2 乘法器解调DSB 电路(1) 通过示波器观察7和9节点的波形2)二极管平衡电路同步解调图5.3 二极管平衡电路解调DSB(1)通过示波器观察节点9和3的波形,并说明是什么信号?(2)将图5.3中的A1,V3,V4去掉,换成AM信号源,振幅为0.35V,载频为50kHz,调制信号频率为0.5 kHz,调制系数为0.5。

再通过示波器观察两个节点的波形。

同步检波是否可以解调AM波?同步检波可以解调AM波。

相关文档
最新文档