江苏输容市2017中考数学第一轮复习统计与概率学案2
江苏省句容市2017中考数学第一轮复习 统计与概率学案2(无答案)

课题:统计与概率班级: 姓名:【考点目标】1、 复习相关知识,能运用知识解决实际问题;2、 通过中考真题再现,在解决问题的过程中,让学生初步体会成功的喜悦,增强学习的自信心;3、 通过解决实际问题,培养学生用数学思维方式解决问题,增强学生的学习数学的兴趣;【考点目标】利用所学知识解决基本的概率统计问题。
【课前练习】1、下列说法中正确的是( )A 、“打开电视,正在播放《新闻联播》”是必然事件B 、想了解某种饮料中含色素的情况,宜采用抽样调查C 、数据1,1,2,2,3的众数是3D 、一组数据的波动越大,方差越小2. 若1,3,x ,5,6五个数的平均数为4.则x 的值为( )A .3B .4C .92D .5 3.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是 .4.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为 。
【例题精讲】例1、下图是某班学生上学的三种方式(乘车、步行、骑车)的人数分布直方图和扇形图.(1)求该班有多少名学生;(2)补上人数分布直方图的空缺部分;(3)若全年级有800人,估计该年级步行人数.例2、某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,•三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.1)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?例3、如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2•个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜.”按小夏设计的规则.请你写出两人获胜的可能性分别是多少?(2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图,列表)说明其公平性.【课堂检测】1.在“手拉手,献爱心”捐款活动中,•某校初三年级5•个班级的捐款数分别为260,220,240,280,290(单位:元),则这组数据的极差是______元.2.某市对2400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为()A.400人 B.150人 C.60人 D.15人3.一套书共有上、中、下三册,•将它们任意摆放到书架的同一层上,这三册书从左向右恰好成上、中、下顺序的概率为_______.4.某口袋中有红色、黄色、蓝色玻璃球共72个.小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的概率依次是35%,25%和40%,•试估计口袋中三种玻璃球的数目依次是______5.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=-x2+2x+5与x轴所围成的区域内(不含边界)的概率是_____________.6.一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n.若把m,n作为点A的横、纵坐标,那么点A(•m,n)在函数y=2x的图象上的概率是多少?【课后巩固】1.有一个不透明的布袋中,红色、黑色、白色的玻璃共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .242.右图是某中学七年级学生参加课外活动人数的扇形统计图,•若参加舞蹈类的学生有42人,则参加球迷活动的学生人数有( )A .145B .147C .149D .1513.一组数据:65,60,70,80,75,85的中位数是_______.4.如图是小敏五次射击成绩的折线图,根据图示信息,•则此五次成绩的平均数是_______环. 5 在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。
中考数学一轮复习专题解析—统计与概率

中考数学一轮复习专题解析—统计与概率复习目标1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;考点梳理一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.【特别提醒】这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.例1. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36 人数 1 1 7 18 10 5 2 2 1 1 2⑴求这次抽样测试数据的平均数、众数和中位数;⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【答案】⑴该组数据的平均数众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多数人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为82%.二、数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。
【高考第一轮复习数学】统计与概率专题

专题二:统计与概率1、随即现象的概念:必然现象是在一定的条件下必然发生的某种结果的现象.在试验中必然不发生的现象叫做不可能现象,在相同条件下多次观察同一现象,每次观察到得结果不一定相同,事先很难预料哪一种结果会出现,这种现象就叫做随机现象.2.必然事件、不可能事件、随机事件在一定条件下,必然会发生的事件叫做必然事件.在一定条件下,肯定不会发生的事件叫做不可能事件. 在一定条件下,可能发生也可能不发生的事件叫做随机事件.通常用大写的英文字母A 、B 、C 。
