中考数学基础题强化提高测试(二)及答案

合集下载

中考数学填空题专项练习经典测试(含答案解析)(2)

中考数学填空题专项练习经典测试(含答案解析)(2)

一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()A.M B.P C.Q D.R2.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣13.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.184.如图中∠BOD的度数是()A.150°B.125°C.110°D.55°5.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣56.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-7.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 8.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 12.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 13.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 14.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.17.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.18.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.19.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.20.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____.21.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.22.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画AC ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)23.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 24.若实数a 、b 满足a+b 2=2,则a 2+5b 2的最小值为_____.25.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题26.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?27.如图,已知二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.28.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .(Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.29.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表: x … 1-12- 0 1 2 3 … y … 3 54 0 1- 0 m …(1)直接写出此二次函数的对称轴 ;(2)求b 的值;(3)直接写出表中的m 值,m = ;(4)在平面直角坐标系xOy 中,画出此二次函数的图象.30.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.B4.C5.A6.C7.A8.B9.C10.C11.A12.C13.B14.D15.B二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长17.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要122.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值24.4【解析】【分析】由a+b2=2得出b2=2-a代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b225.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.4.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .6.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.8.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.9.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.12.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.13.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x )2=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 14.D解析:D【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x ﹣2)(x ﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x 2﹣7x +10=0(x ﹣2)(x ﹣5)=0,解得:x 1=2,x 2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 17.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:OD= 2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点解析:(﹣2,23).【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.【详解】解:如图,∵点P0的坐标为(2,0),∴OP0=OP1=2,∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,OH=12OP3=2,P333∴P3(-2,3故答案为(-2,3【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.22.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:1 2π【解析】【分析】如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S3.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S1﹣S2=12π,故答案为12π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

2020年黑龙江省哈尔滨市中考数学测试考试试卷(二)(解析版)

2020年黑龙江省哈尔滨市中考数学测试考试试卷(二)(解析版)

