永登县第二中学高二数学月考试题

合集下载

永登县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

永登县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

永登县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.2. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A .2B .C .3D .3. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣4. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=5. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 6. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A.2013B.2014C.2015D.20161111]7.已知α是三角形的一个内角,且,则这个三角形是()A.钝角三角形B.锐角三角形C.不等腰的直角三角形D.等腰直角三角形8.函数y=a x+1(a>0且a≠1)图象恒过定点()A.(0,1)B.(2,1)C.(2,0)D.(0,2)9.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为()A.9.6 B.7.68 C.6.144 D.4.915210.已知全集为R,集合A={x|()x≤1},B={x|x2﹣6x+8≤0},则A∩(∁R B)=()A.{x|x≤0} B.{x|2≤x≤4} C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}11.已知平面向量=(1,2),=(﹣2,m),且∥,则=()A.(﹣5,﹣10)B.(﹣4,﹣8) C.(﹣3,﹣6) D.(﹣2,﹣4)12.已知命题p:存在x0>0,使2<1,则¬p是()A.对任意x>0,都有2x≥1 B.对任意x≤0,都有2x<1C.存在x0>0,使2≥1 D.存在x0≤0,使2<1二、填空题13.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .14.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b .15.在(x 2﹣)9的二项展开式中,常数项的值为 . 16.已知含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则 =+20042003b a .17.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.18.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.三、解答题19.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,45a b a b x ++⎡⎤∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.20.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈(1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)21.已知函数f (x )=lnx+ax 2+b (a ,b ∈R ).(Ⅰ)若曲线y=f (x )在x=1处的切线为y=﹣1,求函数f (x )的单调区间;(Ⅱ)求证:对任意给定的正数m ,总存在实数a ,使函数f (x )在区间(m ,+∞)上不单调;(Ⅲ)若点A (x 1,y 1),B (x 2,y 2)(x 2>x 1>0)是曲线f (x )上的两点,试探究:当a <0时,是否存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0)?若存在,给予证明;若不存在,说明理由.22.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.23.本小题满分10分选修45-:不等式选讲 已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.24.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x 元(7≤x ≤9)时,一年的销售量为(x ﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L (万元)与每件纪念品的售价x 的函数关系式L (x );(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值.永登县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C2.【答案】B【解析】解:双曲线C:x2﹣=1(b>0)的顶点为(±1,0),渐近线方程为y=±bx,由题意可得=,解得b=1,c==,即有离心率e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.3.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D4.【答案】C【解析】解:对于A,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C ,函数y=lnx 在(0,+∞)上是增函数,∴满足题意;对于D ,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C .【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.5. 【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 6. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)7. 【答案】A【解析】解:∵(sinα+cosα)2=,∴2sinαcosα=﹣,∵α是三角形的一个内角,则sinα>0,∴cosα<0,∴α为钝角,∴这个三角形为钝角三角形.故选A.【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.8.【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.∴函数f(x)=a x+1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.9.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.10.【答案】C【解析】解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.11.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B .12.【答案】A【解析】解:∵命题p :存在x 0>0,使2<1为特称命题,∴¬p 为全称命题,即对任意x >0,都有2x≥1.故选:A二、填空题13.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P 1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P 2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P 2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.14.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2=.15.【答案】 84 .【解析】解:(x 2﹣)9的二项展开式的通项公式为 T r+1=•(﹣1)r •x 18﹣3r ,令18﹣3r=0,求得r=6,可得常数项的值为T 7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.16.【答案】-1 【解析】试题分析:由于{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以只能0b =,1a =-,所以()20032003200411a b +=-=-。

