高频电路实验的设备选择与实验操作指南
高频实验指导书正文

a. 频标方式选择外标或10/1MHZ,扫频方式选择窄扫,
图4-3频率特性仪调回路谐振曲线方框图
b. dB衰置X1、dB衰减键全弹出.
c.将RF输出、Y输入端与被测电路输入、输出端连,出现双平行线,调Y增益旋钮,并读0dB校正线高度:H=5格。完成0dB校正后,Y增益旋钮在以后的实验步骤里不要再调动.
AV=
Q=
(2) R=2KΩ,VOP-P=0.21V,BW2=2Δf0.7=
AV=
Q=
(3) R=470Ω,VOP-P=0.12V,BW3=2Δf0.7=
b.接通被测电路电源,以波峰高度满5大格为1计算读出其幅频曲线0.707高的频带宽度T0.7=______小格,则0.707通频带宽度Δf0.7=Δf×T0.7=______MHz。同理,可测0.1高的频带宽度T0.1=_____小格, 则0.1通频带宽度Δf0.1=Δf×T0.1=______MHz。计算出此电路的矩形系数Kr0.1=Δf0.1/Δf0.7=______.
(4)通频带测量
a.用外接频标法:
断开电源,频标外接,SIZE旋钮旋至最右,“MARKER OUT/IN”与“YM8177A”相连,输出电平99dBμV ,调频率从9MHz到8MHz,频标移动小格数T=______小格,则每小格的频宽Δf=1000KHz/T=_______KHz/T,中心频率f0=______MHz.接通被测电路电源, 扫频仪波峰高度H=___5___大格, 中心频率9MHz.
表4-1三极管静态工作点
实测
实测
实测
据Vce判断V是否工作在放大区
原因
Re(R54)
Vb
Ve
Ic
Vce
高频实验指导书.

实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压V B、V E、V C,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
单调谐回路谐振放大器原理电路如图1-1所示。
图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。
C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。
为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。
图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图32.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。
其基本部分与图1-1相同。
图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1Q02为射极跟随器,主要用于提高带负载能力。
《高频电子线路》实验指导书

《高频电子线路》实验指导书南昌工学院人工智能学院前言本高频电子试验箱共包含十个标配实验单元模块和三个选配实验单元模块.其中标配模块包含有信号源模块、频率计模块、小信号选频放大模块、正弦波振荡及VCO模块、AM调制及检波模块、FM鉴频1模块、收音机模块、混频及变频模块、高频功放模块、综合实验模块。
选配模块包含有FM鉴频2、码型变换模块和谐振回路及滤波模块。
本实验系统的实验内容是根据高等教育出版社的《高频电子线路》一书而设计的。
本试验箱共设置了二十个重要实验和四个选做实验:其中有十五个单元实验,是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容;五个系统实验是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。
此外,还有选做实验,学生也可以根据我们所提供的单元电路自行设计系统实验。
本实验系统力求电路原理清楚,重点突出,实验内容丰富。
其电路设计构思新颖、技术先进、波形测量点选择准确,具有一定的代表性。
同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力已及动手能力。
由于编者水平有限,书中难免存在一些缺点和错误,希望广大读者批评指正。
编者实验注意事项1、本实验系统接通电源前,请确保电源插座接地良好。
2、每次安装实验模块之前,应确保主机箱右侧的交流开关处于断开状态。
为保险起见,建议拔下电源线后再安装实验模块。
3、安装实验模块时,模块右边的电源开关要拨置上方,将模块四角的螺孔和母板上的铜支柱对齐,然后用螺钉固定。
确保四个螺钉拧紧,以免造成实验模块与电源或者地接触不良。
经仔细检查后方可通电实验。
4、各实验模块上的电源开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。
5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。
6、各模块中的贴片可调电容是出厂前调试使用的。
出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。
《高频电子线路》实验指导书

弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE
是
否
原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷
高频电子电路实验操作步骤及要点

高频电子电路实验操作步骤及要点实验一、高频电子仪表的使用一、数字万用表1.开机后若显示屏左下出现小电池的图标,表示需更换电池后才能使用。
2.开机后若显示屏左上出现“H”图标,表示万用表处于屏幕保持状态,需解锁后使用。
3.利用万用表的直流电压测试功能完成电路静态工作电压的测试;静态工作电流是通过测试相应元件的电压再运用欧姆定律计算得到。
4.利用万用表的“×200”欧姆档完成电路连接导线及仪表连接线的测试,以判断其好坏状态。
5.不要用万用表测试动态指标。
二、高频电子电路实验箱1.能熟练地找到实验所用模块电路。
2.能正确地搭接实验电路。
(1)先将信号源板和电路板共地:将两块板中靠得最近的两个接地点用最短导线连通(建议将信号源板的右下角和电路板的左下角的两个接地点连通),这样实验箱中所有接地点都连通了;地线使用时注意“就近接地”的原则。
(2)用最合适的导线将电路所需直流工作电源从信号源板引入到电路。
(3)电路中元器件的连接及交流信号的引入选用最合适的导线。
(4)仪表连接线应直接接至测试点附近的接线柱上;不要使用导线接连接线。
3.能正确输出实验所需的交流信号。
(1)将显示功能设置为“低频”,同时将高频信号源的“频率粗调”旋钮放在与输出低频信号频率相适应的档位上,此时频率计将正确显示低频信号源输出信号的频率(若使用示波器测试频率,则此步可以不做)。
(2)将显示功能设置为“外测”,同时将高频信号源的“频率粗调”旋钮放在与被测信号频率相适应的档位上,此时频率计将正确显示被测信号的频率(若使用示波器测试频率,则此步可以不做)。
(3)将显示功能设置为“高频”,同时将高频信号源的“频率粗调”旋钮放在与输出高频信号频率相适应的档位上,此时频率计将正确显示高频信号源输出信号的频率(若使用示波器测试频率,则此步可以不做)。
(4)用示波器调测信号时,建议先把“幅度调节”旋钮右旋到底使输出信号幅度最大,此时来进行频率的调节;调节好频率后,再把“幅度调节”旋钮左旋以减小幅度至实验要求的大小(由于幅度减小时波形将会变差,因此调节幅度时可不管示波器上测试频率的变化)。
高频电路实验一 操作指导书

