【精品】2017年天津市普通高中学业水平考试数学试卷及参考答案

合集下载

2017高考天津卷数学卷(理)及答案

2017高考天津卷数学卷(理)及答案

2017天津卷(理)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C = (A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23(B )1(C )32(D )3 (3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3 (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -=(B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a <<(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C)[- (D)39[]16- 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年天津市中学考试数学试卷(Word版含问题详解)

2017年天津市中学考试数学试卷(Word版含问题详解)

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1.计算(﹣3)+5的结果等于()。

A.2 B.﹣2 C.8 D.﹣82.cos60°的值等于()。

A.B.1 C.D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()。

A.B. C. D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4 月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()。

A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()。

A.B. C. D.6.估计的值在()。

A.4和5之间 B.5和6之间C.6和7之间 D.7和8之间7.计算的结果为()。

A.1 B.a C.a+1 D.8.方程组的解是()A.B.C.D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()。

A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()。

A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()。

A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()。

2017年高考天津文科数学试题与答案(word解析版)

2017年高考天津文科数学试题与答案(word解析版)

2017年普通高等学校招生全国统一考试(天津卷)数学(文科)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年天津,文1,5分】设集合{}1,2,6A =,{}2,4B =,{}1,2,3,4C =,则()A B C =( )(A ){}2 (B ){}1,2,4 (C ){}1,2,3,4 (D ){}1,2,3,4,6 【答案】B【解析】{}1,2,4,6A B =,(){1,2,4,6}{1,2,3,4}{1,2,4}A B C ==,故选B . (2)【2017年天津,文2,5分】设x R ∈,则“20x -≥”是“11x -≤”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥解得:2x ≤;11x -≤解得:02x ≤≤,2x ≤⇐02x ≤≤,故选B .(3)【2017年天津,文3,5分】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )(A )45 (B )35 (C )25 (D )15【答案】C【解析】“从这5支彩笔中任取2支不同颜色的彩笔”基本事件总个数:25C ,而事件“取出的2支彩笔中含有红色彩笔”包含基本事件个数:14C ;42105P ==,故选C .(4)【2017年天津,文4,5分】阅读右边的程序框图,运行相应的程序,若输入的N 的值为19,则输出的N 的值为( )(A )0 (B )1 (C )2 (D )3 【答案】C【解析】阅读流程图可得,程序执行过程如下:首先初始化数值为19N =,第一次循环:118N N =-=,不满足3N ≤;第二次循环:63NN ==,不满足3N ≤;第三次循环:23NN ==,满足3N ≤;此时跳出循环体,输出3N =,故选C .(5)【2017年天津,文5,5分】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),则双曲线的方程为( )(A )221412x y -= (B )221124x y -= (C )2213x y -= (D )2213y x -=【答案】D【解析】因为OAF ∆是边长为2的等边三角形(O 为原点)所以2OF =,60AOF ∠=︒,所以直线OA 方程为3y x =,所以渐近线方程by x a=±其中一条为3y x =,所以,23c ba=⎧⎪⎨=⎪⎩,解之得:1,3,2a b c ===,故选D . (6)【2017年天津,文6,5分】已知奇函数()f x 在R 上是增函数,若21(log )5a f =-,2(log 4.1)b f =,0.8(2)c f =, 则,,a b c 的大小关系为( ) (A )a b c << (B )b a c << (C )c b a << (D )c a b <<【答案】C【解析】因为()f x 在R 上是奇函数,所以有()()f x f x -=-,即21(log )5a f =-2(log 5)f =;又因为()f x 在R 上是增函数,且0.8122222log 4log 4.1log 5<=<<,所以c b a <<,故选C .(7)【2017年天津,文7,5分】设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><,若511()2,()088f f ππ==,且()f x 的最小正周期大于2π,则( )(A )2,312πωϕ== (B )211,312πωϕ==- (C )111,324πωϕ==- (D )17,324πωϕ==【答案】A【解析】函数()2sin(),f x x x R ωϕ=+∈,511()2,()088f f ππ==,振幅为2,所以如图所示: 若函数图象如图表1所示,3115488T ππ=-,解得T π=,不满足最小正周期大于2π,所以函数图象如图表2所示,115488T ππ=-,解得3T π=,23ω=,又因为5()28f π=,所以25382ππϕ⨯+=,所以12πϕ=,故选A .