高二数学月考卷1

高二数学月考卷1

高二数学月考卷1一、选择题(每题1分,共5分)1. 函数f(x) = (x² 1)/(x 1)的定义域是()A. RB. {x | x ≠ 1}C. {x | x ≠ 0}D. {x | x ≠ 1}2. 若向量a = (2, 3),向量b = (1, 2),则2a 3b = ()A. (8, 1)B. (8, 1)C. (8, 1)D. (8, 1)3. 二项式展开式(x + y)⁵中x²y³的系数是()A. 5B. 10C. 20D. 304. 已知等差数列{an}中,a1 = 3,a3 = 9,则公差d为()A. 2B. 3C. 4D. 65. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y = x上D. y = x上二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 若矩阵A的行列式为0,则A不可逆。

()3. 两条平行线上的任意一对对应线段比例相等。

()4. 双曲线的渐近线一定经过原点。

()5. 若函数f(x)在区间[a, b]上单调递增,则f'(x) > 0。

()三、填空题(每题1分,共5分)1. 若log₂x = 3,则x = ______。

2. 若等差数列{an}中,a4 = 8,a7 = 19,则a10 = ______。

3. 圆的标准方程(x h)² + (y k)² = r²中,(h, k)表示圆的______。

4. 若sinθ = 1/2,且θ是第二象限的角,则cosθ = ______。

5. 矩阵A = [[1, 2], [3, 4]]的行列式|A| = ______。

四、简答题(每题2分,共10分)1. 简述矩阵乘法的定义。

2. 请解释什么是反函数。

3. 简述等差数列的通项公式。

4. 请说明直线的斜率的意义。

5. 简述三角函数的周期性。

高二数学上册第二次月考测试题

高二数学上册第二次月考测试题

高二数学上册第二次月考测试题大家把实际知识温习好的同时,也应该要多做题,从题中找到自己的缺乏,及时学懂,下面是查字典数学网小编为大家整理的高二数学上册第二次月考测试题,希望对大家有协助。

一:选择题:本大题共12小题,每题5分,共60分. 在每题给出的四个选项中,只要一项为哪一项契合标题要求的.选项填涂在答题卡上。

1.假定 ,那么等于( )A. B. C. D.2. 假定函数的图象的顶点在第四象限,那么函数的图象是( )3.命题:,,那么A. :,B. :,C. :,D. :,4、是方程表示椭圆或双曲线的( )A、充沛不用要条件B、必要不充沛条件C、充要条件D、既不充沛也不用要条件5、设是函数的导函数,的图象如下图,那么的图象最有能够的是( ).6、过抛物线的焦点的直线交抛物线于两点,假定的纵坐标之积为,那么实数 ( )A、 B、或 C、 D、7、使2x2-5x-30成立的一个必要不充沛条件是()A.-8、设双曲线 (a0)的渐近线与抛物线y=x2 +1相切,那么该双曲线的离心率等于( ) A. B.2 C. D.9、双曲线的左、右焦点区分是、,其一条渐近线方程为,点在双曲线上.那么 =( )A. -12B. -2C. 0D. 410、是恣意实数,那么方程的曲线不能够是 ( )A.椭圆B.双曲线C.抛物线D.圆11、以下命题中是真命题的是( )①假定x2+y20,那么x,y不全为零的否命题②正多边形都相似的逆命题③假定m0,那么x2+x-m=0有实根的逆否命题④假定x- 是有理数,那么x是在理数的逆否命题A、①②③④B、①③④C、②③④D、①④12、椭圆的焦点,是椭圆上的一个动点,假设延伸到,使得,那么动点的轨迹是( )A、圆B、椭圆C、双曲线的一支D、抛物线二、填空题(本大题共4小题,每题5分,共20分)13. 假定 .14.抛物线在点(1,4)处的切线方程是 .15、函数的单调增区间为 .16、以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60 ,那么双曲线C的离心率为 .三、解答题:(共6个题,17题10分,其他每题12分,共70分)17、命题函数的定义域为,命题:函数(其中 ),是上的减函数。