2020年黑龙江省哈尔滨市中考数学测试试卷(二)一.选择题(共10小题)1.在|﹣2|,﹣(+2),2﹣1,0这四个数中,最小的数是()A.|﹣2| B.﹣(+2)C.0 D.2﹣12.下列运算正确的是()A.a2•a3=a6B.2a•3a=5a2C.2a﹣2=D.(﹣2a2b﹣1c)﹣3=﹣3.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列几何体中,俯视图是矩形的是()A.B.C.D.5.如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是()A.25°B.40°C.30°D.50°6.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)7.某种商品经过两次降价,由原来每件25元调至16元,设平均每次下降的百分率为x%,那么x的值为()A.20% B.20 C.25 D.25%8.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为()米.A.25 B.25C.D.25+259.已知点A(1,1)在反比例函数y=的图象上,则k的值为()A.2 B.0 C.3 D.﹣110.在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.二.填空题(共10小题)11.一条微信被转发了3570000次,将3570000这个数据用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:﹣2=.14.因式分解:﹣2xm2+12xm﹣18x=.15.不等式组的解集是.16.抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,则m=.17.如图,将一个矩形纸片ABCD沿着BE折叠,使点C、D分别落在点C′、D′处,若∠ABC′=70°,则∠ABE的度数是度.18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球,且摸到红球的概率为,那么口袋中其余球的个数为个.19.在平行四边形ABCD中,连接AC,∠CAD=40°,△ABC为钝角等腰三角形,则∠ADC 的度数为度.20.如图,在菱形ABCD中,连接BD,点E在AB上,连接CE交BD于点F,作FG⊥BC于点G,∠BEC=3∠BCE,BF=DF,若FG=,则AB的长为.三.解答题(共7小题)21.先化简,再求÷(2﹣)的值,其中x=﹣2cos60°+3tan45°.22.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画出△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且四边形ACBD是中心对称图形;(2)在图2中找一点E(点E在小正方形的顶点上),使tan∠AEB=2(AE<EB),且四边形ACEB的对边不平行,并直接写出图2中四边形ACEB的面积.23.为减轻学生的作业负担,某地教育局规定初中阶段学生每晚的作业量不超过1.5小时,一个月后,九年一班芳芳对本班每位同学晚上作业时间进行了一次调查,并根据收集的数据绘制了如图所示的不完整的频数分布直方图(每组包含最大值,不包含最小值),并知1﹣1.5h占45%,2~2.5h占10%,请根据以上信息解答问题.(1)求该班共有多少名学生;(2)求该班作业时间不超过1小时和超过2.5小时的共有多少人;(3)若该市九年级共有3000名学生,请估计他们中完成作业超过1.5小时而不超过2.5小时的有多少人.24.已知:将矩形纸片ABCD折叠,使点A与点C重合(点D与D′为对应点),折痕为EF,连接AF.(1)如图1,求证:四边形AECF为菱形;(2)如图2,若FC=2DF,连接AC交EF于点O,连接DO,D′O,在不添加任何辅助线的情况下,请直接写出图2中所有等边三角形.25.哈尔滨市道路改造工程中,有一段6000米的道路由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用30天.(1)求甲、乙两工程队每天各完成多少米;(2)如果甲工程队每天需付工程费1000元,乙工程队每天需付工程费600元,若甲、乙两工程队共同完成此项任务,支付工程队总费用低于33800元,则甲工程队最少施工多少天?(注:天数取整数)26.已知半圆O,点C、D在上,连接AD、BD、CD,∠BDC+2∠ABD=90°.(1)如图1,求证:DA=DC;(2)如图2,作OE⊥BD交半圆O于点E,连接AE交BD于点F,连接AC,求证:∠DFA=∠DAC+∠DAE;(3)如图3,在(2)的条件下,设AC交BD于点G,FG=1,AG=5,求半圆O的半径.27.如图,在平面直角坐标系中,抛物线y=ax2+bx与x轴交于点A,顶点B的坐标为(﹣2,﹣2).(1)求a,b的值;(2)在y轴正半轴上取点C(0,4),在点A左侧抛物线上有一点P,连接PB交x轴于点D,连接CB交x轴于点F,当CB平分∠DCO时,求点P的坐标;(3)在(2)的条件下,连接PC,在PB上有一点E,连接EC,若∠ECB=∠PDC,求点E 的坐标.参考答案与试题解析一.选择题(共10小题)1.在|﹣2|,﹣(+2),2﹣1,0这四个数中,最小的数是()A.|﹣2| B.﹣(+2)C.0 D.2﹣1【分析】直接利用负整数指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:∵|﹣2|=2,﹣(+2)=﹣2,2﹣1=,0,∴|﹣2|>2﹣1>0>﹣(+2),∴最小的数是:﹣(+2).故选:B.2.下列运算正确的是()A.a2•a3=a6B.2a•3a=5a2C.2a﹣2=D.(﹣2a2b﹣1c)﹣3=﹣【分析】直接利同底数幂的乘法运算法则、单项式乘以单项式的运算法则、负指数幂的运算法则分别化简得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、2a•3a=6a2,故此选项错误;C、2b﹣2=,故此选项错误;D、(﹣2a2b﹣1c)﹣3=﹣,故此选项正确.故选:D.3.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.4.下列几何体中,俯视图是矩形的是()A.B.C.D.【分析】根据简单和几何体的三视图判断方法,判断圆柱、圆锥、三棱柱、球的俯视图,即可解答.【解答】解:A、俯视图为圆,故错误;B、俯视图为矩形,正确;C、俯视图为三角形,故错误;D、俯视图为圆,故错误;故选:B.5.如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是()A.25°B.40°C.30°D.50°【分析】由DE∥OA,∠D=50°,根据两直线平行,内错角相等,即可求得∠AOD的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠C的度数.【解答】解:∵DE∥OA,∠D=50°,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°.故选:A.6.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出顶点坐标是(h,k).【解答】解:∵抛物线为y=(x﹣2)2+3,∴顶点坐标是(2,3).故选:B.7.某种商品经过两次降价,由原来每件25元调至16元,设平均每次下降的百分率为x%,那么x的值为()A.20% B.20 C.25 D.25%【分析】根据该商品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:依题意,得:25(1﹣x%)2=16,解得:x1=20,x2=180(舍去,不合题意).故选:B.8.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为()米.A.25 B.25C.D.25+25【分析】过点B作BE⊥AD于E,设BD=x,则可以表示出CE,AE的长,再根据已知列方程从而可求得BD的长.【解答】解:过点B作BE⊥AD于E.∵∠BCD=60°,tan∠BCE=,∴CE=x.在直角△ABE中,AE=x,AC=50米,则x﹣x=50.解得x=25.即小岛B到公路l的距离为25米.故选:B.9.已知点A(1,1)在反比例函数y=的图象上,则k的值为()A.2 B.0 C.3 D.﹣1【分析】将点A(1,1)代入反比例函数y=即可求出k的值.【解答】解:将将点A(1,1)代入反比例函数y=,得=1,解得,k=3;故选:C.10.在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.【分析】根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,1),二次函数的开口向上,据此判断二次函数的图象.【解答】解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.二.填空题(共10小题)11.一条微信被转发了3570000次,将3570000这个数据用科学记数法表示为 3.57×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3570000=3.57×106.故答案为:3.57×106.12.在函数y=中,自变量x的取值范围是x≠3 .【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.13.计算:﹣2=﹣5.【分析】先分母有理化,再把化简,然后合并即可.【解答】解:原式=﹣6=﹣5.故答案为﹣5.14.因式分解:﹣2xm2+12xm﹣18x=﹣2x(m﹣3)2.【分析】首先提公因式﹣2x,再利用完全平方进行二次分解即可.【解答】解:原式=﹣2x(m2﹣6m+9)=﹣2x(m﹣3)2.故答案为:﹣2x(m﹣3)2.15.不等式组的解集是≤x<.【分析】先求出不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:解不等式①得:x<,解不等式②得:x≥,∴不等式组的解集为≤x<,故答案为:≤x<.16.抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,则m=﹣2 .【分析】由于抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,所以把(0,0)代入函数的解析式中即可求解.【解答】解:∵抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,∴0=m2﹣4,∴m=±2,当m=2时,m﹣2=0,∴m=﹣2.故答案为:﹣2.17.如图,将一个矩形纸片ABCD沿着BE折叠,使点C、D分别落在点C′、D′处,若∠ABC′=70°,则∠ABE的度数是10 度.【分析】根据折叠前后对应角相等即可得出∠CBE的度数,再根据∠ABC为直角即可得到答案.【解答】解:设∠ABE=x,根据折叠前后角相等可知,∠C′BE=∠CBE=70°+x,∵∠ABC=90°,∴70°+x+x=90°,解得x=10°.故答案为:10.18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球,且摸到红球的概率为,那么口袋中其余球的个数为8 个.【分析】设口袋中其余球的个数为x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设口袋中其余球的个数为x个,根据题意得:=,解得:x=8,经检验x=8是方程的解,则口袋中其余球的个数为8个;故答案为:8.19.在平行四边形ABCD中,连接AC,∠CAD=40°,△ABC为钝角等腰三角形,则∠ADC 的度数为100或40 度.【分析】分两种情况:①∠BAC=∠BCA=40°;②∠B=∠BCA=40°;首先求得∠B的度数,再由四边形ABCD是平行四边形,根据平行四边形对角相等即可求得∠ADC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠BCA=∠CAD=40°,①如图1,∠BAC=∠BCA=40°,∠B=180°﹣40°×2=100°,则∠ADC=100°;②如图2,∠B=∠BCA=40°,则∠ADC=40°.综上所述,∠ADC的度数为100或40度.故答案为:100或40.20.如图,在菱形ABCD中,连接BD,点E在AB上,连接CE交BD于点F,作FG⊥BC于点G,∠BEC=3∠BCE,BF=DF,若FG=,则AB的长为.