(8)【2017年天津,文8,5分】已知函数2,1()2,1x x f x x x x ⎧+<⎪=⎨+≥⎪⎩,设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是( )(A )[2,2]- (B )[23,2]- (C )[2,23]- (D )[23,23]- 【答案】A【解析】函数()f x 的图象如下图(左),若关于x 的不等式()2xf x a ≥+在R 上恒成 立,则不妨设()2x g x a =+,“()2xf x a ≥+在R 上恒成立”表示()y f x =图 象与()yg x =图象应如下图(右)所示找到两个临界位置: ①()f x 与()g x 相切时,1x >,221'()12f x x =-=,解得02x =,03y =,代入(2)3g =,解得 232a +=,2,4a a ==-(舍);②()g x 过点(0,2),代入(0)2g =,2a =,解得2,2a a =-=(舍),故a的取值范围在2-与2之间,故选A .二、填空题:本大题共6小题,每小题5分,共30分.(9)【2017年天津,文9,5分】已知a R ∈,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 【答案】2-【解析】解法一:i (i)(2i)21(2)i2i (2i)(2i)5a a a a -----+==++-为实数,所以20a +=,2a =-. 解法二:i2ia -+为实数⇔i a -与2i +成比例,比例为1-,所以2a =-.(10)【2017年天津,文10,5分】已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .【答案】1【解析】函数()f x 的导函数1'()f x a x=-,所以(1),'(1)1f a f a ==-,切点(1,)a ,斜率为1a -,所以代入切线点斜式:(1)(1)y a a x -=--,l 在y 轴上的截距为:0,1x y ==,所以答案为1.(11)【2017年天津,文11,5分】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π【解析】球的表面积公式2618S a ==,所以棱长3a =,计算得:233R a ==,32R =,34932V R ππ==.(12)【2017年天津,文12】设抛物线24y x =的焦点为F ,准线为l ,已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A ,若120FAC ∠=︒,则圆的方程为 . 【答案】22(1)(3)1x y ++-=【解析】抛物线24y x =的焦点为(1,0)F ,准线为:1l x =-,所以可设(1,)C b -,OA b =,120FAC ∠=︒,所以60AFH ∠=︒,在直角三角形OAF 中,1OF =,所以3OA =,所以圆的圆心(1,3)-,半径等于1,所以圆22:(1)(3)1C x y ++-=.(13)【2017年天津,文13,5分】若,a b R ∈,0ab >,则4441a b ab++的最小值为 .【答案】4【解析】4422414144a b a b abab ab ab+++≥≥=(0ab >),当且仅当“444a b =”、“2241a b =”同时成立时,等号成立,解之得:13442,2a b --==.(14)【2017年天津,文14,5分】在ABC ∆中,60A ∠=︒,3AB =,2AC =,若2BD DC =,AE AC AB λ=-()R λ∈,且4AD AE ⋅=-,则λ的值为 .【答案】311【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+,则122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)【2017年天津,文15,13分】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A B =,2225()ac a b c =--.(1)求cos A 的值; (2)求sin(2)B A -的值.解:(1)sin 4sin a A b B =可化为224a b =,解得:2a b =,余弦定理:222cos 2b c a A bc +-=25ac bc -=55=-. (2)根据5cos 5A =-,解得25sin 5A =,所以5sin 5B =,25cos 5B =,4sin 22sin cos 5B B B ==,23cos22cos 15B B =-=,sin(2)B A -45325sin 2cos cos2sin ()5555B A B A =-=⨯--⨯10525255--==. (16)【2017年天津,文16,13分】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告,已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟) 广告播放时长(分钟) 收视人次(万)甲 70 5 60 乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟, 且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,x y 表示每周计划播出的甲、乙两套电视 剧的次数.(1)用,x y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解:(1)分别用,x y 表示每周计划播出的甲、乙两套电视剧的次数766062,x y x y x y x y N+≤⎧⎪+≥⎪⎨≤⎪⎪∈⎩.(2)设总收视人次为z 万,则目标函数为6025z x y =+.考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z为直线在y 轴上的截距,当25z取得最大值时,z 的值最大.又因为,x y 满足约束条件,所以由图2可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为()6,3.