表示随机事件,随机事件可以简称为事件.3.基本事件和基本事件空间在试验中,能够表示其他事件且不能再分的最简单的事件成为基本事件. 所有基本事件构成的集合称为基本事件空间,常用大写的希腊字母Ω表示. 4.频率与概率(1).在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动的幅度越来越小,这时就把这个常数叫做事件A 的概率,记作P(A).0《P(A)《1,这个定义叫做概率的统计定义.当A 是必然事件时,P(A)=1,当A 是不可能事件时,P(A)=0.(2).频率与概率的关系频率不能很准确的反应出事件发生的可能性大小,但从大量的重复试验中发现,随着试验次数的的增多,频率就稳定与某一固定的值.概率是通过频率来测量的,或者说频率是概率的一个近似值. 5.概率的加法公式 (1).互斥事件不能同时发生的两个事件叫做互斥事件.(或称互不容事件)不能同时发生的两个事件A 、B 是指,如果A 发生,则B 不一定发生;如果B 发生,则A 不一定发生.推广:如果A 、B 、C 、D 。
中的任何两个都互斥,就称事件A 、B 、C 、D 。
彼此互斥,从集合角度看,n 个事件彼此互斥是指各个事件所含结果的集合彼此不相交.(2).事件的并一般的,事件A 与B 至少有一个发生(即A 发生,或B 发生,或A 、B 都发生),则由事件A 与B 构成的事件C 叫做A 与B 的并.记作:A ∪B ;类比集合:事件A ∪B 是由事件A 或事件B 所包含的基本事件组成的集合. 事件A 与事件B 的并等于事件B 与事件A 的并,即A ∪B=B ∪A. (3).互斥事件的概率加法公式 如果A 、B 是互斥事件,在n 次试验中,事件A 出现的频数为n 1,事件B 出现的频数为n 2,则事件A ∪B 出现的频数正好是n 1+n 2,所以时间A ∪B 的频数为nnnnnnn2121+=+.而).()(nnnn21nB A B A n B nA nnμμμμ+=⋃)(总有中事件出现的频率,则次试验表示在果用出现的频率,因此,如是事件出现的频率,是事件由概率的统计定义,可知P (A ∪B )=P (A )+P(B). 6.对立事件及概率公式(1).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件。
人教版中考数学第一轮复习第八章 统计与概率

第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。
1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。
【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。
2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。
】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
备考2023年中考数学一轮复习-统计与概率_数据分析_加权平均数及其计算-填空题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据分析_加权平均数及其计算-填空题专训及答案加权平均数及其计算填空题专训1、(2017昆山.中考模拟) 某校男子足球队的年龄分布如图的条形图,请求出这些队员年龄的平均数、中位数________2、(2013湖州.中考真卷) 某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是用水量(吨) 4 5 6 8户数 3 8 4 5(2016漳州.中考真卷) 一次数学考试中,九年(1)班和(2)班的学生数和平________分.班级人数平均分(1)班52 85(2)班48 80(2015株洲.中考真卷) 某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是________分.5、(2018钦州.中考模拟) 某招聘考试分笔试和面试两项,其中笔试按60%、面试按40%计算加权平均数,作为总成绩,李红笔试成绩为90分,面试成绩为85分,那么李红的总成绩是________分.6、(2013南宁.中考真卷) 某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是________分.7、(2019成都.中考模拟) 某课外小组调查了20户家庭某月的用电量,如下表所示用电量(千瓦时)120 140 160 180 200户数 2 3 6 7 2则这20户家庭该月用电量的平均数是________(千瓦时),中位数是________(千瓦时).8、(2018宜宾.中考真卷) 某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示.综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为________分.9、(2020大连.中考模拟) 某校随机抽查了10名参加学业水平考试学生的体育成绩,得到的结果如下表:成绩(分)47 48 49 50人数(人)1 2 3 4则这10名同学的体育成绩的平均数为________.10、(2020大邑.中考模拟) 某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被等分成20个扇形,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域(如果指针正对分格线重转),那么顾客就可以分别获得价值相当于100元,50元,20元的购物券.则顾客每次转转盘的平均收益为________元.11、(2020怀化.中考真卷) 某校招聘教师,其中一名教师的笔试成绩是80分,面试成绩是60分,综合成绩笔试占60%,面试占40%,则该教师的综合成绩为________分.12、(2020黄石.