【分析】连接AC交BD于M,设BF=5a,则DF=11a,得出BD=16a,由菱形的性质得出AC⊥BD,∠ACB=∠ACD,AB=BC,AB∥CD,BM=DM=BD=8a,得出FM=BM﹣BF=3a,证出CF平分∠ACB,得出FG=FM=,求出BF=,BM=2,证明Rt△FMC≌Rt△FGC(HL),得出CG=CM,在Rt△BFG中,求出BG==1,设CG=CM=x,则BC=x+1,在Rt△BMC中,由勾股定理得出方程,解方程即可.【解答】解:连接AC交BD于M,如图所示:设BF=5a,则DF=11a,∴BD=16a,∵四边形ABCD是菱形,∴AC⊥BD,∠ACB=∠ACD,AB=BC,AB∥CD,BM=DM=BD=8a,∴FM=BM﹣BF=3a,∵AB∥CD,∴∠BEC=∠ECD,∵∠BEC=3∠BCE,∴∠ECD=3∠BCE,∴∠ACE=∠BCE,∴CF平分∠ACB,∵FG⊥BC,FM⊥AC,∴FG=FM=,∴3a=,∴a=,∴BF=,BM=2,在Rt△FMC和Rt△FGC中,,∴Rt△FMC≌Rt△FGC(HL),∴CG=CM,在Rt△BFG中,BG===1,设CG=CM=x,则BC=x+1,在Rt△BMC中,由勾股定理得:22+x2=(x+1)2,解得:x=,∴AB=BC=.三.解答题(共7小题)21.先化简,再求÷(2﹣)的值,其中x=﹣2cos60°+3tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.【解答】解:原式=÷=•=﹣,当x=﹣2cos60°+3tan45°=﹣1+3=2时,原式=﹣1.22.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画出△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且四边形ACBD是中心对称图形;(2)在图2中找一点E(点E在小正方形的顶点上),使tan∠AEB=2(AE<EB),且四边形ACEB的对边不平行,并直接写出图2中四边形ACEB的面积.【分析】(1)构造平行四边形ACBD即可解决问题.(2)取格点F,易知tan∠AFB=2,再利用圆周角定理,寻找格点E即可解决问题.【解答】解:(1)如图,△ABD即为所求.(2)如图,四边形ABEC即为所求.四边形ACEB的面积=××+×4×3=8.5.23.为减轻学生的作业负担,某地教育局规定初中阶段学生每晚的作业量不超过1.5小时,一个月后,九年一班芳芳对本班每位同学晚上作业时间进行了一次调查,并根据收集的数据绘制了如图所示的不完整的频数分布直方图(每组包含最大值,不包含最小值),并知1﹣1.5h占45%,2~2.5h占10%,请根据以上信息解答问题.(1)求该班共有多少名学生;(2)求该班作业时间不超过1小时和超过2.5小时的共有多少人;(3)若该市九年级共有3000名学生,请估计他们中完成作业超过1.5小时而不超过2.5小时的有多少人.【分析】(1)由1~1.5h的人数及其所占百分比可得总人数;(2)先求出2~2.5h的人数,再用总人数减去1~2.5h的人数即可得出答案;(3)用总人数乘以样本中完成作业超过1.5小时而不超过2.5小时的人数所占比例即可得.【解答】解:(1)该班的学生总人数为18÷45%=40(人);(2)40×10%=4(人),40﹣18﹣6﹣4=12(人),答:该班作业时间不超过1小时和超过2.5小时的共有12人;(3)×3000=750(人),答:估计他们中完成作业超过1.5小时而不超过2.5小时的有750人.24.已知:将矩形纸片ABCD折叠,使点A与点C重合(点D与D′为对应点),折痕为EF,连接AF.(1)如图1,求证:四边形AECF为菱形;(2)如图2,若FC=2DF,连接AC交EF于点O,连接DO,D′O,在不添加任何辅助线的情况下,请直接写出图2中所有等边三角形.【分析】(1)由折叠性质得AE=CE,AF=FC,∠AEF=∠CEF,由矩形性质得出∠ADC=∠BAD=90°,AE∥CF,证出AE=CF,得出四边形AECF是平行四边形,即可得出结论;(2)先证出∠DAF=30°,得出∠EAF=60°,证出△AEF和△CEF是等边三角形;再证出OD=AC=OA,∠OAD=60°,得出△AOD是等边三角形;证出CD′=OC=OD′,得出△COD′是等边三角形.【解答】(1)证明:∵将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,∴AE=CE,AF=FC,∠AEF=∠CEF,∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AE∥CF,∴∠CFE=∠AEF,∴∠CEF=∠CFE,∴CF=CE,∴AE=CF,∴四边形AECF是平行四边形,又∵AE=CE,∴四边形AECF是菱形;(2)解:等边三角形为:△AEF、△CEF、△AOD、△COD′;理由如下:∵FC=2DF,AF=FC,∴AF=2DF,∵∠ADC=90°,∴∠DAF=30°,∴∠EAF=60°,∵四边形AECF是菱形,∴AE=AF,△AEF≌△CEF,OA=OC=AC,∴△AEF和△CEF是等边三角形;∵∠ADC=90°,∴OD=AC=OA,∵∠OAF=∠EAF=30°,∴∠OAD=60°,∴△AOD是等边三角形;∵CD′=AD=OC,OD′=AC,∴CD′=OC=OD′,∴△COD′是等边三角形.25.哈尔滨市道路改造工程中,有一段6000米的道路由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用30天.(1)求甲、乙两工程队每天各完成多少米;(2)如果甲工程队每天需付工程费1000元,乙工程队每天需付工程费600元,若甲、乙两工程队共同完成此项任务,支付工程队总费用低于33800元,则甲工程队最少施工多少天?(注:天数取整数)【分析】(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,根据甲工程队单独完成此项工程比乙工程队单独完成此项工程少用30天,列出方程,求出方程的解,再进行检验即可;(2)设甲工程队施工a天,根据支付工程队总费用低于33800元,列出不等式,求出不等式的解集,即可得出答案.【解答】解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,根据题意得:=+30,解得x=100,经检验:x=100是原方程的解,则2x=2×100=200(米),答:甲工程队每天完成200米,乙工程队每天完成100米;(2)设甲工程队施工a天,根据题意得:1000a+600×<33800,解得:a>11,∵a是整数,∴a的最小值为12,答:甲工程队最少施工12天.26.已知半圆O,点C、D在上,连接AD、BD、CD,∠BDC+2∠ABD=90°.(1)如图1,求证:DA=DC;(2)如图2,作OE⊥BD交半圆O于点E,连接AE交BD于点F,连接AC,求证:∠DFA =∠DAC+∠DAE;(3)如图3,在(2)的条件下,设AC交BD于点G,FG=1,AG=5,求半圆O的半径.【分析】(1)由同弧所对的圆心角是圆周角的2倍,可得∠BOC=2∠BDC,∠AOD=2∠ABD,可得∠BOC+2∠AOD=180°,由平角的性质可得∠BOC+∠AOD+∠COD=180°,可得∠AOD =∠COD,可得结论;(2)由垂径定理可得=,可得∠DAE=∠EAB,由等腰三角形的性质可得∠DBA=∠DAC,由外角性质可得结论;(3)过点A作AM⊥AB,交BD的延长线于点M,连接OD交AC于N,由余角的性质可得∠M=∠AGD,可得AM=AG=5,由外角的性质和等腰三角形的判定可得AM=MF=5,可求MG=6,由等腰三角形的性质可求DM=DG=3,由勾股定理可求AD的长,由锐角三角函数可求AB的长,即可求解.【解答】证明:(1)如图1,连接OD,OC,∵∠BOC=2∠BDC,∠AOD=2∠ABD,∠BDC+2∠ABD=90°,∴∠BOC+2∠AOD=180°,∵∠BOC+∠AOD+∠COD=180°,∴∠AOD=∠COD,∴AD=CD;(2)如图2,∵OE⊥BD,∴=,∴∠DAE=∠EAB,∵AD=CD,∴∠DAC=∠C,且∠DBA=∠C,∴∠DBA=∠DAC,∴∠DFA=∠EAB+∠DBA=∠DAE+∠DAC;(3)如图2,过点A作AM⊥AB,交BD的延长线于点M,连接OD交AC于N,∵OD=OB,∴∠ABD=∠ODB,∵AD=CD,∴OD⊥AC,∴∠AGD+∠ODB=90°,∵∠MAB=90°,∴∠ABD+∠M=90°,∴∠M=∠AGD,∴AM=AG=5,∵AB是直径,∴∠ADB=90°,∴∠M+∠MAD=90°,∴∠MAD=∠ABD,∴∠MAD+∠DAE=∠ABD+∠EAB,∴∠MAE=∠MFA,∴AM=MF=5,∴MG=MF+FG=6,∵AD⊥MG,∴DM=DG=3,∴DF=DG﹣FG=2,∴AD===4,∵∠ABD=∠MAD,∴sin∠ABD=sin∠MAD,∴,∴,∴AB=,∴OA=,∴半圆O的半径.27.如图,在平面直角坐标系中,抛物线y=ax2+bx与x轴交于点A,顶点B的坐标为(﹣2,﹣2).(1)求a,b的值;(2)在y轴正半轴上取点C(0,4),在点A左侧抛物线上有一点P,连接PB交x轴于点D,连接CB交x轴于点F,当CB平分∠DCO时,求点P的坐标;(3)在(2)的条件下,连接PC,在PB上有一点E,连接EC,若∠ECB=∠PDC,求点E的坐标.【分析】(1)抛物线的表达式为:y=a(x+2)2﹣2=ax2+4ax+4a﹣2,故4a﹣2=0,即可求解;(2)直线BC的表达式为:y=3x+4,则点F(﹣,0),tan∠BCH===tanα,在Rt△DFG中,设FG=m,则DG=3m,则CG=3DG=9m,CF=9m﹣m=8m==,解得:m=,故点D(﹣3,0),即可求解;(3)证明△PMC≌△CHB(HL),则CP=CB,∠MPC=∠BCH,证明△PEC≌△BNC(SAS),则PE=BN,CE=CN,证明△ECD≌△NCD(SAS),则DE=DN,在Rt△DBN中,BD2+BN2=DN2,则BD2+PE2=DE2,在Rt△PKD中,PD==3,在Rt△BDQ中,BD==,DE=,ER∥PK,故,即=,解得:ER=,即可求解.【解答】解:(1)抛物线的表达式为:y=a(x+2)2﹣2=ax2+4ax+4a﹣2,故4a﹣2=0,解得:a=,b=4a=2;(2)抛物线的表达式为:y=x2+2x…①,过点B作BH⊥y轴于点H,过点D作DG⊥CB于点G,由点B、C的坐标得,直线BC的表达式为:y=3x+4,则点F(﹣,0),∵点B(﹣2,﹣2),BH=2,CH=4+2=6,则tan∠BCH===tanα,∵DG⊥BC,∴∠FDG=∠FCO=α=∠DCG,在Rt△DFG中,设FG=m,则DG=3m,则CG=3DG=9m,CF=9m﹣m=8m==,解得:m=,DF==m=,OD=OF+DF=3,故点D(﹣3,0),由点B、D的坐标可得,直线PB的表达式为:y=﹣2x﹣6…②,联立①②并解得:x=﹣2(舍去)或﹣6,故点P(﹣6,6);(3)如图2,过点P作PM⊥y轴于点M,过点B作BH⊥y轴于点H,∵P(﹣6,6),则PM=OM=6,∴CM=2,PM=CH,∴BH=CM,∵∠PMC=∠BHC=90°,∴△PMC≌△CHB(HL),∴CP=CB,∠MPC=∠BCH,∵∠MPC+∠PCM=90°,∴∠BCH+∠PCM=90°,∴∠PCB=90°,∴∠CPB=∠CBP=45°,过点C作CN⊥CE,过点B作BN⊥BP,CN、BN交于点N,连接DN,则∠CBN=90°﹣∠CPB=45°,∴∠CPB=∠CBN,∵∠ECN=∠EBN=90°,∴∠CEB+∠CNB=180°,∵∠CEB+∠PEC=180°,∴∠CNB=∠PEC,∵PC=CB,∴△PEC≌△BNC(SAS),则PE=BN,CE=CN,∵∠ECB=∠EDC+∠DCB,∠PDC=∠DCB+∠CBD,∠ECB=∠PDC,∴∠ECD=∠CBD=45°,∴∠DCN=90°﹣∠ECD=45°,∴∠ECD=∠DCN,∵CD=CD,∴△ECD≌△NCD(SAS),∴DE=DN,在Rt△DBN中,BD2+BN2=DN2,则BD2+PE2=DE2,过点P作PK⊥x轴于点K,∴PK=KO=6,∵OD=3,∴KD=3,在Rt△PKD中,PD==3,设ED=t,则PE=3﹣t,故点B作BQ⊥x轴于点Q,则BQ=OQ=2,DQ=OD﹣OQ=1,在Rt△BDQ中,BD==,故()2+(3﹣t)2=t2,解得:t=,故DE=,故点E作ER⊥x轴于点R,则ER∥PK,故,即=,解得:ER=,∵∠EDR=∠BDQ,故tan∠EDR=tan∠BDQ,即:,故DR=,OR=DR+OD=+3=,故点E的坐标为:(﹣,).。