永登县二中2018-2019学年高二上学期第二次月考试卷数学

永登县二中2018-2019学年高二上学期第二次月考试卷数学

永登县二中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( ) A .c a b >> B .a c b >> C .a b c >> D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.2. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( )A .2B .3C .4D .53. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2] 4. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>5. 若某程序框图如图所示,则该程序运行后输出的值是( )A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.6.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30 B.50 C.75 D.1507.已知数列{a n}是等比数列前n项和是S n,若a2=2,a3=﹣4,则S5等于()A.8 B.﹣8 C.11 D.﹣118.函数f(x)=cos2x﹣cos4x的最大值和最小正周期分别为()A.,πB.,C.,πD.,9. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱 柱各个顶点都在一个球面上,则球的体积为( )A .323πB .16π C.253π D .312π10.已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .11.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .25012.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

高二第二次月考数学.doc

高二第二次月考数学.doc

高二下学期第二次月考数学(理科)一、选择题:木大题共12小题,每小题5分,每小题给出的四个选项中,只有一项 是符合题目要求的。

(1) 已知集合 A= {-1, 0, 1), B= {X | X 2<1},贝ij AAB=()(A) 0 (B) {0} (C) {-1,1} (D) {-1,0,1}已知椭圆召+务]上的-点P 到椭圆-个焦点的距离为7,则P 到另-焦点(8) RAND (0,1)表示生成一个在(0,1)内的随机数(实数),若"RAND (0,1),y=RAND (0,1),则x 2+y 2<l 的概率为() (A) -(B) 1—-(C) -(D) 1—-(2)的距离为()(A) 2 (B) 3 (C) 5(D) 7(3) 已知向量。

=(1, -1), b= (x,2),且d 丄方则I a + h I 的值为((A) V2(B) V7(C) 2^2(D) V10(4) 命题“X/XG R, X 2—X +1 >(F 的否定是()(A) V XG R,x 2一x+] <0 (B) V XG R, x 2一x+l<0 (C) 3X 0G R, X O 2—X O + l<0(D) 3X 0G R, X O 2—X O + KO(5) 已知等数列{a n }中,ai=ll,a5=-l,则{ a* }的前n 项和的最大值是()(A) 15 (B) 20 (C) 26 (D) 30(6) 若执行如图所示的程序框图,则输出的结果K=()(A) 2(B) 3(C) 4(D) 5(7) 已知等比数列{a n )满足 ai= — , a3a5=4 (a 4-l),则 a2=()4(A) 2(B) 1(C)-2 (D)4 4 8 8(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该儿何体的体积为()(A)—(龙+ 1)3Q(B)| (2兀 + 1)(C)8(2^ + 1)(D)16(龙 + 1)(10)已知函数f (x) =lg ( >/1+4X2-2X) +1,则f (3) +f (-3)=( )(A) -1 (B) 0 (C) 1 (D) 2(11)已知函数f (x) =sin (2x+ -),将其图像向右平移<p ((p>0)个单位后得到的函数为奇函数,则(P的最小值为()(A) —(B) - (C) - (D)-12 6 3 2(12)设M {a, b, c} = ® 坎c 的中位数,(山)(b-c)(c-d)H0[a, b, c 的众数,(a-b)(b-c)(c-a) = 0若f (x) =M {2V, x2, 4一7.5x} (x>0),则f (x)的最小值是( )(A) -(B)-(C) 1(D)-424第II卷二、填空题:本大题共4小题,每小题5分。