所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(17)【2017年天津,文17,13分】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD ∥BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成的角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.解:(1)因为AD ∥BC ,所以PAD ∠等于异面直线AP 与BC 所成的角,AD ⊥平面PDC ,所以90PDA ∠=︒,PAcos AD PAD AP ∠==. (2)因为AD ⊥平面PDC ,所以AD PD ⊥,又因为AD ∥BC ,所以PD BC ⊥,PD PB ⊥,且PBBC B =,所以PD ⊥平面PBC .(3)取BC 上三分点,3BE BC =,//BE AD ,1AD BE ==,PD ⊥平面PBC ,所以DEP ∠等于直线AB 与平面PBC 所成角90DPE ∠=︒,AB =DE =4PE =,sin PD DEP DE ∠==. (18)【2017年天津,文18,13分】已知{}n a 为等差数列,前n 项和为n S *()n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}2n n a b 的前n 项和*()n ∈N .解:(1)已知{}n a 为等差数列,{}n b 是首项为2的等比数列,且公比大于0,所以1(1)n a a n d =+-,1112n n n b b q q --==,22212q q +=,解之得:2,3q q ==-(舍),118311(5)1116a da d =-+⎧⎨+=⨯⎩,解之得:11,3a d ==所以31n a n =-,2n n b =.(2)2(62)2n n n a b n =-⨯,不妨设数列{}2n n a b 的前n 项和为n T ,2142632212n n n n n T a b a b a b a b a b --=+++++,123142102162(68)2(62)2n nn T n n -=⨯+⨯+⨯++-⨯+-⨯①2n T =231142102(614)2(68)2(62)2n n n n n n -+⨯+⨯+-⨯+-⨯+-⨯ ②①-②得:123142626262(62)2n n n T n +-=⨯+⨯+⨯++⨯--⨯,整理得:216(34)2n n T n +=+-⨯.(19)【2017年天津,文19,14分】设,a b R ∈,1a ≤,已知函数32()63(4)f x x x a a x b =---+,()()x g x e f x =.(1)求()f x 的单调区间;(2)已知函数()y g x =和函数xy e =的图象在公共点00(,)x y 处有相同的切线.(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()xg x e ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.解:(1)32'()()'6()'3(4)'f x x x a a x =---,2'()3123(4)f x x x a a =---,2'()3123(4)3()(4)f x x x a a x a x a =---=-+-,因为1a ≤,所以4a a <-,所以,()f x 的单调增区间(,),(4,)a a -∞-+∞,()f x 的单调减区间[,4]a a -.(2)(i )()()x g x e f x =与xy e =在公共点00(,)x y 处有相同的切线,首先,00()x g x e =;其次,00'()x g x e =,0()1f x =,00()'()1f x f x +=,所以0'()0f x =.(ii )()xg x e ≤等价于()1f x ≤,0'()0f x =,0()1f x =,所以0x a =极大值点,若关于x 的不等式()x g x e ≤ 在区间00[1,1]x x -+上恒成立,等价于()1f x ≤在区间00[1,1]x x -+上恒成立,等价于max ()1f x ≤,00[1,1]x x x ∈-+,当0x a =,()f x 在[1,]a a -递增,在[,1]a a +递减,()f a 为最大值, ()1f a =,32261a a b -++≤,32261b a a ≤-+,令32()261h x x x =-+,ABCDPE2'()6126(2)h x x x x x =-=-,()h x 在[1,0]-递增,在[0,1]递减,所以7()1h x -≤≤,71b -≤≤.(20)【2017年天津,文20,14分】已知椭圆22221(0)x y a b a b+=>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA ∆的面积为22b.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段PQ 与椭圆交于点P ,点M ,N 在轴上,PM QN ∥,且直线PM 与直线QN 间的距离为,四边形PQNM 的面积为3c ; (i )求直线FP 的斜率; (ii )求椭圆的方程.解:(1)12AEFS AF OE ∆=⨯⨯21()22b a c c =+⨯=,因为222b a c =-,所以c a c =-,故2a c =,12c e a ==.(2)(i )45EFO ∠=︒,设1EQ EA λλ=+(01)λ<<,所以(1)FQ FE FA λλ=-+,2FE c =,3FA c =,因为32c FQ =,两边平方,解之得:910λ=,32λ=(舍) 代入(1)FQ FE FA λλ=-+,得69(,)510c c FQ =,直线FP 的斜率等于34y x =(ii )直线FP 的方程:30()4y x c -=-;为求点P 的坐标,联立方程解方程组:2224333412y x c x y c=-⎧⎨+=⎩,解之得:13,7c x c x ==-(舍),所以3(,)2c P c ,因为69(,)510c cFQ =,所以9(,)510c cQ , 即PQ c =,而PM ∥QN ,且直线PM 与直线QN 间的距离为c ,所以直线PM 与直线QN 垂直于PF ,由(i )直线FP 的斜率等于34,可得335154428c c PM PF ==⨯=,33394428c c QN FQ =⨯=⨯=, MNPQ FPM FQN S S S ∆∆=- 1()2PM PF QN QF =⨯⨯-⨯232c =,所以2332c c =,解之得2c =,所以4,23a b ==,所以2211612x y+=.。