中考真卷) 某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是________分. 13、(2020凤山.中考模拟) 某单位职工参加献爱心活动,50名职工的捐款情况统计如下表,则他们捐款金额的平均数是元.金额/元 5 10 20 50 100人数 4 16 15 9 614、(2021溧阳.中考模拟) (2019八下·江门月考) 在某公司的面试中,李明的得分情况为:个人形象85分,工作能力90分,交际能力80分,己知个人形象、工作能力和交际能力的权重为1: 2: 2,则李明的最终成绩是.15、(2021郴州.中考真卷) 为庆祝中国共产党建党一百周年,某校开展了主题为“我身边的共产党员”的演讲比赛.比赛从演讲内容、演讲技巧、演讲效果三个方面打分,最终得分按4:3:3的比例计算.若选手甲在演讲内容、演讲技巧、演讲效果三个方面的得分分别为95分、80分、90分,则选手甲的最终得分为分.16、(2021兴化.中考模拟) 学校广播站招聘记者时,综合成绩由3部分组成:采访写作占50%,电脑操作占20%,创意设计占30%.应聘者小明同学这3项成绩依次为90分、60分、70分,则小明同学的综合成绩为分.17、(2021普陀.中考模拟) 为了唤起公众的节水意识,从1993年起,联合国将每年的3月22日定为“世界水日”.某居委会表彰了社区内100户节约用水的家庭,5月份这100户家庭节约用水的情况如表所示,那么5月份这100户家庭节水量的平均数是吨.每户节水量(单位:吨) 5 6 7.2节水户户数62 28 1018、某商场为了招聘商品拆装上架员工一名,设置了计算机、语言和商品知识三项测试,并对这三项测试成绩按照2:3:5的比确定.若某应试者三项测试成绩分别为70,50,80,则该应试者的平均成绩是.19、若2022年杭州亚运会志愿者招聘分笔试和面试,成绩分别占总分的和,小明的笔试和面试成绩如表所示,则小明的总分为分.小明的笔方和面试成绩统计表项目笔试面试成绩85分90分20、某大型商场为了吸引顾客,规定凡在本商场一次性消费100元的顾客可以参加一次摇奖活动,摇奖规则如下:一个不透明的纸箱里装有1个红球、2个黄球、5个绿球、12个白球,所有除颜色外完全相同.充分摇匀后,从中随机抽取出一球,若取出的球分别是红、黄、绿球,顾客将分别获得50元、25元、20元现金,若取出白球则没有奖.若某位顾客有机会参加摇奖活动,则他每参与一次的平均收益为元.加权平均数及其计算填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。
备考2023年中考数学一轮复习-统计与概率_数据收集与处理_扇形统计图-单选题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_扇形统计图-单选题专训及答案扇形统计图单选题专训1、(2017河北.中考真卷) 甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨) 4 5 6 9户数 4 5 2 1比较5月份两组家庭用水量的中位数,下列说法正确的是()A . 甲组比乙组大B . 甲、乙两组相同C . 乙组比甲组大D . 无法判断2、(2018呼和浩特.中考真卷) 随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A . ①的收入去年和前年相同B . ③的收入所占比例前年的比去年的大C . 去年②的收入为2.8万D . 前年年收入不止①②③三种农作物的收入3、(2017顺义.中考模拟) 某公司在抗震救灾期间承担40 000顶救灾帐篷的生产任务,分为A、B、C、D四种型号,它们的数量百分比和每天单独生产各种型号帐篷的数量如图所示:根据以上信息,下列判断错误的是()A . 其中的D型帐篷占帐篷总数的10%B . 单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍 C . 单独生产A型帐篷与单独生产D型帐篷的天数相等 D . 单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍4、(2017新野.中考模拟) 如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为()A . 3万元B . 万元C . 2.4万元D . 2万元5、(2017唐山.中考模拟) 小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A . 中位数是3个B . 中位数是2.5个C . 众数是2个D . 众数是5个6、(2019温州.中考模拟) 小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出()A . 50元B . 100元C . 150元D . 200元7、(2018温州.中考模拟) 某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A . 被调查的学生有60人B . 被调查的学生中,步行的有27人C . 估计全校骑车上学的学生有1152人D . 扇形图中,乘车部分所对应的圆心角为54° 8、(2017滨江.中考模拟) 某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数20 30根据图标提供的信息,下列结论错误的是()A . 这次被调查的学生人数为200人B . 扇形统计图中E部分扇形的圆心角为72°C . 被调查的学生中最想选F的人数为35人D . 被调查的学生中最想选D的有55人9、(2017乐清.中考模拟) 小明对某校九年级所有同学校本课程选修情况进行了调查,把所得数据绘制成如图所示的扇形统计图.已知参加巧手园地的为30人,则参加趣味足球的人数是()A . 35B . 48C . 52D . 7010、(2016安徽.中考真卷) 自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A . 