永登县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

永登县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

永登县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .2. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .73. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心4. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆ )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.5. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④ 6. 已知等比数列{a n }的前n 项和为S n ,若=4,则=( )A .3B .4C .D .137. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定8. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.9. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.10.已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥A .﹣12B .﹣10C .﹣8D .﹣611.已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣212.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数二、填空题13.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .14.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .15.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想. 17.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .18.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .三、解答题19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60oABC ∠=,侧面PDC 为等边三角形,且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.20.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.21.已知不等式的解集为或(1)求,的值(2)解不等式.22.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.23.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).(Ⅰ)求C1的直角坐标方程和C2的普通方程;(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.24.(本小题满分12分)已知圆C :022=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都相切.(1)求F E D 、、;(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .永登县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A .【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.2. 【答案】【解析】解析:选B.程序运行次序为 第一次t =5,i =2; 第二次t =16,i =3; 第三次t =8,i =4;第四次t =4,i =5,故输出的i =5. 3. 【答案】C【解析】【分析】将圆C 方程化为标准方程,找出圆心C 坐标与半径r ,利用点到直线的距离公式表示出圆心到直线的距离d ,与r 比较大小即可得到结果.【解答】解:圆C 方程化为标准方程得:(x ﹣1)2+y 2=2, ∴圆心C (1,0),半径r=,∵≥>1, ∴圆心到直线l 的距离d=<=r ,且圆心(1,0)不在直线l 上,∴直线l 与圆相交且一定不过圆心. 故选C4. 【答案】D【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()4ca=+1e =,故选D. 5. 【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于9.967 6.635>,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D . 6. 【答案】D【解析】解:∵S n 为等比数列{a n }的前n 项和,=4,∴S 4,S 8﹣S 4,S 12﹣S 8也成等比数列,且S 8=4S 4,∴(S 8﹣S 4)2=S 4×(S 12﹣S 8),即9S 42=S 4×(S 12﹣4S 4), 解得=13.故选:D .【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.7. 【答案】C【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02>4,求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,故直线和圆C 相交, 故选:C .【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.8. 【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.9. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .10.【答案】C【解析】解:由已知得f ′(x )=4x 3cosx ﹣x 4sinx+2mx+1, 令g (x )=4x 3cosx ﹣x 4sinx+2mx 是奇函数,由f ′(x )的最大值为10知:g (x )的最大值为9,最小值为﹣9, 从而f ′(x )的最小值为﹣9+1=﹣8. 故选C .【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.11.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣. 故选:B .12.【答案】C【解析】解:∵对任意x 1,x 2∈R 有 f (x 1+x 2)=f (x 1)+f (x 2)+1, ∴令x 1=x 2=0,得f (0)=﹣1∴令x 1=x ,x 2=﹣x ,得f (0)=f (x )+f (﹣x )+1, ∴f (x )+1=﹣f (﹣x )﹣1=﹣[f (﹣x )+1], ∴f (x )+1为奇函数. 故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.二、填空题13.【答案】.【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.14.【答案】{2,3,4}.【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},∴C U A={3,4},又B={2,3},∴(C U A)∪B={2,3,4},故答案为:{2,3,4}15.【答案】9.【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:916.【答案】1【解析】17.【答案】(0,1).【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1).【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.18.【答案】4.【解析】解:∵f′(x)=3cosx+4sinx,∴f′()=3cos+4sin=4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.三、解答题19.【答案】【解析】由底面ABCD为菱形且60o∆是等边三角形,∠=,∴ABCABC∆,ADC取DC 中点O ,有,OA DC OP DC ⊥⊥,∴POA ∠为二面角P CD A --的平面角, ∴90oPOA ∠=.分别以,,OA OC OP 所在直线为,,x y z 轴,建立空间直角坐标系如图,则(0,1,0),(0,1,0)A P D B C -. …… 3分(Ⅰ)由M 为PB 中点,M ∴3(DM =(3,0,3),PA =-0),0,DC PA DM PA DC =∴== ∴ PA ⊥DM …… 6分(Ⅱ)由(0,2,0)DC =,0PA DC ⋅=,∴PA ⊥DC , ∴ 平面DCM 的法向量可取(3,0,PA = …… (0,1,PC =, 设直线PC 与平面DCM 所成角为θ则sin |cos ,|||||||6PC PA PC PA PC PA θ⋅=<>===.即直线PC 与平面DCM .…… 12分 20.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin (B+C ), ∴sinBcosC+sinCcosB ﹣sinCcosB ﹣sinBsinC=0,…(2分)即sinB (cosC ﹣sinC )=0,∵sinB ≠0, ∴tanC=,故C=.…(6分) (2)∵ab ×=, ∴ab=4,①又c=2,…(8分)∴a 2+b 2﹣2ab ×=4,∴a 2+b 2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.21.【答案】【解析】解:(1)因为不等式的解集为或所以,是方程的两个解所以,解得(2)由(1)知原不等式为,即,当时,不等式解集为当时,不等式解集为;当时,不等式解集为;22.【答案】【解析】解:(Ⅰ)f'(x)=3ax2+2,若a≥0,则f'(x)>0,函数f(x)在R上单调递增;若a<0,令f'(x)>0,∴或,函数f(x)的单调递增区间为和;(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,又f n(1)=n+2﹣n=2>0,f n()====﹣当n≥2时,g(n)=n2﹣n﹣1>0,,n≥2时存在唯一x n且(i i)当n≥2时,,∴(零点的区间判定)∴,(数列裂项求和)∴,又f1(x)=x3+2x﹣1,,(函数法定界),又,∴,∴,(不等式放缩技巧)命题得证.【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.23.【答案】【解析】解:(I )曲线C 1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos 2θ﹣sin 2θ)+3=0,可得直角坐标方程:x 2﹣y 2+3=0.曲线C 2的参数方程为(t 是参数,m 是常数),消去参数t 可得普通方程:x ﹣2y ﹣m=0.(II )把x=2y+m 代入双曲线方程可得:3y 2+4my+m 2+3=0,由于C 1与C 2有两个不同的公共点, ∴△=16m 2﹣12(m 2+3)>0,解得m <﹣3或m >3,∴m <﹣3或m >3.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.24.【答案】(1) 22=D ,24-=E ,8=F ;(2)2=AB . 【解析】试题解析:(1)由题意,圆C 方程为2)()(22=-+-b y a x ,且0,0><b a ,∵圆C 与直线043=+y x 及y 轴都相切,∴2-=a ,25|43|=+b a ,∴22=b , ∴圆C 方程为2)22()2(22=-++y x , 化为一般方程为08242222=+-++y x y x , ∴22=D ,24-=E ,8=F .(2)圆心)22,2(-C 到直线022=+-y x 的距离为12|22222|=+--=d ,∴21222||22=-=-=d r AB . 考点:圆的方程;2.直线与圆的位置关系.1。