2017年普通高等学校招生全国统一考试理科数学天津卷pdf版

2017年普通高等学校招生全国统一考试理科数学天津卷pdf版
(Ⅰ)求 b 和 sin A 的值;
(Ⅱ)求 sin(2A + π ) 的值. 4
16.(本小题满分 13 分)
从甲地到乙地要经过 3 个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的
111 概率分别为 , , .
234 (Ⅰ)设 X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量 X 的分布列和数学期望;
(Ⅱ)设 m ∈[1, x0 ) (x0 , 2] ,函数 h(= x) g(x)(m − x0 ) − f (m) ,求证: h(m)h(x0 ) < 0 ;
(Ⅲ)求证:存在大于
0
的常数
A
,使得对于任意的正整数
p,
q
,且
p q
∈[1,
x0 )
(x0 ,
2],

足|
p q

x0
|≥
1 Aq4
.
天津理数答案
其中 S 表示棱柱的底面面积,
P(AB)=P(A) P(B).
·球的体积公式V= 4 πR3 . 3
其中 R 表示球的半径.
h 表示棱柱的高.
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合 A = {1, 2, 6}, B = {2, 4},C = {x ∈ R | −1 ≤ x ≤ 5},则 ( A B) C =
= 1 × 11 + 11 × 1 = 11 . 4 24 24 4 48 11
所以,这 2 辆车共遇到 1 个红灯的概率为 .
48
(17)本小题主要考查直线与平面平行、二面角、异面直线所成的角等基础知识.考查用空
间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分 13

2017年高考天津卷理数试题解析(精编版)(原卷版)

2017年高考天津卷理数试题解析(精编版)(原卷版)

绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A ,B 互斥,那么·如果事件A ,B 相互独立,那么P (A ∪B )=P (A )+P (B ).P (AB )=P (A )P (B ).·棱柱的体积公式V =Sh .·球的体积公式343V R =π.其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R (2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23(B )1(C )32(D )3(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0(B )1(C )2(D )3(4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F 2.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )221x y -=(B )221x y -=(C )221x y -=(D )221x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c <<(B )c b a <<(C )b a c <<(D )b c a<<(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则(A )23ω=,12ϕπ=(B )23ω=,12ϕ11π=-(C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||x f x a ≥+在R 上恒成立,则a 的取值范围是(A )47[,2]16-(B )4739[,1616-(C )[23,2]-(D )39[23,]16-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年高考理数真题天津卷(试题及详细答案解析)

2017年高考理数真题天津卷(试题及详细答案解析)

2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至5页.答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分.参考公式:·如果事件 A ,B 互斥,那么P (A ∪B )=P (A )+P (B ).·如果事件 A ,B 相互独立,那么 P (AB )=P (A ) P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高.·球的体积公式343V R =π.其中R 表示球的半径.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I ( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{|15}x x ∈-≤≤R2.设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为( ) A.23 B.1 C.32D.3 3.阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A.0B.1C.2D.34.设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离 心率为2.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.22144x y -=B.22188x y -=C.22148x y -=D.22184x y -=6.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( )A.a b c <<B.c b a <<C.b a c <<D.b c a <<7.设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则( ) A.23ω=,12ϕπ= B.23ω=,12ϕ11π=- C.13ω=,24ϕ11π=- D.13ω=,24ϕ7π= 8.已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( ) A.47[,2]16-B.4739[,]1616-C.[-D.39[]16- 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二. 填空题:本大题共6小题,每小题5分,共30分.9.已知a ∈R ,i 为虚数单位,若i 2ia -+为实数,则a 的值为 . 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .11.在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 12.若,a b ∈R ,0ab >,则4441a b ab ++的最小值为___________. 13.在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,()AE AC AB λλ∈=-R u u u r u u u r u u u r ,且4AD AE ⋅=-u u u r u u u r ,则λ的值为___________.14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求b 和sin A 的值;。

2017年天津卷(理科数学)含答案

2017年天津卷(理科数学)含答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学(天津卷)本试卷分为第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅰ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ). P (AB )=P (A ) P (B ).·棱柱的体积公式V =Sh .·球的体积公式.其中S 表示棱柱的底面面积,其中表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,则【B 】343V R =πR {1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ()A B C =(A )(B )(C )(D )(2)设变量满足约束条件则目标函数的最大值为【D 】 (A ) (B )1(C ) (D )3(3)阅读右面的程序框图,运行相应的程序,若输入的值为24,则输出的值为【C 】(A )0 (B )1(C )2(D )3(4)设,则“”是“”的【A 】(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线的左焦点为,.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为【B 】(A ) (B )(C )(D )(6)已知奇函数在R 上是增函数,.若,,,则a ,b ,c 的大小关系为【C 】{2}{1,2,4}{1,2,4,6}{|15}x x ∈-≤≤R ,x y 20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩z x y =+2332N N θ∈R ππ||1212θ-<1sin 2θ<22221(0,0)x y a b a b -=>>F F (0,4)P 22144x y -=22188x y -=22148x y -=22184x y -=()f x ()()g x xf x =2(log 5.1)a g =-0.8(2)b g =(3)c g =(A ) (B )(C )(D ) (7)设函数,,其中,.若,,且的最小正周期大于,则【A 】(A ),(B ),(C ),(D ),(8)已知函数设,若关于x 的不等式在R 上恒成立,则a 的取值范围是【A 】(A )(B ) (C )(D )第Ⅰ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年高考理数真题天津卷(试题及详细答案解析)