18户B . 20户C . 22户D . 24户11、(2020新野.中考模拟) 根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A . 扇形统计图能反映各部分在总体中所占的百分比B . 每天阅读30分钟以上的居民家庭孩子超过50%C . 每天阅读1小时以上的居民家庭孩子占20%D . 每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°12、(2017岱岳.中考模拟) 某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1 )接受这次调查的家长人数为200人(2 )在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3 )表示“无所谓”的家长人数为40人(4 )随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A . 4B . 3C . 2D . 113、(2017肥城.中考模拟) 某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A . 94分,96分B . 96分,96分C . 94分,96.4分D . 96分,96.4分14、(2016济宁.中考模拟) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 20015、(2017泰安.中考真卷) 为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A,B,C,D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是()A . 本次抽样测试的学生人数是40B . 在图1中,∠α的度数是126°C . 该校九年级有学生500名,估计D级的人数为80D . 从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.216、(2016泰安.中考真卷) 某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数40 60 100根据图表提供的信息,下列结论错误的是()A . 这次被调查的学生人数为400人B . 扇形统计图中E部分扇形的圆心角为72°C . 被调查的学生中喜欢选修课E,F的人数分别为80,70D . 喜欢选修课C的人数最少17、(2020定远.中考模拟) 某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A . 1.95元B . 2.15元C . 2.25元D . 2.75元18、(2020武汉.中考模拟) 某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图所示),并规定:顾客消费200元以上(含200元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项优惠,如果指针恰好在分界线上时,则需要重新转动转盘.某顾客正好消费300元,他转动一次转盘,实际付款210元的概率为()A .B .C .D .19、(2019顺德.中考模拟) 在一次捐书活动中,A、B、C、D分别表示“名人传记”、“科普图书”、“小说”、“其它图书”某校九年级学生捐书情况如下:图书种类 A B C D数目(本) A 175 100 d下列哪个选项是错误的()A . 共捐书500本B . a=150C . “C”所占的百分比是20%D . “扇形D”的圆心角是50°20、(2018沙湾.中考模拟) 如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图(两图都不完整),则下列结论中错误的是( )A . 该班总人数为50B . 骑车人数占总人数的20%C . 步行人数为30D . 乘车人数是骑车人数的2.5倍21、(2018云南.中考真卷) 2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个不符合题意的是()A . 抽取的学生人数为50人B . “非常了解”的人数占抽取的学生人数的12%C . a=72°D . 全校“不了解”的人数估计有428人22、(2019贵阳.中考模拟) (2019·海曙模拟) 小刚家2017年和2018年的家庭支出情况如图所示,则小刚家2018年教育方面支出的金额比2017年增加了()A . 0.216万元B . 0.108万元C . 0.09万元D . 0.36万元23、(2020遵化.中考模拟) 计算的结果为()A .B .C . 1D . 024、(2020遵化.中考模拟) 如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A . =B . =C . =D . =25、(2020遵化.中考模拟) 如图,二次函数y=ax2+bx+c(a≠0)的图像的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2-4ac>0,③a-b+c<0,④c=1,⑤当x>-1时,y>0.其中正确结论的个数是()A . 2个B . 3个C . 4个D . 5个26、(2020百色.中考模拟) 某班全体同学“运动与健康”评价等级的扇形统计图如图所示,则A等级所在扇形的圆心角度数为()A . 72°B . 105°C . 108°D . 126°27、(2020贵阳.中考模拟) 如图是张亮、李娜两位同学零花钱全学期各项支出的统计图.根据统计图,下列对两位同学购买书籍支出占全学期总支出的百分比作出的判断中,正确的是()A . 张亮的百分比比李娜的百分比大B . 张娜的百分比比张亮的百分比大C . 张亮的百分比与李娜的百分比一样大D . 无法确定28、(2021息.