贵州省贵阳市2020年九年级数学中考基础冲刺训练(二)及答案

贵州省贵阳市2020年九年级数学中考基础冲刺训练(二)及答案

贵州省贵阳市2020年数学中考基础冲刺训练(二)一.选择题(每题3分,满分30分)1.已知x﹣2y=﹣2,则3+2x﹣4y的值是()A.0 B.﹣1 C.3 D.52.如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG3.下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个B.5个C.4个D.3个4.以下问题,适合用普查的是()A.调查某种灯泡的使用寿命B.调查中央电视台春节联欢会的收视率C.调查我国八年级学生的视力情况D.调查你们班学生早餐是否有喝牛奶的习惯5.如图,在菱形ABCD中,AB=2,∠B=60°,E、F分别是边BC、CD中点,则△AEF 周长等于()A.B.C.D.36.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是()A.6 B.﹣6 C.3 D.﹣37.如果方程x2﹣8x+15=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tan A的值为()A.B.C.D.或8.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A.B.C.D.9.在平面直角坐标系xOy中,若一次函数y=kx﹣1(k≠0)的图象经过点P,且y的值随x 值的增大而减少,则点P的坐标可以为()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)10.如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣二.填空题(每题4分,满分20分)11.一次数学测试后,某班40名学生的成绩被分为5组,第1﹣4组的频数分别为12、10、6、8,则第5组的频率是.12.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M.若△POM的面积等于2,则k的值等于.13.如图,正六边形ABCDEF的顶点B、C分别在正方形AGHI的边AG、GH上,如果AB=4,那么CH的长为.14.若不等式组的解集是﹣1<x≤1,则a=,b=.15.如图,在矩形ABCD中,AB<BC,点E为CD边的中点,连接AE并延长与BC的延长线交于点F,过点E作EM⊥AF交BC于点M,连接AM与BD交于点N,现有下列结论:①AM=MF;②ME2=MC•AM;③=(sin∠DAE)2;④点N是四边形ABME 的外接圆的圆心,其中正确结论的序号是.三.解答题16.(10分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 253835 45 51 48 57 49 47 53 5849(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:范围25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人数(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:平均数中位数满分率46.8 47.5 45%得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:平均数中位数满分率45.3 49 51.2%请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.17.(8分)某商场销售进价为每件x元的上衣,先按进价的2倍作为定价,而实际销售时按定价打八折出售.(1)试用代数式表示:①每件上衣最初的定价为元;②每件上衣打八折后的销售价为元;③n件上衣打八折后的利润为元;(2)若该商场这次共购进每件120元的上衣100件,按以上办法售出80件后,其余按定价的六折销售全部卖完,问该商场在这批上衣买卖中,除支付销售费用1000元外,盈亏情况如何?18.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是边AC的中点,CF⊥BD,垂足为点F,延长CF与边AB交于点E.求:(1)∠ACE的正切值;(2)线段AE的长.19.(10分)某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)?20.(10分)如图,在等腰Rt△ABC中,∠BAC=90°,延长BA至点D,连结DC,过点B 作BE⊥DC于点E,F为BC上一点,FC=FE.连结AF,AE.(1)求证:FA=FE.(2)若∠D=60°,BC=10,求△AEF的周长.21.(10分)某种机器使用若干年后即被淘汰,该机器有一易损零件,为调查该易损零件的使用情况,随机抽取了100台已被淘汰的这种机器,经统计:每台机器在使用期内更换的该易损零件数均只有8,9,10,11这四种情况,并整理了这100台机器在使用期内更换的该易损零件数,绘制成如图所示不完整的条形统计图.(1)请补全该条形统计图;(2)某公司计划购买一台这种机器以及若干个该易损零件,用上述100台机器更换的该易损零件数的频率代替一台机器更换的该易损零件数发生的概率.①求这台机器在使用期内共更换了9个该易损零件的概率;②若在购买机器的同时购买该易损零件,则每个200元;若在使用过程中,因备用该易损零件不足,再购买,则每个500元.请你帮该公司用花在该易损零件上的费用的加权平均数进行决策:购买机器的同时应购买几个该易损零件,可使公司的花费最少?22.(10分)为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?23.如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点(不与点C重合),过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.24.我们知道:在小学已经学过“正方形的四条边都相等,正方形的四个内角都是直角”,试利用上述知识,并结合已学过的知识解答下列问题:如图1,在正方形ABCD中,G是射线DB上的一个动点(点G不与点D重合),以CG 为边向下作正方形CGEF.(1)当点G在线段BD上时,求证:∠DCG=∠BCF;(2)连接BF,试探索:BF,BG与AB的数量关系,并说明理由;(3)若AB=a(a是常数),如图2,过点F作FT∥BC,交射线DB于点T,问在点G 的运动过程中,GT的长度是否会随着G点的移动而变化?若不变,请求出GT的长度;若变化,请说明理由.25.如图,直线y=x+2与x轴交于点B,与双曲线C1:(x>0)交于点A,且A点的横坐标为2.(1)求双曲线C1的函数解析式;(2)若P为C1上的一动点,连接PO.①将PO绕O点顺时针旋转90°,得到点P′,问P′是否在某定曲线C1上运动,若是,试求C1的解析式,若不是,说明理由;②若△AOP的面积为,直接写出P点坐标为.参考答案一.选择题1.解:由x﹣2y=﹣2,得到原式=3+2(x﹣2y)=3﹣4=﹣1.故选:B.2.解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.3.解:综合三视图,这个立体图形的底层应该有3个,第二层应该有1个小正方体,因此构成这个立体图形的小正方体的个数是3+1=4个.故选:C.4.解:A、调查某种灯泡的使用寿命,不能使用普查,错误;B、调查中央电视台春节联欢会的收视率被调查的对象都较大,不能使用普查,错误;C、调查我国八年级学生的视力情况被调查的对象都较大,不能使用普查,错误;D、调查你们班学生早餐是否有喝牛奶的习惯被调查的对象较小,故D宜使用普查;故选:D.5.解:如图,连接AC,∵菱形ABCD,∠B=60°,∴△ABC是等边三角形,∵点E是BC的中点,∴AE=,∠EAC=30°,同理可得:AF=,∠FAC=30°,∴AE=AF,∠EAC=∠FAC,∴△AEF是等边三角形,∴△AEF的周长=3×=3.故选:B.6.解:由题意可得:B点对应的数是:a+6,∵点A和点B表示的数恰好互为相反数,∴a+a+6=0,解得:a=﹣3.故选:D.7.解:x2﹣8x+15=0,(x﹣3)(x﹣5)=0,则x﹣3=0,x﹣5=0,解得x=3或5,①当3和5为直角边时:tan A=.②当5为斜边时,另一直角边为4,tan A=.故选:D.8.解:列表如下:红红蓝红紫蓝紫紫共有6种情况,其中配成紫色的有3种,所以恰能配成紫色的概率==,故选:A.9.解:把(2,1)代入一次函数y=kx﹣1得:2k﹣1=1,k=1,因此不可以;把(﹣2,1)代入一次函数y=kx﹣1得:﹣2k﹣1=1,k=﹣1,因此可以;故选:B.10.解:∵抛物线y=x2﹣7x+与x轴交于点A、B∴B(5,0),A(9,0)∴抛物线向左平移4个单位长度∴平移后解析式y=(x﹣3)2﹣2当直线y=x+m过B点,有2个交点∴0=+mm=﹣当直线y=x+m与抛物线C2相切时,有2个交点∴x+m=(x﹣3)2﹣2x2﹣7x+5﹣2m=0∵相切∴△=49﹣20+8m=0∴m=﹣如图∵若直线y=x+m与C1、C2共有3个不同的交点,∴﹣<m<﹣故选:C.二.填空题11.解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故答案为:0.1.12.解:∵△POM的面积等于2,∴|k|=2,而k<0,∴k=﹣4,故答案为:﹣4.13.解:正六边形的内角的度数==120°,则∠CBG=180°﹣120°=60°,∴∠BCG=30°,∴BG=BC=2,CG=BC=2,∴AG=AB+BG=6,∵四边形AGHI是正方形,∴GH=AG=6,∴CH=HG﹣CG=6﹣2,故答案为:6﹣2.14.解:∵解不等式①得:x>1+a,解不等式②得:x≤﹣∴不等式组的解集为:1+a<x≤﹣∵不等式组的解集是﹣1<x≤1,∴1+a=﹣1,﹣=1,解得:a=﹣2,b=﹣3故答案为:﹣2,﹣3.15.解:∵四边形ABC都是正方形,∴AD∥BF,∴∠DAE=∠F,∵∠AED=∠FEC,DE=EC,∴△ADE≌△FCE(AAS),∴AE=EF,∵ME⊥AF,∴MA=NF,故①正确,∵∠EMC=∠EMF,∠ECM=∠MEF,∴△MEC∽△MFE,∴ME:MF=MC:ME,∴ME2=MC•MF=MC•AM,故②正确,∵∠AEM=90°,∠ADE=∠ECM=90°,∴∠AED+∠MEC=90°,∠MEC+∠EMC=90°,∴∠AED=∠EMC,∴△ADE∽△ECM,∴=()2=()2=(tan∠DAE)2,故③错误,∵∠ABM=∠AEM=90°,∴A,B,M,E四点共圆,∴四边形的外接圆的圆心是线段AM的中点,显然点N不是AM的中点,故④错误.故答案为①②.三.解答题16.解:(1)补充表格如下:范围25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人数 1 0 3 2 7 3 4 (2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,故答案为:61;②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;建议:该校在保持学校整体水平的同时,多关注接近满分的学生,提高满分成绩的人数.17.解:(1)①每件上衣最初的定价为2x(元);②每件上衣打八折后的销售价为2x•0.8=1.6x(元);③n件上衣打八折后的利润为n•(1.6x﹣x)=0.6xn(元);(2)0.6×120×80+2×120×0.6×20﹣120×20﹣1000=5240(元),所以该商场在这批上衣买卖中盈利5240元.故答案为2x,1.6x,06xn.18.解:(1)∵∠ACB=90°,∴∠ACE+∠BCE=90°,又∵CF⊥BD,∴∠CFB=90°,∴∠BCE+∠CBD=90°,∴∠ACE=∠CBD,∵AC=4且D是AC的中点,∴CD=2,又∵BC=3,在Rt△BCD中,∠BCD=90°.∴tan∠BCD==,∴tan∠ACE=tan∠CBD=;(2)过点E作EH⊥AC,垂足为点H,在Rt△EHA中,∠EHA=90°,∴tan A=,∵BC=3,AC=4,在Rt△ABC中,∠ACB=90°,∴tan A==,∴=,设EH=3k,AH=4k,∵AE2=EH2+AH2,∴AE=5k,在Rt△CEH中,∠CHE=90°,∴tan∠ECA==,∴CH=k,∴AC=AH+CH=k=4,解得:k=,∴AE=.19.解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.20.(1)证明:∵BE⊥DC,∴∠EBC+∠ECB=∠CEF+∠BEF=90°,∵FC=FE,∴∠ECB=∠CEF,∴∠EBC=∠BEF,∴BF=FE=FC,在Rt△BAC中,AF是斜边BC上的中线,∴FA=FC,∴FA=FE;(2)解:∵∠D=60°,∠BAC=90°,∴∠ACD=30°,∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ECF=∠ACD+∠ACB=30°+45°=75°,由(1)得:FA=FE,AF是斜边BC上的中线,∴AF⊥BC,AF=BC=5,∵FC=FE,∴∠EFC=180°﹣2∠ECF=180°﹣2×75°=30°,∴∠AFE=90°﹣30°=60°,∴△AEF是等边三角形,∴△AEF的周长=3AF=3×5=15.21.解:(1)100﹣20﹣50﹣20=10,补全的条形统计图如图所示:(2)①这台机器在使用期内共更换了9个该易损零件的概率为:P==;②购买机器的同时购买8个该易损零件200×0.2+500×0.8=440元,购买机器的同时购买9个该易损零件200×0.5+500×0.5=350元,购买机器的同时购买10个该易损零件200×0.1+500×0.9=470元,购买机器的同时购买11个该易损零件200×0.2+500×0.8=440元,因此,购买机器的同时应购买9个该易损零件,可使公司的花费最少.22.解:(1)由题意得销售量y=700﹣20(x﹣45)=﹣20x+1600(x≥45);(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,=8000元∴当x=60时,P最大值即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.23.解:(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°,(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DC,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=2cm,∴O′O=OC=×2=,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=πcm.24.解:(1)∵四边形ABCD和四边形EFCG是正方形,∴CD=CB,CG=CF,∠BCD=∠FCG=90°,∵∠DCG=90°﹣∠BCG,∠BCF=90°﹣∠BCG,∴∠DCG=∠BCF;(2)BF+BG=AB,理由:在Rt△CDG和△CBF中,,∴△CDG≌CBF(SAS),∴DG=BF,在Rt△ABD中,AD=AB,∴BD=AB,∵BD=DG+BG=BF+BG,∴BF+BG=AB;(3)∵BD是正方形ABCD的对角线,∴∠CBD=∠CDB=45°,由(2)知,△CDG≌CBF(SAS),∴DG=BF,∠CDG=∠CBF=45°,∴∠DBF=∠CBD+∠CBF=90°,∴∠FBT=90°,∵FT∥CB,∴∠BTF=∠CBD=45°,∴∠BFT=45°=∠BTF,∴BF=BT,∴DG=BT,∴GT=BG+BT=BG+DG=BD=AB=a.25.解:(1)当x=2时,y=x+2=2+2=4,∴点A坐标为(2,4),则k=2×4=8,∴双曲线C1的函数解析式为y=;(2)①点P′在双曲线C2:y=﹣上运动,设P (m ,) (m >0),如图,过点P 作PC ⊥x 轴于点C ,过点P ′作P ′D ⊥y 轴于点D ,则∠PCO =∠P ′DO =∠POP ′=90°,∴∠POC =∠P ′OD ,又∵OP =OP ′,∴△OPC ≌△OP ′D (AAS ),∴OD =OC =m ,P ′D =PC =,∴P ′(m ,﹣),则点P ′在双曲线C 2:y =﹣上运动.②设P (n ,),如图2,过点A 作AE ⊥y 轴于点E ,作PF ⊥x 轴于点F ,延长EA 、FP 交于点M ,则四边形OEMF 是矩形,M (n ,4),∵A (2,4),∴AM =n ﹣2,PM =4﹣,∵S △AOP =S 矩形OEMP ﹣S △AOE ﹣S △POF ﹣S △AMP , ∴=4n ﹣4﹣4﹣(n ﹣2)(4﹣),整理,得:3n2﹣16n﹣12=0,解得n=6或n=﹣(舍),当n=6时,=,∴点P(6,).故答案为:(6,).。

2023年中考数学复习专项提升练习 二次函数(答案)

2023年中考数学复习专项提升练习 二次函数(答案)