2017年高考理数真题天津卷(试题及详细答案解析)

2
2
2
5

x2
x 2
3
x
1 4
2
47 16
47 16
(当
x
1 4
时等号成立),
x2
3 2
x
3
x
3 4
2
39 16
39 16
(当
x
3 4
时等号成立),
∴ 47 a 39 ,
16
16
当 x 1 时,①式可化为 x 2 x a x 2 ,∴ 3x 2 a x 2 ,
x2
1 3
,
24
D.
1 3
,
24
8.已知函数
f
(x)
x
2
x
x
2 x
,
x
3, x 1, 1.

aR
,若关于
x
的不等式
f
(x)
|
x 2
a
|

R
上恒成立,
则 a 的取值范围是( )
A. [ 47 , 2] 16
B. [ 47 , 39] 16 16
C. [2 3, 2]
D. [2 3, 39] 16
b
13
∴ b 13 , sin A 3 13 . 13
(Ⅱ)由(Ⅰ)及 a c 得 cos A 2 13 , 13
∴ sin 2 A 2sin Acos A 12 , cos 2 A 1 2sin 2 A 5 ,
13
13

sin
2
A
4
sin
2 Acos
E,N 分别为棱 PA,PC,BC 的中点,M 是线段 AD 的中点,PA=AC=4,AB=2. (Ⅰ)求证:MN∥平面 BDE; (Ⅱ)求二面角 C-EM-N 的正弦值;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年天津市普通高中学业水平考试数学试卷一、选择题(共25小题,每小题3分,满分75分)1.(3分)已知集合A={a,b,d},B={c,d},则A∪B等于()A.{d}B.{a,c}C.{a,b,c}D.{a,b,c,d}2.(3分)函数y=cos2x,x∈R的最小正周期为()A.B.πC.2πD.13.(3分)i是虚数单位,复数(1+2i)i等于()A.﹣2﹣i B.2+i C.﹣2+i D.2﹣i4.(3分)已知向量=(1,2),=(﹣1,1),则2+的坐标为()A.(1,5) B.(﹣1,4)C.(0,3) D.(2,1)5.(3分)命题p:“∃x0∈R“,x02﹣1≤0的否定¬p为()A.∀x∈R,x2﹣1≤0 B.∀x∈R,x2﹣1>0C.∃x0∈R,x02﹣1>0 D.∃x0∈R,x02﹣1<06.(3分)下列函数中是奇函数的为()A.y=2x B.y=﹣x2C.y=()x D.y=log3x7.(3分)在等差数列{a n}中,若a2=2,a1+a5=16,则公差d等于()A.4 B.C.6 D.148.(3分)在等比数列{a n}中,若a1=2,a4=16,则{a n}的前5项和S5等于()A.30 B.31 C.62 D.649.(3分)抛物线y2=2x的准线方程为()A.x=﹣1 B.x=﹣C.x=﹣D.x=10.(3分)椭圆+=1的离心率为()A.B.C.D.11.(3分)双曲线﹣y2=1的渐近线方程为()A.y=±3x B.y=±x C.y=±x D.y=±x12.(3分)若直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直,则实数m的值为()A.2 B.﹣2 C.D.﹣13.(3分)如图,点E是边长为2的正方形ABCD的CD边中点,若向正方形ABCD 内随机投掷一点,则所投点落在△ABE内的概率为()A.B.C.D.14.(3分)同时掷两个质地均匀的骰子,向上点数之积为12的概率是()A.B.C.D.15.(3分)为了得到函数y=sin(2x﹣),x∈R的图象,只需将函数y=sin2x,x∈R的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度16.(3分)已知一个几何体的三视图如图所示,其中俯视图为半圆面,则该几何体的体积为()A.4πB.2πC.πD.17.(3分)若a=log20.3,b=20.3,c=0.32,则a,b,c三者的大小关系为()A.b>c>a B.c>b>a C.c>a>b D.b>a>c18.(3分)若变量x,y满足约束条件,则目标函数z=﹣2x+y的最大值为()A.1 B.﹣1 C.﹣ D.﹣319.(3分)阅读右边的程序框图,运行相应的程序,输出的结果为()A.17 B.10 C.9 D.520.(3分)一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,则从中抽取的男运动员的人数为()A.8 B.12 C.16 D.3221.(3分)已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,下列命题为真命题的是()A.