月考卷1

月考卷1

永登二中2013—2014学年度第二学期月考一试题高二级 数学命题人:胡建新 审题人:一、选择题:(每小题5分,共计60分)1.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真2. 有四个关于三角函数的命题:p 1:∃x ∈R ,sin 2x 2+cos 2x 2=12p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin yp 3:∀x ∈, 1-cos2x 2=sin x p 4:sin x =cos y ⇒x +y =π2其中的假命题是 ( )A.p 1,p 4B.p 2,p 4C.p 1,p 3D.p 2,p 33.设p 、q 是简单命题,则“p 且q 为假”是“p 或q 为假”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4. 直线y=x +1被椭圆x 2+2y 2=4截得的弦的中点坐标是( )A. (32,-31) B. (31,-32) C. (-32,31) D. (-31,32) 5. 设F 1、F 2是椭圆1162522=+y x 的两个焦点,P 是椭圆上不与长轴两个端点重合的一点, 则( )A.△PF 1F 2的面积是定值B.∠F 1PF 2是定角C.△PF 1F 2的周长是定值D.△PF 1F 2中边F 1F 2的中线长为定值6. 设常数m >0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,则m 的值是 ( )A. 2或21B. 2 C .21 D .2 7.下列各对曲线中,既有相同的离心率又有相同渐近线的是 ( )A. 23x -y 2=1和29y -23x =1 B. 23x -y 2=1和y 2-23x =1 C . y 2-23x =1和x 2-y 23=1 D . 23x -y 2=1和92x -32y =1 8. 双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )A.CD9. 椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是 ( ) A.3 B. 11 C .22 D .1010. 设P 为椭圆1162522=+y x 上的点,F 1、F 2为椭圆的焦点,∠F 1PF 2=6π,则△PF 1F 2的面积等于 ( )A. 3316 B. 32(16+) C .32(16-) D .1611. 若双曲线22221(0,0)x y a b a b-=>>的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的渐近线方程是( )A. 20x y ±=B. 20x y ±= C.0x = D0y ±=12. 设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( ) A.1342222=-y x B. 15132222=-y x C .1432222=-y x D .112132222=-y x二、填空题(每小题5分,满分20分)13. 若命题“∃x ∈R ,使得x 2+(a -1)x +1<0”是真命题,则实数a 的取值范围是_____________.14. 过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠= ,则椭圆的离心率为_____________. 15. 过点)2,2(-且与双曲线1222=-y x 有公共渐近线的双曲线方程是_____________. 16. 方程22142x y t t +=--所表示的曲线为C ,有下列命题: ①若曲线C 为椭圆,则24t <<;②若曲线C 为双曲线,则4t >或2t <;③曲线C 不可能为圆;④若曲线C 表示焦点在y 上的双曲线,则4t >.以上命题正确的是 .(填上所有正确命题的序号)三、解答题(70分)17. 已知命题),0(012:,64:22>≥-+-≤-a a x x q x p 若非p 是q 的充分不必要条件,求a 的取值范围18. 已知椭圆C的左、右焦点坐标分别是(,,离心率是,求椭圆C 的方程。