专项提升练习:二次函数(时间:60分钟 分数:100分)一、选择题(本题共8小题,共40分)1.将抛物线2(0)y ax bx c a =++≠向下平移两个单位,以下说法错误的是( ) A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变2.一次函数y =acx +b 与二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.如图,二次函数2(2)y a x k =++的图象与x 轴交于A ,(), 10B −两点,则下列说法正确的是( )A .0a <B .点A 的坐标为()4,0−C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =−4.将抛物线y =2(x ﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( ) A .y =2(x ﹣6)2B .y =2(x ﹣6)2+4 C .y =2x 2D .y =2x 2+45.(2022·甘肃兰州)已知二次函数2245y x x =−+,当函数值y 随x 值的增大而增大时,x 的取值范围是( )A .1x <B .1x >C .2x <D .2x >6.关于二次函数216274y x x a =−++,下列说法错误的是( ) A .若将图象向上平移10个单位,再向左平移2个单位后过点()4,5,则5a =− B .当12x =时,y 有最小值9a − C .2x =对应的函数值比最小值大7 D .当0a <时,图象与x 轴有两个不同的交点7.已知抛物线2(0)y ax bx c a =++≠与x 轴的交点为()1,0A 和()3,0B ,点()111,P x y ,()222,P x y 是抛物线上不同于,A B 的两个点,记1P AB △的面积为12,S PAB 的面积为2S .有下列结论:①当122x x >+时,12S S >;②当122x x <−时,12S S <;③当12221x x −>−>时,12S S >;④当12221x x −>+>时,12S S <.其中正确结论的个数是( ) A .1B .2C .3D .48.已知A 、B 两点的坐标分别为()3,4−、()0,2−,线段AB 上有一动点(),M m n ,过点M 作x 轴的平行线交抛物线2(1)2y a x =−+于()11,P x y 、()22,Q x y 两点.若12x m x <≤,则a 的取值范围为( ) A .342a −≤<−B .342a −≤≤−C .302a −≤< D .302a −<< 二、填空题(本题共5小题,每空3分,共15分)9.如图,对于抛物线211y x x =−++,2221y x x =−++,2331y x x =−++,给出下列结论:①这三条抛物线都经过点()0,1C ;②抛物线3y 的对称轴可由抛物线1y 的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线1y =的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.10.如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于(1,0)A −,(3,0)B 两点,与y 轴的正半轴交于点C ,顶点为D ,则下列结论:①20a b +=;②23c b <;③当ABC是等腰三角形时,a 的值有2个;④当BCD 是直角三角形时,2a =−.其中正确的有_____________.11.将抛物线y=x 2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为_________.12.(2022·江苏盐城)若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.13.某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.三、解答题(本题共4小题,共45分)14.如图,抛物线y =x 2+bx +c 经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l .(1)求该抛物线的表达式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P 、D 、E 为顶点的三角形与△AOC 全等,求满足条件的点P ,点E 的坐标.15.某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表:填空:(1)m 与x 的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x 的增大而增大,求n 的取值范围.16.已知抛物线 y =ax 2−2ax +a −4(a >0) ,(1)直接写出该抛物线的对称轴及顶点坐标; (2)已知该抛物线经过 A(0,y 1),B(2,y 2) 两点, ①直接写出 y 1,y 2 的大小关系;②过B 点垂直于x 轴的直线交x 轴于点C ,若四边形AOCB 的面积小于或等于6,直接写出a 的取值范围.17.如图,已知顶点为C(0,−6)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,且OC= OB.(1)求点B的坐标;(2)求二次函数y=ax2+b(a≠0)的解析式;(3)作直线CB,问抛物线y=ax2+b(a≠0)上是否存在点M,使得∠MCB=15°.若存在,求出点M的坐标:若不存在,请说明理由.参考答案:1.D2.B3.D4.C5.B6.C7.A8.C9.①②④ 10.①③11.322−+=)(x y 12.110n ≤< 13.126414.(1)y =x2+2x ﹣3;(2)点P 的坐标为(2,5)或(﹣4,5);点E 的坐标为(﹣1,2)或(﹣1,8).15.(1)2144m x =−+;(2)第16天销售利润最大,最大为1568元;(3)02n <≤ 16.(1)∵y =ax 2−2ax +a −4(a >0) , ∴对称轴为直线x = −−2a 2a=1,∵4a(a−4)−(−2a)24a=-4,∴顶点坐标(1,-4).(2)①∵抛物线的对称轴为直线x=1,∴点A (0,y12,y1), ∵抛物线经过 A(0,y 1),B(2,y 2) 两点, ∴y 1=y 2 .②如图,∵A(0,y 1),B(2,y 2) , y 1=y 2 ,∴AB =2,AB//x 轴,∵BC⊥x轴,∴四边形ABCO为矩形,∴当矩形ABCO的面积为6时,AO=3,∴A(0,-3)或A(0,3),∵当x=0,y=a-4,∴当A(0,-3)时,a-4=-3,解得:a=1,当A(0,3)时,a-4=3,解得:a=7,∵四边形AOCB的面积小于或等于6,∴1≤a≤7.17.(1)解:∵C(0,-6)∴OC=6∵OC=OB∴OB=6∴点B的坐标为(6,0)(2)解:∵抛物线y=ax2+b(a≠0)经过点C(0,-6)和点B(6,0),∴{b=−636a+b=0,解得{a=16,b=−6∴该二次函数的解析式为y=16x2−6(3)解:存在①若点M在BC上方,设MC交x轴于点D,则∠ODC=45°+15°=60°.∴∠OCD=30°.∴设OD=x,则CD=2x.∵在Rt△OCD中,∠COD=90°,OC=6,∴CD2=OD2+OC2,即(2x)2=x2+36,解得x1=−2√3(舍),x2=2√3.∴点D的坐标为(2√3,0).设直线DC的函数解析式为y=kx−6∴0=2√3k−6,解得k=√3∴直线DC的函数解析式为y=√3x−6∴{y=√3x−6,y=16x2−6,解得{x1=0,y1=−6(舍),{x2=6√3,y2=12∴M1(6√3,12)②若点M在BC下方,设MC交x轴于点E,则∠OEC=45°-15°=30°.∵OC=6,则CE=12.∵在Rt△OCE中,∠COE=90°,∴OE2=CE2−OC2=108,∴OE=6√3.∴点E的坐标为(6√3,0).设直线EC的函数解析式为y=kx−6,∴0=6√3k−6,解得k=√33∴直线EC的函数解析式为y=√33x−6∴{y=√33x−6y=16x2−6,解得{x1=0y1=−6(舍),{x2=2√3y2=−4.∴M2(2√3,−4)综上所述,点M的坐标为(6√3,12)或(2√3,−4).。

【中考调研室押题】2014中考数学:能力提高测试(2)含答案

【中考调研室押题】2014中考数学:能力提高测试(2)含答案

中考数学能力提高测试2时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.如图N2-1,C ,B 是线段AD 上的两点,若AB =CD ,BC =2AC ,那么AC 与CD 的关系是为( )图N2-1A .CD =2ACB .CD =3AC C .CD =4BD D .不能确定 2.图N2-2,桌面上一本翻开的书,则其俯视图为( )图N2-23.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:A .平均数B .中位数C .众数D .方差4.若不等式组⎩⎪⎨⎪⎧2x -1<3,x <a 的解集是x <2,则a 的取值范围是( )A .a <2B .a ≤2C .a ≥2D .无法确定 5.如图N2-3,在△ABC 中,AB =AC ,∠BAC =120°,D ,E 是BC 上的两点,且∠DAE =30°,将△AEC 绕点A 顺时针旋转120°后,得到△AFB ,连接DF .下列结论中正确的个数有( )①∠FBD =60°;②△ABE ∽△DCA ;③AE 平分∠CAD ;④△AFD 是等腰直角三角形. A .1个 B .2个 C .3个 D .4个图N2-3 图N2-46.如图N2-4,在矩形ABCD 中,AD =4 cm ,AB =3 cm ,动点P 从点A 开始沿边AD向点D 以1 cm/s 的速度运动至点D 停止,以AP 为边在AP 的下方做正方形AEFP ,设动点P 运动时间为x (单位:s),此时矩形ABCD 被正方形AEFP 覆盖部分的面积为y (单位: cm 2),则y 与x 之间的函数关系用图象表示大致是( )二、填空题(本大题共4小题,每小题5分,共20分)7.如果a +2b =-3,那么代数式2-2a -4b 的值是________. 8.如图N2-5,含有30°的Rt △AOB 的斜边OA 在y 轴上,且BA =3,∠AOB =30°,将Rt △AOB 绕原点O 顺时针旋转一定的角度,使直角顶点B 落在x 轴的正半轴上,得相应的△A ′OB ′,则A 点运动的路程长是________.图N2-5 图N2-69.如图N2-6,点A ,B 是反比例函数y =3x(x >0)图象上的两个点,在△AOB 中,OA =OB ,BD 垂直于x 轴,垂足为D ,且AB =2BD ,则△AOB 的面积为________.10.如图N2-7,要使输出值y 大于100,则输入的最小正整数x 是________.图N2-7三、解答题(本大题共5小题,每小题10分,共50分) 11.上电脑课时,有一排有四台电脑,同学A 先坐在如图N2-8的一台电脑前的座位上,B ,C ,D 三位同学随机坐到其他三个座位上.求A 与B 两同学坐在相邻电脑前座位上的概率.图N2-812.如图N2-9,已知E 是平行四边形ABCD 的边AB 上的点,连接DE .(1)在∠ABC 的内部,作射线BM 交线段CD 于点F ,使∠CBF =∠ADE (要求:用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,求证:△ADE ≌△CBF .图N2-913.如图N2-10,自行车每节链条的长度为2.5 cm,交叉重叠部分的圆的直径为0.8 cm.(1)4节链条长______________cm;(2)n节链条长______________cm;(3)如果一辆22型自行车的链条由50节这样的链条组成,那么已装好在这辆自行车上的链条总长度是多少?图N2-1014.如图N2-11,将矩形ABCD沿MN折叠,使点B与点D重合.(1)求证:DM=DN;(2)当AB和AD满足什么数量关系时,△DMN是等边三角形?并说明你的理由.图N2-1115.如图N2-12,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P 为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.图N2-121.B 2.C 3.C 4.C 5.B6.A 解析:当0<x ≤3, y =x 2;当3<x ≤4, y =3x ,结合图象可知应选A. 7.88.4π 解析:A 点运动所形成的图形是弧形,要计算路程长即计算弧长,结合图形可知OA =6,由点B 通过旋转落在x 轴的正半轴上,说明旋转角为120°,根据弧长公式得l =n πR 180=120π×6180=4π. 9.310.21 解:若x 为偶数,根据题意,得:x ×4+13>100,解得x >874,所以此时x的最小整数值为22;若x 为奇数,根据题意,得:x ×5>100,解得:x >20,所以此时x 的最小整数值为21,综上所述,输入的最小正整数x 是21.11.解:依题意, B ,C ,D 三个同学在所剩位置上从左至右就坐的方式有如下几种情况:BCD ,BDC ,CBD ,CDB ,DBC ,DCB ,其中A 与B 相邻而坐的是CBD, CDB ,DBC ,DCB ,∴A 与B 两同学坐在相邻电脑前座位上的概率是46=23.12.(1)解:作图如图105.图105(2)证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AD =BC . ∵∠ADE =∠CBF ,∴△ADE ≌△CBF (ASA).13.(1)7.6 (2)1.7n +0.8 (3)85 cm14.(1)证明:如图106.由题意知∠1=∠2, 又AB ∥CD ,得∠1=∠3, 则∠2=∠3,故DM =DN .(2)当AB =3AD 时,△DMN 是等边三角形. 理由:∵△DMN 是等边三角形, ∴∠2=60°.则∠AMD =60°,可得∠ADM =30°. 则DM =2AM ,AD =3AM .可得AB =3AM . 故AB =3AD .图10615.解:(1)当y =0时,-3x -3=0,x =-1,∴A (-1, 0). 当x =0时,y =-3,∴C (0,-3). ∵抛物线过A ,C 两点,∴⎩⎪⎨⎪⎧ 1-b +c =0,c =-3,∴⎩⎪⎨⎪⎧b =-2,c =-3.抛物线的解析式是y =x 2-2x -3.当y =0时, x 2-2x -3=0,解得 x 1=-1,x 2=3. ∴ B (3, 0).(2)由(1)知 B (3, 0) , C (0,-3), 直线BC 的解析式是y =x -3.设M (x ,x -3)(0≤x ≤3),则E (x ,x 2-2x -3)∴ME =(x -3)-( x 2-2x -3)=-x 2+3x =-⎝⎛⎭⎫x -322+94. ∴当x =32时,ME 的最大值为94.(3)不存在.由(2)知 ME 取最大值时,ME =94,E ⎝⎛⎭⎫32,-154,M ⎝⎛⎭⎫32 ,-32, ∴MF =32,BF =OB -OF =32.设在抛物线x 轴下方存在点P ,使以P ,M ,F ,B 为顶点的四边形是平行四边形, 则BP ∥MF ,BF ∥PM .∴P 1⎝⎛⎭⎫0,-32或 P 2⎝⎛⎭⎫3,-32. 当P 1⎝⎛⎭⎫0,-32时,由(1)知y =x 2-2x -3=-3≠-32,∴P 1不在抛物线上. 当P 2⎝⎛⎭⎫3,-32时,由(1)知y =x 2-2x -3=0≠-32, ∴P 2不在抛物线上.综上所述:在抛物线上x 轴下方不存在点P ,使以P ,M ,F ,B 为顶点的四边形是平行四边形。