若m∥α,m∥β,则α∥βB.若α∥β,m⊂α,n⊥β,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若α⊥β,m⊂α,n⊥β,则m∥n22.(3分)如图,长方体ABCD﹣A1B1C1D1中,AA1=2AB=2BC=2,则异面直线A1B 与AD1所成角的余弦值为()A.B.C.D.23.(3分)若向量,满足||=,=(﹣2,1),•=5,则与的夹角为()A.90°B.60°C.45°D.30°24.(3分)平行于直线l:x+2y﹣3=0,且与l的距离为2的直线的方程为()A.x+2y+7=0 B.x+2y﹣13=0或x+2y+7=0C.x+2y+13=0 D.x+2y+13=0或x+2y﹣7=025.(3分)已知二次函数f(x)=ax2+bx(a,b∈R),满足f(1﹣x)=f(1+x),且在区间[﹣1,0]上的最大值为3,若函数g(x)=|f(x)|﹣mx有唯一零点,则实数m的取值范围是()A.[﹣2,0]B.[﹣2,0)∪[2,+∞)C.[﹣2,0)D.(﹣∞,0)∪[2,+∞)二、填空题(共5小题,每小题5分,满分25分)26.(5分)已知x>﹣1,则x+的最小值为.27.(5分)在△ABC中,若AC=5,BC=6,sinA=,则角B的大小为.28.(5分)已知cosα=﹣,α∈(,π),则sinα的值为,cos(α+)的值为.29.(5分)圆心坐标是(﹣1,2),半径长是的圆的方程为.设直线y=2x与该圆相交于A,B两点,则弦AB的长为.30.(5分)已知函数f(x)=x3﹣kx2+2x,x∈R,k∈R.①若f′(﹣1)=1,则k的值为.②若函数f(x)在区间(1,2)内存在2个极值点,则k的取值范围是.2017年天津市普通高中学业水平考试数学试卷参考答案与试题解析一、选择题(共25小题,每小题3分,满分75分)1.(3分)已知集合A={a,b,d},B={c,d},则A∪B等于()A.{d}B.{a,c}C.{a,b,c}D.{a,b,c,d}【解答】解:∵A={a,b,d},B={c,d},∴A∪B={a,b,c,d}.故选:D.2.(3分)函数y=cos2x,x∈R的最小正周期为()A.B.πC.2πD.1【解答】解:y=cos2x,由周期公式可得:T=.故选:B.3.(3分)i是虚数单位,复数(1+2i)i等于()A.﹣2﹣i B.2+i C.﹣2+i D.2﹣i【解答】解:(1+2i)i=2i2+i=﹣2+i,故选:C.4.(3分)已知向量=(1,2),=(﹣1,1),则2+的坐标为()A.(1,5) B.(﹣1,4)C.(0,3) D.(2,1)【解答】解:∵=(1,2),=(﹣1,1),∴2+=(2,4)+(﹣1,1)=(1,5).故选:A.5.(3分)命题p:“∃x0∈R“,x02﹣1≤0的否定¬p为()A.∀x∈R,x2﹣1≤0 B.∀x∈R,x2﹣1>0C.∃x0∈R,x02﹣1>0 D.∃x0∈R,x02﹣1<0【解答】解:命题p:“∃x0∈R“,x0﹣1≤0为特称命题,其否定为全称命题,∴¬p为∀x∈R,x2﹣1>0.故选:B.6.(3分)下列函数中是奇函数的为()A.y=2x B.y=﹣x2C.y=()x D.y=log3x【解答】解:函数y=2x的定义域为R,且f(﹣x)=﹣2x=﹣f(x),∴f(x)为奇函数;函数y=﹣x2的定义域为R,且f(﹣x)=﹣(﹣x)2=﹣x2=f(x),∴f(x)为偶函数;由函数y=()x的图象既不关于原点对称,也不关于y轴对称,∴函数y=()x是非奇非偶函数;由函数y=log3x的图象既不关于原点对称,也不关于y轴对称,∴函数y=log3x是非奇非偶函数.故选:A.7.(3分)在等差数列{a n}中,若a2=2,a1+a5=16,则公差d等于()A.4 B.C.6 D.14【解答】解:∵a2=2,a1+a5=16,∴,解得a1=﹣4,d=6.故选C.8.(3分)在等比数列{a n}中,若a1=2,a4=16,则{a n}的前5项和S5等于()A.30 B.31 C.62 D.64【解答】解:等比数列{a n}中,a1=2,a4=16,设公比为q,=q3=8,解得q=2,则此数列的前5项的和S5===62.故选:C.9.(3分)抛物线y2=2x的准线方程为()A.x=﹣1 B.x=﹣C.x=﹣D.x=【解答】解:抛物线y2=2x的焦点在x轴上,且开口向右,2p=2,∴=,∴抛物线y2=2x的准线方程为x=﹣.故选:B.10.(3分)椭圆+=1的离心率为()A.B.C.D.【解答】解:由+=1,得a2=16,b2=9,∴a=4,,则e=.