第三章 土压缩性与地基沉降计算(新)

合集下载

第三章土的压缩性与地基沉朚嫛算资料.

第三章土的压缩性与地基沉朚嫛算资料.

2020/7/8
17
3.2.2侧限压缩性指标
土的压缩系数:土体在侧限条件下孔隙比减小量与有效压力增
量的比值,即e-p曲线中某一压力段的割线斜率。
e
利用单位压力增量所引起得
e0
e1 △e M1
e2
△p
斜率a
e p

e1 p2
e2 p1
孔隙比改变表征土的压缩性
高低
a de
dp
M2
在压缩曲线中,实际采
H1
Vv=ei Vs=1
土样在压缩前后变 形量为∆Hi,整个过 程中土粒体积和底 面积不变
H1/(1+ei)
H0 H0/(1+e0)
土粒高度在受
H0 H1
压前后不变
1 e0 1 ei
整理
ei
e0
H i H0
(1 e0 )
其中
e0=
d
s
(1
w0
0
)
w
1
根据不同压力p作用下,达到稳定的孔隙比e,绘制e-p曲线,为压缩曲线
土样
注意:土样在竖直 压力作用下,由于 环刀和刚性护环的 限制,只产生竖向 压缩,不产生侧向 变形
2020/7/8
透水石
底座
13
压缩曲线是土的孔隙比与所受压力的关系 曲线,从而得到土的压缩性指标
2020/7/8
三联固结仪
14
e-p曲线
研究土在不同压力作用下,孔隙比
变化规律
p
∆Hi
Vv=e0 Vs=1
用割线斜率表示土的压
p1e-p曲线p2
p
缩性 a e = e1 e2
p p2 p1
常用p1=100kPa、 p2=200kPa 对应的压缩系数a1-2评价土的 压缩性

土的压缩性和地基沉降计算

土的压缩性和地基沉降计算
H ap H1 1 e1 P2
VV2=e2· s V H2/(1+e2)
vs vs
H2
vs
3.1.2.3 土的回弹曲线及再压缩曲线
压缩试验条件下土体体积曲线,而是沿曲线bc回弹,可见土体的变形是 由可恢复的弹性变形和不可恢复的塑性变形两部份组成。 (2)回弹曲线和再压线曲线构成一迴滞环,土体不是完全弹性体的又一表征; (3)回弹和再压缩曲线比压缩曲线平缓得多。 (4)当再加荷时的压力超过b点,再压缩曲线就趋于初始压缩曲线的延长线。
内因:土的三相组成。(微观分析)
A)地基沉降的外因:通常认为地基土层在自重 作用下压缩已稳定,主要是建筑物荷载在地基 中产生的附加应力。
z0
p
A
A
施工前 z0
施工后 p
附加 p z0
B)内因:土由三相组成,具有碎散性, 在附加应力作用下土层的孔隙发生压 缩变形,引起地基沉降。
3.5 地基最终沉降量计算
地基最终沉降量的计算方法主要有 以下几种方法:
1、 分层总和法 2、 规范法 3、 理论公式计算法
3.5 地基最终沉降量计算
1.地基的最终沉降量:是指地基在建筑
物等其它荷载作用下,地基变形稳定后的 基础底面的沉降量。
最终沉降量
沉降与时间的关系
2.地基沉降的原因: 外因:主要是建筑物荷载在地基中 产生的附加应力。(宏观分析)
P VV1=e0· s V s
VV2=e· s V
H1
H0
H0/(1+e0)
H1/(1+e)
vs
VV 1 e0VS
VV 2 eVS
vs
HS H0 1 e0
H1 1 e

3下土的压缩性与地基沉降计算例题

3下土的压缩性与地基沉降计算例题

7448
0.9
s
(mm)
54.7 55.6
根据计算表所示△z=0.6m, △sn =0.9mm <0.025Σ si =1.39mm
6.沉降修正系数 s
满足规范要求
根据Es =6.0MPa, 当fak=p0 ,查表得到ys =1.1
7.基础最终沉降量
s= ys s =61.2mm
24
【例9】已知某工程为饱和粘土层,厚度为8.0m,顶部为薄砂层
2.计算地基土的自重应力 自重应力从天然地面起算,z的 取值从基底面起算
3.4m d=1m
b=4m
z(m) 0 1.2 2.4 4.0 5.6 7.2
σc(kPa) 16 35.2 54.4 65.9 77.4 89.0
3.计算基底压力
4.计算基底附加压力
G G Ad 320 kN p0 p d 94kPa
p=P/(l×b)+ γm d=1440/(4×4)+20×1=110.0kPa
(4)基底附加应力
p0=p-γd=110-16 ×1=94kPa
2
(5)计算地基中的附加应力并绘分布曲线见图 (a)。 该基础为矩形,属空间问题,故应用“角点法”求解。为此, 通过中心点将基底划分为四块相等的计算面积,每块的长度 l1=2m,宽度b1=2m。中心点正好在四块计算面积的公共角点 上,该点下任意深度zi处的附加应力为任一分块在该点引起的 附加应力的4倍。计算结果如下表所示。
(题目同例5、例6)
15
解:(1)地基受压层计算深度Zn,按下式计算:
Zn b(2.5 0.4 ln b) 4 (2.5 0.4 ln 4) 7.8m
(2)柱基中点沉降量s,按下式计算:

Chapt3-6-土的压缩性和地基沉降计算-地基的最终沉降量-分层总和法

Chapt3-6-土的压缩性和地基沉降计算-地基的最终沉降量-分层总和法

• 四、例题分析
【例】某厂房柱下单独方形基础,已知基础底面积尺寸
为4m×4m,埋深d=1.0m,地基为粉质粘土,地下水位 距天然地面3.4m。上部荷重传至基础顶面F=1440kN,土
的关天计然算重资度料如=下16图.0。kN试/m分³,别饱用和分重层度总 sa和t=法17和.2规kN范/m法³,计有算
sc
n
c i1
E P c ci(zi
izi1 ) i1
式中:
sc——考虑回弹再压缩影响的地基变形
计算深度取至 基坑底面以下 5m,当基坑底 面在地下水位 以下时取10m
Eci——土的回弹再压缩模量,按相关试验确定
c——考虑回弹影响的沉降计算经验系数,取1.0
Pc——基坑底面以上土的自重应力,kPa
4.0 2.0 0.0840 31.6 65.9
5.6 2.8 0.0502 18.9 77.4 0.24
7.2 3.6 0.0326 12.3 89.0 0.14 7.2
6.确定沉降计算深度zn
根据σz = 0.2σc的确定原则,由计算结果,取zn=7.2m
7.最终沉降计算
根据e-σ曲线,计算各层的沉降量
分层总和法的基本思路是:将压缩 层范围内地基分层,计算每一分层的压 缩量,然后累加得总沉降量。
分层总和法有两种基本方法:e~p 曲线法和e~lgp曲线法。
基础最终沉降量Βιβλιοθήκη 算…3计算原理一般取基底中心点下地基附加应力来计算各分层土的竖向压缩量,认
为基础的平均沉降量s为各分层上竖向压缩量Dsi之和,即
2.分层总和法中附加应力计算应考虑土体在自重作用下的 固结程度,未完全固结的土应考虑由于固结引起的沉降量
相邻荷载对沉降量有较大的影响,在附加应力计算中应考 虑相邻荷载的作用

土的压缩性和地基沉降计算-应力历史对地基沉降的影响

土的压缩性和地基沉降计算-应力历史对地基沉降的影响
◇再加荷时的压力超过b点,再压 缩曲线就趋于初始压缩曲线的延长线。
土体变形机理非常复杂,不是理想 的弹塑性体,而是具有弹、粘、塑性。
土的应力历史对土的压缩性的影响
土的应力历史:土体在历史上曾经受到过的应力状态
先期固结压力pc :土在其生成历史中曾受过的最大有
效固结压力
讨论:对试样施加压力p时,压缩曲线形状
饱和土体有 效应力原理
u
• 二、饱和土的一维固结理

p 在可压缩层厚度为H的饱
σz
uz
有效应力原理
p z uz
和土层上面施加无限均布 荷载p,土中附加应力沿深 度均匀分布,土层只在竖
H
直方向发生渗透和变形
岩层 u0=p u0起始孔隙水压力
• 基本假定
1.土层是均质的、完全饱和的
2.土的压缩完全由孔隙体积减小引起,土体和水不可压缩
a
透水面上的压缩应力 不透水面上的压缩应力
1.适用于地基土在其自重作用下已固结完成,基底面积很大而压缩 土层又较薄的情况
2.适用于土层在其自重作用下未固结,土的自重应力等于附加应力
3.适用于地基土在自重作用已固结完成,基底面积较小,压缩土层 较厚,外荷在压缩土层的底面引起的附加应力已接近于零
4.视为1、2种附加应力分布的叠加
结论:对于同一地基情况,将单面排水改为双面排水,要达 到相同的固结度,所需历时应减少为原来的1/4
• 各种情况下地基固结度的求解 地基固结度基本表达式中的Uz随地基所受附加应力和排水条件不 同而不同,因此在计算固结度与时间的关系时也应区别对待
H 123
4
5
利用压缩层透水面上压缩 应力与不透水面上压缩应力 之比,绘制固结度与时间因 素曲线,确定相应固结度

3土的应力和地基沉降计算

3土的应力和地基沉降计算

h
i
d
g f
a
afgh cegi dfgi z (K begh K K K s s s s )p
b
c
e
矩形面积三角形分布荷载作用下的附加应力计算
y
z
B
0