【高频真题解析】2022年江西省中考数学真题汇总 卷(Ⅱ)(含答案及详解)

【高频真题解析】2022年江西省中考数学真题汇总 卷(Ⅱ)(含答案及详解)

2022年江西省中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 2、有理数a ,b 在数轴上对应的位置如图所示,则下列结论正确的是( ).A .0a >B .1b >C .0a b ->D .a b >3、点()4,9-关于x 轴的对称点是( ) A .()4,9--B .()4,9-C .()4,9-D .()4,9 4、利用如图①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )·线○封○密○外A .22()4()a b ab a b -+=+B .22()()a b a b a b -+=-C .222()2a b a ab b +=++D .222()2a b a ab b ---+5、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( )A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米6、下列图形是全等图形的是( ) A . B . C . D .7、已知ab =a ,b 的关系是( ) A .相等 B .互为相反数C .互为倒数D .互为有理化因式8、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒9、如图,在平面直角坐标系xOy 中,已知点A (1,0),B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为( )A .1B .2 C1 D110、已知单项式5xayb +2的次数是3次,则a +b 的值是( ) A .1 B .3 C .4 D .0 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,在ABC 中,3cm AB =,6cm BC ,5cm AC =,蚂蚁甲从点A 出发,以1.5cm/s 的速度沿着三角形的边按A B C A →→→的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm/s 的速度沿着三角形的边按A C B A →→→的方向行走,那么甲出发________s 后,甲乙第一次相距2cm .·线○封○密○外2、如图, 已知在 Rt ABC △ 中, 90,30,1,ACB B AC D ∠∠=== 是 AB 边上一点, 将 ACD △ 沿 CD 翻折, 点 A 恰好落在边 BC 上的点 E 处,那么AD =__________3、班主任从甲、乙、丙、丁四位同学中选择一位同学参加学校的演讲比赛.甲同学被选中的概率是______.4、据统计我国微信用户数量已突破8.87亿人,近似数8.87亿有__个有效数字.5、如图,围棋盘的方格内,白棋②的位置是()5,2--,白棋④的位置是()4,6--,那么黑棋①的位置应该表示为______.三、解答题(5小题,每小题10分,共计50分)1、如图1,把一副三角板拼在一起,边OA ,OC 与直线EF 重合,其中45AOB ∠=︒,60COD ∠=︒.(1)求图1中BOD ∠的度数;(2)如图2,三角板COD 固定不动,将三角板AOB 绕点O 顺时针旋转一个角度,在转动过程中,三角板AOB 一直在EOD ∠的内部,设EOA α∠=. ①若OB 平分EOD ∠,求α; ②若4AOC BOD ∠=∠,求α. 2、数学课上,王老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积: 方法1: ; 方法2: ; (2)观察图2,请你写出代数式:(a +b )2,a 2+b 2,ab 之间的等量关系 ; (3)根据(2)题中的等量关系,解决如下问题: ①已知:a +b =5,(a ﹣b )2=13,求ab 的值; ②已知(2021﹣a )2+(a ﹣2020)2=5,求(2021﹣a )(a ﹣2020)的值. 3、问题发现: (1)如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE , ·线○封○密○外①求证:△ACD ≌△BCE ;②求∠AEB 的度数.(2)拓展探究:如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高交AE 于M ,连接BE .请求∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.4、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,且80AOD DOB ∠-∠=︒.求∠AOC 和∠DOE 的度数.5、计算:(a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2.-参考答案-一、单选题1、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D .【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键. 2、D 【解析】 【分析】 先根据数轴可得101a b <-<<<,再根据有理数的减法法则、绝对值性质逐项判断即可得. 【详解】 解:由数轴的性质得:101a b <-<<<. A 、0a <,则此项错误; B 、1b <,则此项错误; C 、0a b -<,则此项错误; D 、1a b >>,则此项正确; 故选:D . 【点睛】 本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键. 3、A 【解析】 【分析】·线○封○密○外直接利用关于x 轴对称点的性质得出答案.【详解】解:点P (−4,9)关于x 轴对称点P ′的坐标是:(−4,−9).故选:A .【点睛】此题主要考查了关于x 轴对称点的性质,正确得出横纵坐标的关系是解题关键.4、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:()a b +,面积为:()2a b +; 1个小正方形的面积加上4个矩形的面积和为:()24a b ab -+; ∴()()2222424a b ab a ab b ab a b -+=-++=+.故选:A .【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.5、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A ;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案. 【详解】 解:∵3600÷20=180米/分, ∴两人同行过程中的速度为180米/分,故A 选项不符合题意; ∵东东在爸爸返回5分钟后返回即第20分钟返回 ∴m =20-5=15, ∴n =180×15=2700,故B 选项不符合题意; ∴爸爸返回的速度=2700÷(45-15)=90米/分,故C 选项不符合题意; ∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米, ∴运动18分钟时两人相距3240-2430=810米; ∵返程过程中东东45-20=25分钟走了3600米, ∴东东返程速度=3600÷25=144米/分, ∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米, ∴运动31分钟两人相距756米,故D 选项符合题意; 故选D . 【点睛】 本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像. 6、D 【解析】 【详解】·线○封○密○外解:A 、不是全等图形,故本选项不符合题意;B 、不是全等图形,故本选项不符合题意;C 、不是全等图形,故本选项不符合题意;D 、全等图形,故本选项符合题意;故选:D【点睛】本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.7、A【解析】【分析】求出a 与b 的值即可求出答案.【详解】解:∵a=,b =∴a =b ,故选:A .【点睛】本题考查了分母有理化,解题的关键是求出a 与b 的值,本题属于基础题型.8、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒ 故选B 【点睛】 本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键. 9、C 【解析】 【分析】 取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案. 【详解】 解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,∵点A (1,0),B (3,0), ∴OA =1,OB =3, ∴OE =2,∴ED∵∠ACB =90°, ∴点C 在以AB 为直径的圆上, ·线○封○密○外∴线段CD−1.故选:C .【点睛】本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C ,D 两点的位置是解题的关键.10、A【解析】【分析】根据单项式的次数的概念求解.【详解】解:由题意得:a+b +2=3,∴a+b =1.故选:A .【点睛】本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.二、填空题1、4【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】 解:根据题意, ∵3cm AB =,6cm BC ,5cm AC =, ·线∴周长为:35614++=(cm ),∵甲乙第一次相距2cm ,则甲乙没有相遇,设甲行走的时间为t ,则乙行走的时间为(1)t -,∴1.52(1)214t t +-+=,解得:4t =;∴甲出发4秒后,甲乙第一次相距2cm .故答案为:4.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.21##1-【解析】【分析】翻折的性质可知AD DE AC CE ==,,A CED ∠=∠;在Rt ABC 中有60A ∠=︒,BC =CED B EDB ∠=∠+∠,得DEB 是等腰三角形,AD DE BE BC CE BC AC ===-=-即可求出长度.【详解】解:翻折可知:ACD ECD ≌,AD DE AC CE ==,∵30B ∠=︒,1AC =,90ACB ∠=︒∴在Rt ABC 中,22AB AC ==∴60A CED ∠=∠=︒,BC =∵CED B EDB ∠=∠+∠∴30EDB B ∠=∠=︒∴DEB 是等腰三角形∴DE EB =∴1AD EB BC CE ==-=1.【点睛】本题考查了轴对称的性质,等腰三角形的判定与性质,三角形的外角,勾股定理等知识点.解题的关键在于找出边相等的关系.3、14或0.25【解析】【分析】由题意得出从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果,根据概率公式可得.【详解】解:从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果, ∴恰好选中乙同学的概率为14, 故答案为:14.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 4、3【解析】 【分析】 根据有效数字的定义求解.·线【详解】解:近似数8.87亿有3个有效数字,它们为8、8、7.故答案为:3.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.5、()1,5--【解析】【分析】先根据白棋②的位置是()5,2--,白棋④的位置是()4,6--确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为()1,5--故答案为:()1,5--【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.三、解答题1、 (1)75°;(2)①15°;②40°.【解析】【分析】(1)根据平角定义,利用角的差∠BOD =180°-∠AOB -∠COD 运算即可;(2)①根据补角性质求出∠EOD =180°-∠COD =180°-60°=120°,根据角平分线定义求出∠EOB =12∠EEE =12×120°=60°,再根据两角差E =∠EEE −∠EEE =15°即可;②根据角的和求出∠AOC =∠AOB +∠BOD +∠COD =105°+∠BOD ,然后列方程求出∠EEE =35°,求出∠EEE =4∠EEE =4×35°=140°,再求补角即可.(1)解:∵45AOB ∠=︒,60COD ∠=︒,∴∠BOD =180°-∠AOB -∠COD =180°-45°-60°=75°;(2)解:①∵60COD ∠=︒,∴∠EOD =180°-∠COD =180°-60°=120°,∵OB 平分EOD ∠,∴∠EOB =12∠EEE =12×120°=60°,∵45AOB ∠=︒,∴E =∠EEE −∠EEE =60°−45°=15°;②∵45AOB ∠=︒,60COD ∠=︒.∴∠AOC =∠AOB +∠BOD +∠COD =45°+∠BOD +60°=105°+∠BOD ,∵4AOC BOD ∠=∠,∴105°+∠EEE =4∠EEE ,解得:∠EEE =35°,∴∠EEE =4∠EEE =4×35°=140°,∴α=180°-∠AOC =180°-140°=40°. 【点睛】 本题考查三角板中形成的角计算,平角,补角,角平分线有关的计算,角的和差倍分,一元一次方·线程,本题难度不大,是角中计算的典型题.2、 (1)(E+E)2;E2+E2+2EE(2)(E+E)2=E2+E2+2EE;(3)①EE=3;②-2【解析】【分析】(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;(2)由(1)直接可得关系式;(3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.(1)方法一:∵大正方形的边长为(a+b),∴S=(a+b)2;方法二:大正方形是由2个长方形,2个小正方形拼成,∴S=b2+ab+ab+a2=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由(1)可得(a+b)2=a2+b2+2ab;故答案为:(a+b)2=a2+b2+2ab;(3)①∵(a-b)2=a2+b2-2ab=13①,(a+b)2=a2+b2+2ab=25②,由①-②得,-4ab=-12,解得:ab=3;②设2021-a=x,a-2020=y,∴x+y=1,∵(2021-a)2+(a-2020)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2=1,∴2xy=1-(x2+y2)=1-5=-4,解得:xy=-2,∴(2021-a)(a-2020)=-2.【点睛】本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.3、(1)①见解析;②∠AEB=60°(2)∠AEB=90°,AE=BE+2CM.理由见解析【解析】【分析】(1)①先证明∠EEE=∠EEE,再结合等边三角形的性质,利用EEE证明△ACD≌△BCE即可;②先求解∠EEE=120°,由△ACD≌△BCE可得∠ADC=∠BEC,再利用角的和差关系可得答案;(2)先证明△EEE≌△EEE,∠EEE=135°,再结合全等三角形的性质与等腰直角三角形的性质可得∠EEE=90°,由EE⊥EE,结合等腰直角三角形的性质,可得EE=EE=EE,结合全等三角形的性质可得EE=EE+2EE.(1) 证明:①∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =60°﹣∠DCB =∠BCE . 在△ACD 和△BCE 中,{EE =EE ∠EEE =∠EEEEE =EE, ∴△ACD ≌△BCE (SAS ).解:②∵△ACD ≌△BCE ,∴∠ADC =∠BEC .∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°.∴∠AEB =∠BEC ﹣∠CED =60°.(2)解:∠AEB =90°,AE =BE +2CM .理由如下: 如图2所示:由题意得:EE⊥EE ,·线○封○密○外∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,{EE=EE∠EEE=∠EEEEE=EE,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,确定每一问中的两个全等三角形是解本题的关键.4、50°,25°.【解析】【分析】 根据邻补角的性质,可得∠AOD +∠BOD =180°,即∠EEE =180°−∠EEE ,代入80AOD DOB ∠-∠=︒可得∠BOD ,根据对顶角的性质,可得∠∠AOC 的度数,根据角平分线的性质,可得∠DOE 的数. 【详解】 解:由邻补角的性质,得∠AOD +∠BOD =180°,即∠EEE =180°−∠EEE ∵80AOD DOB ∠-∠=︒, ∴180°−∠EEE −∠EEE =80°. ∴∠EEE =50°,∴∠AOC =∠BOD =50°, ∵OE 平分∠BOD ,得 ∠DOE =12∠DOB =25°.【点睛】 本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解. 5、4EE 【解析】 【分析】 根据整式的乘法公式及运算法则化简,合并即可求解. 【详解】 (a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2 =4ab . ·线○封○密·○外【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.。