永登县高中2018-2019学年高二下学期第一次月考试卷数学

永登县高中2018-2019学年高二下学期第一次月考试卷数学

永登县高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <02. 不等式的解集为( )A .或B .C .或D .3. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.4. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A .512个B .256个C .128个D .64个 5. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B.C.D.6. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A. B. C.D.7.双曲线的渐近线方程是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .8. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111]9. 复数z 为纯虚数,若(3﹣i )•z=a+i (i 为虚数单位),则实数a 的值为( )A .﹣B .3C .﹣3D .10.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .11.函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-12.以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.二、填空题13.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .15.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .16.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.17.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .18.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.三、解答题19.解不等式|3x ﹣1|<x+2.20.已知直角梯形ABCD中,AB∥CD,,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(1)求证:FG∥面BCD;(2)设四棱锥D﹣ABCE的体积为V,其外接球体积为V′,求V:V′的值.21.有一批同规格的钢条,每根钢条有两种切割方式,第一种方式可截成长度为a的钢条2根,长度为b的钢条1根;第二种方式可截成长度为a的钢条1根,长度为b的钢条3根.现长度为a的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?22.已知函数f(x)的导函数f′(x)=x2+2ax+b(ab≠0),且f(0)=0.设曲线y=f(x)在原点处的切线l1的斜率为k1,过原点的另一条切线l2的斜率为k2.(1)若k1:k2=4:5,求函数f(x)的单调区间;(2)若k2=tk1时,函数f(x)无极值,且存在实数t使f(b)<f(1﹣2t)成立,求实数a的取值范围.23.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)24.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos()=1,M,N分别为C与x轴,y轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.25.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.26.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.永登县高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵函数y=a x﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限, ∴根据图象的性质可得:a >1,a 0﹣b ﹣1<0,即a >1,b >0, 故选:B2. 【答案】A 【解析】 令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A3. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .4. 【答案】D【解析】解:经过2个小时,总共分裂了=6次, 则经过2小时,这种细菌能由1个繁殖到26=64个.故选:D .【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.5. 【答案】B 【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,则F (,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.6.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题7.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x.故选:B.【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.8.【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.9. 【答案】D【解析】解:∵(3﹣i )•z=a+i ,∴,又z 为纯虚数,∴,解得:a=.故选:D .【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.【答案】 C【解析】解:设四面体的内切球的球心为O , 则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R= 故选C .【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).11.【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质.12.【答案】D二、填空题13.【答案】2【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.14.【答案】63【解析】解:解方程x2﹣5x+4=0,得x1=1,x2=4.因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,所以a1=1,a3=4.设等比数列{a n}的公比为q,则,所以q=2.则.故答案为63.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.15.【答案】y=cosx.【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx.16.1 【解析】17.【答案】 14 .【解析】解:有框图知S=a ⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14 故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.18.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.三、解答题19.【答案】【解析】解:∵|3x ﹣1|<x+2,∴,解得﹣.∴原不等式的解集为{x|﹣<x <}.20.【答案】【解析】解:(1)证明:取AB 中点H ,连接GH ,FH , ∴GH ∥BD ,FH ∥BC , ∴GH ∥面BCD ,FH ∥面BCD ∴面FHG ∥面BCD , ∴GF ∥面BCD(2)V=又外接球半径R=∴V′=π∴V:V′=【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外接球半径与以AE,CD,DE为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.21.【答案】【解析】解:设按第一种切割方式需钢条x根,按第二种切割方式需钢条y根,根据题意得约束条件是,目标函数是z=x+y,画出不等式组表示的平面区域如下图阴影部分.由,解得,此时z=11.4,但x,y,z都应当为正整数,∴点(3.6,7.8)不是最优解.经过可行域内的整点且使z最小的直线是y=﹣x+12,即z=12,满足该约束条件的(x,y)有两个:(4,8)或(3,9),它们都是最优解.即满足条件的切割方式有两种,按第一种方式切割钢条4根,按第二种方式切割钢条8根;或按第一种方式切割钢条3根,按第二种方式切割钢条9根,可满足要求.【点评】本题考查简单的线性规划,考查了简单的数学建模思想方法,是中档题.22.【答案】【解析】解:(1)由已知,k1=f'(0)=b,设l2与曲线y=f(x)的切点为(x0,y0)(x0≠0)则所以,即,则.又4k 2=5k 1,所以﹣3a 2+4b=5b ,即b=﹣3a 2因此f'(x )=x 2+2ax ﹣3a 2=(x+3a )(x ﹣a )①当a >0时,f (x )的增区间为(﹣∞,﹣3a )和(a ,+∞),减区间为(﹣3a ,a ). ②当a <0时,f (x )的增区间为(﹣∞,a )和(﹣3a ,+∞),减区间为(a ,﹣3a ).…(2)由(1)若k 2=tk 1,则,∵ab ≠0,∴t ≠1,于是,所以,由f (x )无极值可知,,即,所以由f (b )<f (1﹣2t )知,b <1﹣2t ,即,就是3a 2<4(1﹣t )(1﹣2t ),而,故,所以,又a ≠0,因此.…【点评】本题考查函数的导数的应用,函数的极值以及函数的单调性考查分类讨论以及转化思想的应用,考查计算能力.23.【答案】 【解析】解:(1)根据散点图可知,x 与y 是负相关. (2)根据提供的数据,先求数据(ω1,y 1),(ω2,y 2),(ω3,y 3),(ω4,y 4),(ω5,y 5)的回归直线方程,y =cω+d ,=-811374≈-2.17, a ^=y -c ^ω=38-(-2.17)×11=61.87.∴数据(ωi ,y i )(i =1,2,3,4,5)的回归直线方程为y =-2.17ω+61.87,又ωi=x2i,∴y关于x的回归方程为y=-2.17x2+61.87.(3)当y=0时,x=61.872.17=6187217≈5.3.估计最多用5.3千克水.24.【答案】【解析】解:(Ⅰ)由从而C的直角坐标方程为即θ=0时,ρ=2,所以M(2,0)(Ⅱ)M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,ρ∈(﹣∞,+∞)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.25.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.26.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P(X=0)=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴X的分布列为:EX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永登二中2013—2014学年度第二学期第二次月考试卷
高二级 数学(理科)
命题人:高二备课组 审题人:
一 选择题(共12小题,,每小题5分)
1.命题“若α=