L
0
d z z (p t , m, n)
dP
L
pt
z Kt1 pt
L z Kt1 F ( B, L, z ) F ( , ) F (m, n) B B
s z s x s xz
Kzs为条形面积竖直均布荷载作用时的附加应力分布系数 查表3.6确定,注意坐标原点位置
P z K 2 z
z Kp
•K=F(底面形状;荷载分布;计算点位置)
•K ——竖直集中荷载作用下 •Ks ——矩形面积竖直均布荷载作用角点下 •Kt ——矩形面积三角形分布荷载作用角点下 •Kzs——条形面积竖直均布荷载作用时 •K0 ——圆形面积均布荷载作用时园心点下
z
M
B
x
z
Kt矩形面积竖直三角分布荷载零值角点下的附加应力分布系数 查表3.4,注意坐标原点位置
条形面积竖直均布荷载作用下的附加应力计算
任意点下的附加应力
p
z K s zp x K s xp xz K p
s xz
xyBzx Nhomakorabeaz
M
x z K , K , K F( B , x , z ) F( , ) F (m , n ) B B
n n e1i e2i ai s si hi ( p2i p1i )hi zi hi i 1 i 1 1 e1i i 1 1 e1i i 1 ESi n n

3下 土的压缩性与地基沉降计算---例题

3下 土的压缩性与地基沉降计算---例题

1
【解】(1)绘制柱基础剖面图与地基土的剖面图,如下图示。
2
(2)计算地基土的自重应力(注意:从地面算起)并绘分布曲 线于上图。 基础底面 地下水位处
地面下2b处
σcd= γd=16 ×1=16kPa σcw= 3.4γ=3.4 ×16=54.4kPa
σC8=3.4γ+4.6γ’ =92.1kPa
各分层的沉降计算结果列于下表。
6
(9)柱基中点总沉降量
s si 16.3 12.9 9.0 6.1 44.3mm
7
例 6 某厂房为框架结构,柱基础底面为正方形,边长l=b=4m, 基础埋置深度d=1.0m,上部结构传至基础顶面荷载P=1440kN 。地基为粉质粘土,土的天然重度为16.0kN/m3,地下水位深
各分层的压缩量列于下表中 (7)计算基础平均最终沉降量
14
分层总和法计算地基最终沉降
15
例 7 某厂房为框架结构,柱基础底面为正方形,边长 l=b=4m,基础埋置深度d=1.0m,上部结构传至基础顶 面荷载P=1440kN。地基为粉质粘土,土的天然重度为
16.0kN/m3,地下水位深3.4m,地下水位以下土的饱和
z(m) σc(kPa) 0 1.2 2.4 4.0 5.6 7.2 16 35.2 54.4 65.9 77.4 89.0
F=1440kN
3.4m d=1m
b=4m
3.计算基底压力
4.计算基底附加压力
G G Ad 320 kN
F G p 110 kPa A
p0 p d 94kPa
(2)柱基中点沉降量s,按下式计算:
p0 p0 p0 s s ( i z i i 1 z i 1 ) s ( z1 1 ) ( z 2 2 z1 1 ) Es 2 i 1 E si E s1 式中:

土力学 5.土的压缩性和地基沉降计算

土力学  5.土的压缩性和地基沉降计算
说明:土的压缩模量Es用在不考虑土侧向变形的地基沉降计算中, 实际上,只有少数情况下地基中土应力与变形与完全侧限条件下压 缩试验土样的应力应变情况相同 1、水平向无限分布的均质土中自重应力作用下 2、满足上式条件的地基在无限均布荷载作用下 3、地基可压缩土层厚度与荷载面积尺寸相比相对较小,即薄压缩 层,可近似看作荷载水平向无限均布
土结构性的压缩——与土形成的应力历史有关,(p>pc时,影响大)
压 缩
说明:正常固结土的压缩认为只是由于孔隙体积减小的结果 无粘性土 粘性土
透水性好,水易于排出 透水性差,水不易排出
压缩稳定很快完成 压缩稳定需要很长一段时间
土的固结:土体在压力作用下,压缩量随时间增长的过程
5.2.2 压缩试验和压缩性指标
OCR=1:正常固结 OCR>1:超固结 OCR<1:欠固结
相同p时,一般OCR越大,土 越密实,压缩性越小
先期固结压力pc的确定:A.Casagrande 法
A
1.在e-lgp压缩试验曲线上, 找曲率最大点m
2.作水平线m1 3.作m点切线m2 4.作m1,m2 的角分线m3 5.m3与试验曲线的直线段 交于点B 6.B点对应于先期固结压力pc
到的相应孔隙比
3.计算步骤
d 地基沉降计算深度
1.绘制基础中心点下地基中自重 应力和附加应力分布曲线
σc线 σz线
2.确定基础沉降计算深度
一般土层:σz=0.2σc 软粘土层:σz=0.1σc, 存在基岩:计算至基岩表面
3.确定地基分层
土层的分界面 地下水位面 每层厚度hi ≤0.4b
e1i-e2 i s i hi 1 e1i
e C m
B
m1 m3 m2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档