一元二次方程、分式方程的解法及应用(能力提升)-中考数学基础知识复习和专题巩固提升训练含答案

一元二次方程、分式方程的解法及应用(能力提升)-中考数学基础知识复习和专题巩固提升训练含答案

考向07一元二次方程、分式方程的解法及应用—能力提升【知识梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+=⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.方法指导:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 方法指导: △≥0⇔方程有实数根. 4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么acx x a b x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 方法指导:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量. (2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法 去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”. 方法指导:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用 1.应用问题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方法指导:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【能力提升训练】一、选择题1. 已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ) A .ab B .abC .a b +D .a b - 2.方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根,则a 的值是( ) A .0B .1C .2D .33.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ). A .3B .-3C .13 D .13- 4.如果关于x 的方程2313x mx m -=--有增根,则的值等于()A. -3B. -2C. -1D. 35.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .9二、填空题 7.方程﹣1=的解为8.关于x 的一元二次方程2(1)10m x mx --+=有两个不相等的实数根,则m 的取值范围是 .9.已知x 1=-1是方程052=-+mx x 的一个根,则m 的值为 ;方程的另一根x 2= .10.某市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意可列方程为_____ ___.11.若关于x的方程 11-+x ax -1=0有增根,则a的值为 . 12.当 k 的值是 时,方程 1-x x =xx xk --22 只有一个实数根.三、解答题13.解下列分式方程: (1);(2).14. 若关于x 的方程 12-x k - xx x -2 =x kx 1+ 只有一个解,试求k值与方程的解.15.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2010年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2012年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2010年到2012年,A 市三年共投资“改水工程”多少万元?16. 从甲、乙两题中选做一题,如果两题都做,只以甲题计分.题甲:若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、. (1)求实数k 的取值范围; (2)设kt βα+=,求t 的最小值.题乙:如图(16),在矩形ABCD 中,P 是BC 边上一点,连结DP 并延长,交AB 的延长线于点Q .(1)若31=PC BP ,求AQ AB 的值;(2)若点P 为BC 边上的任意一点,求证1==BQABBP BC .我选做的是_______题.答案与解析一、选择题 1.【答案】D ;【解析】将-a 代入20x bx a ++=中,则a 2-ab+a=0,则a -b+1=0∴a-b=-1(恒为常数).2.【答案】C ;【解析】∵方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根, ∴(a+1)x+a+1=0, 解得x=﹣1, 当x=﹣1时, a=2,故选C . 3.【答案】B ; 【解析】121212113=31x x x x x x ++==--. 4.【答案】B ;【解析】把方程两边都乘以x x m x m -=--∴=+3235,得.若方程有增根,则x=3,即5+m=3,m=-2. 5.【答案】A ;【解析】如图将路平移,设路宽为x 米,可列方程为:(30-x )(20-x )=551, 解得:x=1或者x=49(舍去).6.【答案】C ;【解析】由题意得方程有实数根,则分两种情况, 当a -6=0时,a=6,此时x=34, 当a -6≠0时,△=b 2-4ac≥0,解得a≤263, 综合两种情况得整数a 的最大值是8.二、填空题 7.【答案】x=;【解析】方程的两边同乘2(3x ﹣1),得4﹣2(3x ﹣1)=3,解得x=. 检验:把x=代入2(3x ﹣1)=1≠0. ∴原方程的解为:x=. 8.【答案】2m ≠且1m ≠; 【解析】 △>0且m-1≠0. 9.【答案】m=-4;x 2=5;【解析】由题意得:05)1()1(2=-⨯-+-m 解得m=-4 当m=-4时,方程为0542=--x x 解得:x 1=-1 x 2=5 所以方程的另一根x 2=5. 10.【答案】272(1)56x -=;【解析】平均降低率公式为(1)na xb -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)11.【答案】-1;【解析】原方程可化为:(a-1)x=-2. ∵分式方程有增根, ∴ x=1 把x=1代入整式方程有a=-1. 12.【答案】 -1,0,3;【解析】原方程可化为:x2+2x-k=0当⊿=22+4k=0,即k=-1时,x1=x2=-1当⊿=22+4k>0,即k>-1时,方程有两个不等实数根.由题意可知: ① 当增根x=0时,代入二次方程有k =0,方程唯一解为x=-2;② 当增根x=1时,代入二次方程有k =3,方程唯一解为x=-3. 所以k=-1,0,3. 三、解答题 13.【答案与解析】解:(1)方程的两边同乘(x+1)(x ﹣1),得2﹣(x+1)=(x+1)(x ﹣1), 解得x=﹣2或1.检验:把x=1代入(x+1)(x ﹣1)=0. x=1是原方程的增根,把x=﹣2代入(x+1)(x ﹣1)=3≠0. ∴原方程的解为:x=﹣2. (2)方程的两边同乘x 2,得 2(x+1)2+x (x+1)﹣6x 2=0, 解得x=﹣或2.检验:把x=﹣代入x 2=≠0. 把x=2代入x 2=4≠0.∴原方程的解为:x 1=﹣,x 2=2. 14.【答案与解析】原方程可化为:kx2-(3k-2)x-1=0 当k=0时,原方程有唯一解 x=21当k≠0时,⊿=(3k -2)2+4k=5k 2+4(k -1)2>0,知方程必有两个不等实数根. 此时由题意可知:一元二次方程两根,一根是分式方程的根,另一根是分式方程的增根0或1. 当x=0时,不符合舍去;当x=1时,代入得k=21,分式方程的解是x=-2. 所以当k=0时,原方程有唯一解x=21;当k=21时,原方程有唯一解x=-2.15.【答案与解析】(1)设A 市投资“改水工程”年平均增长率是x ,则 2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去). 所以,A 市投资“改水工程”年平均增长率为40%. (2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.16.【答案与解析】题甲:(1)∵一元二次方程012)2(222=++--k x k x 有实数根βα、, ∴0≥∆,即0)12(4)2(422≥---k k ,解得2-≤k .(2)由根与系数的关系得:k k 24)]2(2[-=---=+βα, ∴2424-=-=+=kk k k t βα, ∵2-≤k ,∴0242<-≤-k, ∴2244-<-≤-k , 即t 的最小值为-4.题乙:(1)四边形ABCD 为矩形,∵AB =CD ,AB ∥DC ,∴△DPC ∽△QPB , ∴31==CP PB DC BQ , ∴BQ DC 3=, ∴4333=+=BQ BQ BQ BQ AB . (2)证明:由△DPC ∽△QPB , 得BPPC BQ DC =, ∴BP PC BQ AB =,11=-+=-+=-BQ AB BP PC BQ AB BP PC BP BQ AB BP BC .。