实验1 高频小信号调谐放大器实验—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性●双调谐回路●电容耦合双调谐回路谐振放大器●放大器动态范围2.做本实验时所用到的仪器:●单、双调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
6.熟悉耦合电容对双调谐回路放大器幅频特性的影响;7.了解放大器动态范围的概念和测量方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
5.采用点测法测量双调谐放大器的幅频特性;7.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;8.用示波器观察放大器动态范围。
四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
单调谐回路谐振放大器原理电路如图1-1所示。
图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。
C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。
为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。
图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。
高频电路实验指导书2012(新)资料

高频电路实验第5章 高频电路实验5.1 高频小信号调谐放大器实验5.1.1 实验目的1、 掌握小信号调谐放大器的基本工作原理;2、 掌握谐振放大器电压增益、通频带及选择性的定义、测试及计算;3、 了解高频小信号放大器动态范围的测试方法;5.1.2实验内容1、测量单调谐、双调谐小信号放大器的静态工作点2、 测量单调谐、双调谐小信号放大器的增益3、测量单调谐、双调谐小信号放大器的通频带5.1.3实验仪器1、 高频信号发生器 1台2、 高频毫伏表 1台3、 高频小信号调谐放大器(2号板) 1块4、 双踪示波器 1台5、 万用表 1块6、 扫频仪 1台5.1.4实验原理1、单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图5.1.1所示。
该电路由晶体管Q 1、选频回路T 1二部分组成。
它不仅对高频小信号进行放大,而且还有一定的选频作用。
本实验中输入信号的频率f S =10.7MHz 。
基极偏置电阻W 3、R 22、R 4和射极电阻R 5决定晶体管的静态工作点。
调节可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。
放大器各项性能指标及测量方法如下: (1)谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图5.1.1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π210式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为ie oe C P C P C C 2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。
图5.1.1 单调谐小信号放大电路谐振频率f 0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
高频电子的实验报告

一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。
2. 熟悉高频电子线路中常用元件的性能和特点。
3. 培养实验操作技能,提高分析问题和解决问题的能力。
三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。
本实验主要研究高频放大器、振荡器和调制解调器等基本电路。
四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。
(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。
(3)测量放大器的输入输出阻抗,分析匹配网络的设计。
2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。
(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。
(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。
3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。
(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。
(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。
六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。
(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。
(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。
2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。
(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。
(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电路实验的设备选择与实验操作指南
在进行高频电路实验时,正确选择适合的设备和采取正确的实验操
作是确保实验顺利进行的重要环节。
本文将为您提供设备选择和实验
操作的指南。
一、设备选择
1.信号源:在高频电路实验中,需要选择一款稳定的信号源。
常见
的信号源有函数发生器、信号源发生器等。
根据实验需求选择频率范
围广、信号稳定性好的信号源。
2.示波器:示波器是高频电路实验中常用的测量仪器,用于观察电
路中信号的波形和幅度。
选择带宽较高、采样率适中的示波器,以确
保测量的准确性。
3.频谱仪:频谱仪用于分析信号的频谱特性,对于高频电路实验中
信号的频率分布分析至关重要。
选择频率范围广、分辨率高的频谱仪,以获取准确的频谱信息。
4.功率放大器:高频电路实验中,常常需要对信号进行放大处理。
选择合适的功率放大器,确保放大后的信号质量不降低。
5.阻抗匹配网络:在高频电路实验中,为了实现最大功率传递和防
止信号反射,需要选择合适的阻抗匹配网络,确保电路的匹配性能。
6.滤波器:根据实验需求选择合适的滤波器,用于滤除不需要的干
扰信号,保证实验信号的纯净性。
二、实验操作指南
1.实验前准备:在进行高频电路实验前,需要仔细阅读实验指导书,并做好实验预备工作。
检查所需设备的连接线是否齐全,设备是否正
常工作。
2.电路搭建:根据实验要求,按照电路图设计搭建实验电路。
注意
电路元件的连接方式和极性,确保搭建正确。
3.信号输入:连接信号源到实验电路的输入端,调节信号源的频率
和幅度,使其符合实验要求。
注意调节信号源时的稳定性和准确性。
4.测量与观察:使用示波器或频谱仪对实验电路中的信号进行测量
和观察。
调整示波器的参数,选择合适的测量通道和测量方式。
观察
信号的波形、幅度和频谱分布,记录测量结果。
5.参数调节:根据实验要求,逐步调节实验电路中的参数,如改变
电阻、电容或电感的数值,观察信号的变化。
记录参数调节的影响和
实验结果。
6.数据分析:根据实验结果,进行数据的分析和处理。
比较不同参
数下实验结果的差异,总结实验规律。
7.实验收尾:实验结束后,关闭设备电源,拔除连接线,清理实验
现场。
将设备归还到指定位置,并妥善保管。
结语:
高频电路实验的设备选择和操作对于实验结果的准确性和可靠性至关重要。
在选择设备时,需要考虑频率范围、稳定性等因素。
在实验操作中,需注意实验前的准备工作,正确搭建电路,准确输入信号,合理调整参数,仔细测量与观察,并进行数据分析。
希望本文能够为您的高频电路实验提供一些有用的指导!。