中考模拟) 某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A . ②→③→①→④B . ③→④→①→②C . ①→②→④→③D .②→④→③→①29、(2020威海.中考真卷) 为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A . 本次调查的样本容量是B . 选“责任”的有人C . 扇形统计图中“生命”所对应的扇形圆心角度数为D . 选“感恩”的人数最多30、在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票为()A . 300B . 90C . 75D . 85扇形统计图单选题答案1.答案:B2.答案:C3.答案:B4.答案:D5.答案:C6.答案:D7.答案:C8.答案:D9.答案:D10.答案:D11.答案:C12.答案:A13.答案:D14.答案:A15.答案:C16.答案:D17.答案:C18.答案:D19.答案:D20.答案:C21.答案:D22.答案:A23.答案:C24.答案:C25.答案:B26.答案:C27.答案:A28.答案:D29.答案:30.答案:。
中考数学第一轮复习资料(超全)

中考一轮复习第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲 尺规作图 第4讲 图形的相似 第5讲 解直角三角形第三部分 统计与概率第七章 统计与概率 第1讲 统计 第2讲 概率第一部分 数与代数第一章 数与式 第1讲 实数考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= -b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
备考2023年中考数学一轮复习-统计与概率_概率_利用频率估计概率

备考2023年中考数学一轮复习-统计与概率_概率_利用频率估计概率利用频率估计概率专训单选题:1、(2017北京.中考真卷) 如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A . ①B . ②C . ①②D . ①③2、(2019阜新.中考真卷) 一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A . 12B . 10C . 8D . 63、(2015本溪.中考真卷) 在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A . 16个B . 20个C . 25个D . 30个4、(2015南通.中考真卷) 在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A . 12B . 15C . 18D . 215、(2019嘉兴.中考模拟) 对某校600名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,学生体重在60kg以上的人数为()A . 120B . 150C . 180D . 3306、(2019武汉.中考模拟) 如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A . 0.33B . 0.34C . 0.20D . 0.357、(2019花都.中考模拟) 在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球实验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中白色球可能()A . 4个B . 6个C . 34个D . 36个8、(2020无为.中考模拟) 某校生物兴趣小组为了解种子发芽情况,重复做了大量种子发芽的实验,结果如下:根据以上数据,估计该种子发芽的概率是()A . 0.90B . 0.98C . 0.95D . 0.919、(2021张店.中考模拟) 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A . 从一副扑克牌中任意抽取一张,这张牌是“红色的”B . 掷一枚质地均匀的硬币,落地时结果是“正面朝上”C . 在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”D . 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是610、在一个不透明的口袋中装有3个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有()A . 6个B . 15个C . 13个D . 12个填空题:11、(2017昆都仑.中考模拟) 在一个不透明的口袋中有3个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在15%左右,则口袋中的白球大约有________个.12、(2017泰兴.中考模拟) 如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为________.13、(2019瑞安.中考模拟) 瑞安某服装厂对一批服装质量抽检情况如下:抽检件数(件)10 100 200 500 1000正品件数(件)10 97 194 475 950根据表格中的数据,从这批服装中任选一件是正品的概率约为________.14、(2018郴州.中考真卷) (2018·郴州) 某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示,则这个厂生产的瓷砖是合格品的概率估计值是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:统计与概率
班级: 姓名:
【考点目标】
1、 复习相关知识,能运用知识解决实际问题;
2、 通过中考真题再现,在解决问题的过程中,让学生初步体会成功的喜悦,增强学习的自信心;