,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4
π
,则tan α≠1
C. 若tan α≠1,则α≠4π
D. 若tan α≠1,则α=4
π
2.下列命题中,真命题是( )
A .0,00≤∈∃x e R x
B .22,x R x x >∈∀
C .0=+b a 的充要条件是1-=b
a
D .1,1>>b a 是1>ab 的充分条件
3.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件.
C .命题“∃,R x ∈使得210x x ++<”的否定是:“对∀,R x ∈ 均有
210x x ++<”.
D.命题:“若x=y 则sinx=siny ”的逆否命题为真命题.
4.椭圆的中心在原点,焦距为4 ,一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =1
5.已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2=
(A)14 (B )35 (C)34 (D)45
6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于
A,B 两点,AB =C 的实轴长为( )
()
A ()
B ()
C 4 ()
D 8
7.已知曲线23ln 4
x y x =-的一条切线的斜率为1
2,则切点的横坐标为( )
A .3
B .2
C .1
D .
1
2
8.设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图像如题(8)图所示,则下列结论中一定成立的是
(A )函数()f x 有极大值(2)f 和极小值(1)f
(B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f
9.若f(x)为可导函数,且满足12)
1()1(lim
-=--→x
x f f x ,则过曲线y=f(x)上的点(1,f(1))处的切线方程的斜率为( ) A -2 B -1 C 1 D 2 10.设()sin cos f x x x =-,则()f x 在4x π
=
处的导数'4f π⎛⎫
= ⎪⎝⎭
( )
11.22
(1cos )x dx π
π-+⎰等于( )
A .π B. 2 C. π-2 D. π+2
12.已知函数f(x)=x 3+ax 2
+bx+c ,下列结论中错误的是 (A )∃x α∈R,f(x α)=0
(B )函数y=f(x)的图像是中心对称图形
(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减
(D )若x 0是f (x )的极值点,则()0'0f x =
二 填空题(每小题5分,共20分)
13.曲线21y x =+与直线0,1x x ==及x 轴所围成的图形的面积是 . 14.若209,T
x dx T =⎰则常数的值为
15.函数233x x y -=在x 等于 处取得极小值.
16.已知函数()cos ,0
1,
0x x f x x ≥⎧=⎨<⎩,则()22d f x x π
-⎰的值等于 .
永登二中2011—2012学年度第一学期第一次月考试卷
高二级数学(理科)
一选择题(每小题5分,共12分)
二填空题(每小题5分,共20分)
13 . 14 .
15 . 16 .
三解答题(共70分)
17(本题满分10分)已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.
18. (本小题满分12分)已知函数()()2
2l n 0a f x a x x a x =++>.若曲线
()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,
(1)求实数a 的值;
(2)求函数()f x 的单调区间;
19.(本小题满分12)设双曲线C :122
22=-b
y a x (a >0,b >0)的一个焦点坐标为
(3,0),离心率e = A 、B 是双曲线上的两点,AB 的中点M (1,2). (1)求双曲线C 的方程; (2)求直线AB 方程;
20(本小题满分12)如图所示,已知椭圆C 1和抛物线C 2有公共焦点)0,1(F ,C 1的中心和C 2的顶点都在坐标原点,过点M (4,0)的直线l 与抛物线C 2分别相交于A 、B 两点.
(Ⅰ)写出抛物线C 2的标准方程; (Ⅱ)求证:以AB 为直径的圆过原点; (Ⅲ)若坐标原点O 关于直线l 的对称点P 在抛物线C 2上,直线l 与椭圆C 1有公共点,求椭圆C 1的长轴长的最小值.
21. (本小题满分12分)已知函数 2
1()2ln (2)2
f x x a x a x =
-+-,a ∈R . (1)当 1a = 时,求函数 ()f x 的最小值;
(2)当1a =- 时,求证:无论c
取何值,直线y c =-+均不可能与函数()f x 相切;
(3)是否存在实数a ,对任意的 ()12,0,x x ∈+∞,且12x x ≠,有
2121
()()
f x f x a
x x ->-恒成立,若存在求出a 的取值范围,若不存在,说明理由。

22.(本小题满分12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2 (Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时,f(x)≤kgf(x),求k的取值范围。

相关文档
最新文档