故选:A.11.(3分)双曲线﹣y2=1的渐近线方程为()A.y=±3x B.y=±x C.y=±x D.y=±x【解答】解:∵双曲线的方程为﹣y2=1,∴将右边的“1”换为“0”可得:双曲线﹣y2=1的渐近线方程为﹣y2=0,即y=±x.故选:D.12.(3分)若直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直,则实数m的值为()A.2 B.﹣2 C.D.﹣【解答】解:∵直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直,∴m×1+2×1=0,解得m=﹣2.故选:B.13.(3分)如图,点E是边长为2的正方形ABCD的CD边中点,若向正方形ABCD 内随机投掷一点,则所投点落在△ABE内的概率为()A.B.C.D.【解答】解:由题意,正方形ABCD的面积为4,∵E是CD的中点,∴△ABE的面积为.∴所投点落在△ABE内的概率为P=.故选:D.14.(3分)同时掷两个质地均匀的骰子,向上点数之积为12的概率是()A.B.C.D.【解答】解:同时掷两个质地均匀的骰子,共有6×6=36种不同的结果,其中向上点数之积为12的基本事件有(2,6),(3,4),(4,3),(6,2)共4个,∴P==.故选B.15.(3分)为了得到函数y=sin(2x﹣),x∈R的图象,只需将函数y=sin2x,x∈R的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【解答】解:∵y=sin(2x﹣)=sin2(x﹣),∴为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点向右平行移动个单位长度.故选:D.16.(3分)已知一个几何体的三视图如图所示,其中俯视图为半圆面,则该几何体的体积为()A.4πB.2πC.πD.【解答】解:由三视图可知几何体为半圆柱,半圆柱的底面半径r=1,高h=2,∴半圆柱的体积V==π.故选C.17.(3分)若a=log20.3,b=20.3,c=0.32,则a,b,c三者的大小关系为()A.b>c>a B.c>b>a C.c>a>b D.b>a>c【解答】解:∵y=log2x是增函数,∴a=log20.3<log21=0,∵y=2x是增函数,∴b=20.3>20=1,又c=0.32=0.09,∴0<c<1,∴b>c>a,故选A.18.(3分)若变量x,y满足约束条件,则目标函数z=﹣2x+y的最大值为()A.1 B.﹣1 C.﹣ D.﹣3【解答】解:由约束条件作出可行域如图,联立,解得A(1,1),化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过A时,直线在y轴上的截距最大,为﹣1.故选:B.19.(3分)阅读右边的程序框图,运行相应的程序,输出的结果为()A.17 B.10 C.9 D.5【解答】解:循环1,S=0+2=2,a=2×2﹣1=3,循环2,S=2+3=5,a=2×3﹣1=5,循环3,S=5+5=10,a=2×5﹣1=9,退出循环,∴最后输出的a为9,故选C.20.(3分)一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,则从中抽取的男运动员的人数为()A.8 B.12 C.16 D.32【解答】解:设抽取的男运动员的人数为x,则抽取的女运动员的人数为28﹣x,∴,解得x=16.故选C.21.(3分)已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,下列命题为真命题的是()A.若m∥α,m∥β,则α∥βB.若α∥β,m⊂α,n⊥β,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若α⊥β,m⊂α,n⊥β,则m∥n【解答】解:由m∥α,m∥β,得α∥β或α与β相交,故A错误;由α∥β,n⊥β,得n⊥α,由m⊂α,则m⊥n,故B正确;若m⊥α,m⊥n,则n∥α或n⊂α,故C错误;若α⊥β,m⊂α,n⊥β,则m∥n或m与n相交或m与n异面,故D错误.∴正确的命题是B.故选:B.22.(3分)如图,长方体ABCD﹣A1B1C1D1中,AA1=2AB=2BC=2,则异面直线A1B 与AD1所成角的余弦值为()A.B.C.D.【解答】解:连接BC1,A1C1,则AD1∥BC1,∴∠A1BC1为异面直线A1B与AD1所成角或其补角,在长方体ABCD﹣A1B1C1D1中,∵AA1=2AB=2BC=2,∴A1B=BC1=,A1C1=,在△A1BC1中,由余弦定理得cos∠A1BC1==.