3、 通过解决实际问题,培养学生用数学思维方式解决问题,增强学生的学习数学的兴趣;
【考点目标】
利用所学知识解决基本的概率统计问题。
【课前练习】
1、下列说法中正确的是( )
A 、“打开电视,正在播放《新闻联播》”是必然事件
B 、想了解某种饮料中含色素的情况,宜采用抽样调查
C 、数据1,1,2,2,3的众数是3
D 、一组数据的波动越大,方差越小
2. 若1,3,x ,5,6五个数的平均数为4.则x 的值为( )
A .3
B .4
C .92
D .5 3.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是 .
4.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程11222ax x x
-+=--有
正整数解的概率为 。
【例题精讲】
例1、下图是某班学生上学的三种方式(乘车、步行、骑车)的人数分布直方图和扇形图.
(1)求该班有多少名学生;
(2)补上人数分布直方图的空缺部分;
(3)若全年级有800人,估计该年级步行人数.
例2、某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选进行了笔试和面试两项测试,三人的测试成绩如下表所示:
根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,•三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.
(1)请算出三人的民主评议得分;
(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.1)?
(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?
例3、如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2•个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).
(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜.”按小夏设计的规则.请你写出两人获胜的可能性分别是多少?
(2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状
图,列表)说明其公平性.
【课堂检测】
1.在“手拉手,献爱心”捐款活动中,•某校初三年级5•个班级的捐款数分别为260,220,240,280,290(单位:元),则这组数据的极差是______元.
2.某市对2400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为()
A.400人 B.150人 C.60人 D.15人
3.一套书共有上、中、下三册,•将它们任意摆放到书架的同一层上,这三册书从左向右恰好成上、中、下顺序的概率为_______.
4.某口袋中有红色、黄色、蓝色玻璃球共72个.小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的概率依次是35%,25%和40%,•试估计口袋中三种玻璃球的数目依次是______
5.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其
余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=-x2+2x+5与x轴所围成的区域内(不含边界)的概率是_____________.
6.一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上
的数字分别是m,n.若把m,n作为点A的横、纵坐标,那么点A(•m,n)在函数y=2x的图象上的概率是多少?
【课后巩固】
1.有一个不透明的布袋中,红色、黑色、白色的玻璃共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )
A .6
B .16
C .18
D .24
2.右图是某中学七年级学生参加课外活动人数的扇形统计图,•若参加舞蹈类的学生有42人,则参加球迷活动的学生人数有( )
A .145
B .147
C .149
D .151
3.一组数据:65,60,70,80,75,85的中位数是_______.
4.如图是小敏五次射击成绩的折线图,根据图示信息,•则此五次成绩的平均数是_______环. 5 在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。
现将背面完全相同,正面分别标有数1、2、3、21、3
1的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 。
6、在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是8
3.
(1)试写出y 与x 的函数关系式.
(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为0.5,求x 和y 的值.
7、有四张背面相同的纸牌A,B,C,D,•其正面分别画有四个不同的几何图形(如图),小华将这4
张牌背面朝上洗匀后,摸出一张,放回洗匀后再摸一张.
(1)用树状图表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);
(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
8. 高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:
(1)该校近四年保送生人数的极差是.请将折线统计图补充完整;
(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.。