2010年中考数学寒假基础题强化提高测试(1)及答案

2010年中考数学寒假基础题强化提高测试(1)及答案

2010年中考数学寒假基础题强化提高测试1(总分78分 时间35分钟)一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.7的相反数是( ) A .17B .7C .17-D .7-2.改革开放以来,我国国内生产总值由1978年的3 645亿元增长到2008年的300 670亿元,将300 670用科学记数法表示应为( ) A .60.3006710⨯ B .53.006710⨯C .43.006710⨯D .430.06710⨯3.若右图是某几何体的三视图,则这个几何体是( )A .圆柱B .正方体C .球D .圆锥4.若一个正多边形的一个外角是40°,则这个正多边形的边数是( ) A .10 B .9 C .8 D .65.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( ) A .0B .141C .241D .16.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是( ) A .59,63 B .59,61 C .59,59 D .57,61 7.把3222x x y xy -+分解因式,结果正确的是( ) A .()()x x y x y +-B .22(2)x x xy y -+ C .2()x x y +D .2()x x y -8.如图,C 为O ⊙直径AB 上一动点,过点C 的直线交O ⊙于点,且45ACD ∠=°,DF AB ⊥于点F EG AB ,⊥于点G 在AB 上运动时,设AF x DE y ==,,下列图象中,能表示函数关系的图象大致是( )二、填空题(本题共16分,每小题4分)主视图左视图俯视图9.不等式325x +≥的解集是 .10.如图,AB 为O ⊙的直径,弦CD AB ⊥,E 为BC 上一点,若28CEA ∠=°,则ABD ∠= °.11.若把代数式223x x --化为2()x m k -+的形式,其中m k ,为常数,则m k += .12.如图,正方形纸片ABCD 的边长为1,M N ,分别是AD BC 、边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ',折痕交AD 于点E ,若M N ,分别是AD BC ,边的中点,则A N '= ;若M N ,分别是AD BC ,边上距DC 最近的n 等分点(2n ≥,且n 为整数),则A N '= (用含有n 式子表示).三、解答题(本题共30分,每小题5分)13.计算:1012009|6-⎛⎫-+- ⎪⎝⎭14.解分式方程6122x x x +=-+.15.已知:如图,在ABC △中,90ACB CD AB ∠=°,⊥于点D ,点E 在AC 上,CE BC =,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB FC =.MA ' DE A B N CE D B C EA16.已知2514x x -=,求2(1)(21)(1)1x x x ---++的值.17.如图,A B 、两点在函数(0)my x x=>的图象上. (1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,请直接写出图中阴影部分(不包括边界)所含格点的个数.18.列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?参考答案三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解: 10120096-⎛⎫-+- ⎪⎝⎭=61-+ =5.14.(本小题满分5分)解:去分母,得(2)6(2)(2)(2)x x x x x ++-=-+. 解得 1x =.经检验,1x =是原方程的解. ∴ 原方程的解是1x =.15.(本小题满分5分)证明:∵ FE ⊥AC 于点E , ∠ACB =90°,∴ ∠FEC =∠ACB =90°. ∴ ∠F +∠ECF =90°. 又∵ CD ⊥AB 于点D , ∴ ∠A +∠ECF =90° . ∴ ∠A =∠F . 在△ABC 和△FCE 中,,, ,A F ACB FEC BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△FCE . ∴ AB =FC .16.(本小题满分5分)解: 2(1)(21)(1)1x x x ---++22221(21)1x x x x x =--+-+++22221211x x x x x =--+---+ 251x x =-+ .当2514x x -=时,原式=2(5)114115x x -+=+=. 17.(本小题满分5分)解:(1)由图象可知, 函数(0)my x x=>的图象经过点A (1,6), 可得 6m = .设直线AB 的解析式为 y kx b =+. ∵ A (1,6),B (6,1)两点在函数y kx b =+的图象上,∴6,6 1.k b k b +=⎧⎨+=⎩解得 1,7.k b =-⎧⎨=⎩∴ 直线AB 的解析式为7y x =-+ .(2)图中阴影部分(不包括边界)所含格点的个数是 3 .18.(本小题满分5分)解法一:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为(469)x -万人次. 依题意,得 (469) 1 696x x +-=. 解得 353x =.469435369 1 343x -=⨯-= .答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次. 解法二:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为y 万人次.依题意,得 1 696,469.x y y x +=⎧⎨=-⎩解得 353,1 343.x y =⎧⎨=⎩答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图5
中考数学基础题强化提高测试(二)
一、选择题(本大题共5小题,每小题5分,共25分)
1.实数a ,b 在数轴上的位置如图1,则下列结论正确的是( )
图1
A .a +b >0
B .a -b >0
C .ab >0 D.a b
>0 2.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图2,则其主视图是( )
图2 图3 图4 3.某公司员工的月工资如下表: 员工
经理 副经理 职员A 职员B 职员C 职员D 职员E 职员F 职员G 月工资
/元 4 800 3 500 2 000 1 900 1 800 1 600 1 600 1 600 1 000
A .2 200元、 1 800元 、1 600元
B .2 000元 、1 600元 、1 800元
C .2 200元、 1 600元、 1 800元
D .1 600元、 1 800元、 1 900元
4.二次函数y =-3x 2-6x +5的图象的顶点坐标是( )
A .(-1,8)
B .(1,8)
C .(-1,2)
D .(1,-4)
5.如图3,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )
A .2
B .3
C .4
D .5
二、填空题(本大题共5小题,每小题5分,共25分)
6.计算(2-3)-1-(2-1)0的结果是________.
7.如图4,直线l 与直线a ,b 相交.若a ∥b ,∠1=70°,则∠2的度数是________.
8.分解因式:(x +3)2-(x +3)=__________.
9.如图5,△ABC 与△A ′B ′C ′是位似图形,点O 是位似中
心,若OA =2AA ′,S △ABC =8,则S △A ′B ′C ′=________.
10.若关于x 的一元二次方程x 2+(k +2)x +k =0的一个根是-2,
则另一个根是______.
三、解答题(本大题共5小题,每小题10分,共50分)
11.解分式方程:
2x
x+1

3
x-1
=2.
12.张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?
13.如图6,在方格纸中,以格点连线为边的三角形叫做格点三角形,△ABC就是格点三角形,请在此方格纸上另画一个与△ABC相似的格点三角形,并写出它与△ABC的相似比.
图6
14.某校为了解本校八年级学生的课外阅读喜好,随即抽取部分该校八年级学生进行问卷调查(每人只选一种书
籍),图7是整理数据后画的两幅不完整的统计图,请你根据图中的信息,解答下列问题:
(1)这次活动一共调查了________名学生;
(2)在扇形统计图中,“其它”所在的扇形圆心角为______度;
(3)补全条形统计图;
(4)若该校八年级有600人,请你估计喜欢“科普常识”的学生有______人.
图7
15.如图8(1),在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB并延长交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)如图(2),连接CE,⊙O的半径为5,AC长为4,求阴影部分面积之和(保留π与根号).
图8
参考答案
1.A 2.D 3.C 4.A 5.A
6.-2 7.110° 8.(x +2)(x +3) 9.18 10.0
11.x =-5
12.解:设原计划每天铺设管道x 米,
则120x +300-120x (1+20%)
=27, 解得x =10,
经检验,x =10是原方程的解.
答:原计划每天铺设管道10米.
13.略
14.(1)200 (2)36 (3)图略 (4)180 15.(1)证明:连接AB 、BC ,
∵点C 是劣弧AB 上的中点, ∴.∴CA =CB .
又∵CD =CA ,∴CB =CD =CA . ∴在△ABD 中,CB =12
AD . ∴∠ABD =90°.∴∠ABE =90°.
∴AE 是⊙O 的直径.
(2)解:由(1)可知,AE 是⊙O 的直径, ∴∠ACE =90°.
∵⊙O 的半径为5,AC =4 ,
∴AE =10,⊙O 的面积为25π.
在Rt △ACE 中,∠ACE =90°,由勾股定理,得 CE =AB 2-AC 2=221,
∴S △ACE =12×|AC |×|CE |=12
×4×221=421. ∴S 阴影=12S ⊙O -S △ACE =12×25π-421=25π2
-421.。

相关文档
最新文档