故选D.23.(3分)若向量,满足||=,=(﹣2,1),•=5,则与的夹角为()A.90°B.60°C.45°D.30°【解答】解:∵=(﹣2,1),∴,又||=,•=5,两向量的夹角θ的取值范围是,θ∈[0,π],∴cos<>===.∴与的夹角为45°.故选:C.24.(3分)平行于直线l:x+2y﹣3=0,且与l的距离为2的直线的方程为()A.x+2y+7=0 B.x+2y﹣13=0或x+2y+7=0C.x+2y+13=0 D.x+2y+13=0或x+2y﹣7=0【解答】解:设与直线l:x+2y﹣3=0平行的直线方程为x+2y+m=0,由,解得:m=﹣13或m=7.∴所求直线方程为x+2y﹣13=0或x+2y+7=0.故选:B.25.(3分)已知二次函数f(x)=ax2+bx(a,b∈R),满足f(1﹣x)=f(1+x),且在区间[﹣1,0]上的最大值为3,若函数g(x)=|f(x)|﹣mx有唯一零点,则实数m的取值范围是()A.[﹣2,0]B.[﹣2,0)∪[2,+∞)C.[﹣2,0)D.(﹣∞,0)∪[2,+∞)【解答】解:二次函数f(x)=ax2+bx(a,b∈R),满足f(1﹣x)=f(1+x),可得直线x=1为函数f(x)的对称轴,即有﹣=1①由f(x)在区间[﹣1,0]上的最大值为3,若a>0时,则f(x)在[﹣1,0]递减,f(﹣1)取得最大值,且为a﹣b=3②若a<0时,f(x)在[﹣1,0]递增,f(0)取得最大值,且为0,不成立.由①②解得a=1,b=﹣2.则f(x)=x2﹣2x,若函数g(x)=|f(x)|﹣mx有唯一零点,即为方程|f(x)|=mx有唯一实根,作出y=|f(x)|的图象和直线y=mx的图象,当m=0,有y=0与y=|f(x)|有两个交点;当m>0时,由mx=2x﹣x2,即有x2+(m﹣2)x=0,由判别式(m﹣2)2﹣4×0=0,解得m=2.由图象可得m≥2时,y=|f(x)|的图象和直线y=mx的图象有两个交点;当0<m<2,y=|f(x)|的图象和直线y=mx的图象有,三个交点;当m<0时,且y=mx为曲线y=|f(x)|的切线时,只有一个交点,即为原点为切点,y=|f(x)|=x2﹣2x(x<0),可得mx=x2﹣2x即x2﹣(2+m)x=0只有相等的两实根,可得判别式(2+m)2﹣4×0=0,解得m=﹣2.由图象可得﹣2≤m<0时,y=|f(x)|的图象和直线y=mx的图象只有一个交点,即为原点.综上可得,所求m的范围为[﹣2,0).故选:C.二、填空题(共5小题,每小题5分,满分25分)26.(5分)已知x>﹣1,则x+的最小值为3.【解答】解:∵x>﹣1,∴x+1>0,∴x+=(x+1)+﹣1≥2﹣1=3,当且仅当x+1=,即x=1(﹣3舍去)时取等号,∴x+的最小值为3,故答案为:3.27.(5分)在△ABC中,若AC=5,BC=6,sinA=,则角B的大小为30°.【解答】解:在△ABC中,若AC=5,BC=6,sinA=,由正弦定理可得,=,即为sinB===,由AC<BC,可得B<A,则B=30°(150°舍去),故答案为:30°.28.(5分)已知cosα=﹣,α∈(,π),则sinα的值为,cos(α+)的值为.【解答】解:∵cosα=﹣,α∈(,π),∴sinα=;cos(α+)=cosαcos﹣sinαsin==.故答案为:;.29.(5分)圆心坐标是(﹣1,2),半径长是的圆的方程为(x+1)2+(y﹣2)2=5.设直线y=2x与该圆相交于A,B两点,则弦AB的长为.【解答】解:圆心坐标是(﹣1,2),半径长是,则圆的方程为(x+1)2+(y﹣2)2=5;圆心(﹣1,2)到直线2x﹣y=0的距离d=,半径r=,∴弦AB的长为2=.故答案为:(x+1)2+(y﹣2)2=5;.30.(5分)已知函数f (x )=x 3﹣kx 2+2x ,x ∈R ,k ∈R . ①若f′(﹣1)=1,则k 的值为 ﹣1 .②若函数f (x )在区间(1,2)内存在2个极值点,则k 的取值范围是.【解答】解:①∵f (x )=x 3﹣kx 2+2x , ∴f′(x )=x 2﹣2kx +2,由f′(﹣1)=(﹣1)2+2k +2=1,得k=﹣1;②∵函数f (x )在区间(1,2)内存在2个极值点, ∴函数f′(x )=x 2﹣2kx +2在区间(1,2)内存在2个零点, 即方程x 2﹣2kx +2=0在区间(1,2)内有两个不同根.∴,解得:.故答案为:①﹣1;②.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

相关文档
最新文档