济宁市兖州区2019-2020年人教版七年级上数学期末试题

合集下载

2019-2020学年人教版七年级上学期期末考试数学试卷含参考答案

2019-2020学年人教版七年级上学期期末考试数学试卷含参考答案

2019-2020学年七年级上学期期末考试数学试卷一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5B.5C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2B.4C.8D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE (1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度.(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB 下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.参考答案与试题解析一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:∵代数式﹣3a m﹣1b6和ab2n是同类项,∴m﹣1=1,2n=6,∴m=2,n=3,∴m﹣n=2﹣3=﹣1,故选:A.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【分析】根据有理数的分类可得A的正误;根据射线的表示方法可得B的正误;根据相反数的定义可得C的正误;根据线段的性质可得D的正误.【解答】解:①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB与射线BA是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确.故选:B.【点评】此题主要考查了相反数、有理数、线段的性质、射线的表示方法,关键是牢固掌握基础知识.5.【分析】设每本书的进价是x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,此题得解.【解答】解:设每本书的进价是x元,根据题意得:(1+60%)x•﹣x=6.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°;故选:C.【点评】本题考查了余角和补角;根据题意得出各个角的度数是关键.7.【分析】由于在直线AB上画线段BC,那么CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC;②当C在线段AB的延长线上,此时AC=AB﹣BC.然后代入已知数据即可求出线段AC的长度.【解答】解:∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC=6﹣2=4cm;②当C在线段AB的延长线上,此时AC=AB+BC=6+2=8cm.故选:D.【点评】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c﹣a>0,a+b<0,根据绝对值的性质化简计算.【解答】解:由数轴可知,b<a<0<c,∴c﹣a>0,a+b<0,则|c﹣a|﹣|a+b|=c﹣a+a+b=c+b,故选:A.【点评】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.二、填空题(每题2分,共16分,把答案写在题中横线上)9.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:,的相反数是﹣,故答案为:﹣.【点评】本题考查了相反数,先求绝对值,再求相反数.10.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据题意,得﹣2m2n(答案不唯一),故答案为:﹣2m2n(答案不唯一).【点评】本题考查了单项式的定义,解答本题的关键是理解单项式的定义中的单项式的次数的正确含义.11.【分析】观察图形可知,∠BOC=135°,∠COD=45°,根据角平分线的定义可得∠EOC,再根据角的和差关系即可求解.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故答案为:22.5【点评】此题考查了角的计算,角平分线的定义,关键是观察图形可得∠BOC=135°,∠COD =45°.12.【分析】直接利用非负数的性质以及偶次方的性质得出x,y的值进而得出答案.【解答】解:∵|x+1|+(3﹣y)2=0,∴x+1=0,3﹣y=0,解得:x=﹣1,y=3,则x y的值是:(﹣1)3=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.【分析】观察题中的两个代数式a+b和2﹣3a﹣3b,可以发现,2﹣3a﹣3b=2﹣3(a+b),因此可整体代入a+b=2,求出结果.【解答】解:2﹣3a﹣3b=2﹣3(a+b)因为a+b=2,所以原式=2﹣3×2=2﹣6=﹣4故答案为:﹣4.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,应考虑a+b为一个整体,然后利用“整体代入法”求代数式的值.14.【分析】设这个角为x°,则这个角的补角为(180﹣x)°,根据题意可得方程x﹣(180﹣x)=36.8,再解即可.【解答】解:36°48′=36.8°,设这个角为x°,则这个角的补角为(180﹣x)°,x﹣(180﹣x)=36.8,解得:x=108.4,108.4°=108°24′,故答案为:108;24.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.【分析】根据从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,可以列出相应的方程,从而可以解答本题.【解答】解:设变化后乙组有x人,33+(27﹣x)=3x,解得,x=15,即变化后乙组有15人,故答案为:15.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.16.【分析】根据题意分别计算出x3,x4,x5…,据此可得后面每个数均比前一个数大3,据此求解可得.【解答】解:由题意知=7,解得x3=10,=10,解得x4=13,=13,解得x5=16,……∴第n个数x n为3n+1,故答案为:3n+1.【点评】本题主要考查数字的变化规律,解题的关键是根据题意得出后面每个数均比前一个数大3的规律.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.【分析】(1)先算乘方,再算乘除法,最后加减法即可解答本题;(2)先算中括号里的,再根据有理数的乘法即可解答本题.【解答】解:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019=﹣4+8×(﹣)×﹣(﹣1)=﹣4﹣1+1=﹣4;(2)﹣×[﹣32×(﹣)2﹣2]====9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4x﹣(x﹣1)=4﹣2(3﹣x),去括号得:4x﹣x+1=4﹣6+2x,移项合并得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=3x2y﹣(2x2y﹣x2y﹣3x)=3x2y﹣(x2y﹣3x)=3x2y﹣x2y+3x=2x2y+3x当x=,y=2时,原式=2××2+3×()=1=.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:∵A=x2+2x﹣1,A﹣B=﹣3x2+2x﹣1,∴A+B=2A﹣(A﹣B)=2x2+4x﹣2﹣(﹣3x2+2x﹣1)=2x2+4x﹣2+3x2﹣2x+1=5x2+2x﹣1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.四、解答题(每题8分,共16分)21.【分析】(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=×AC=×12=;(2)根据线段中点的定义得到AN=AC,得到AB=AC=AC,列方程即可得到结论.【解答】解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=×AC=×12=;(2)∵N为线段AC中点,∴AN=AC,∵AM:MB:BC=1:4:3,∴AB=AC=AC,∴BN=AB﹣AN=AC﹣AC=AC=2,∴AC=16.【点评】本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.22.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.【点评】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足,垂线的性质过一点有且只有一条直线与已知直线垂直.五、解答题(23题10分,24题10分,25题10分,共30分)23.【分析】设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据相遇时,两车行驶的路程和等于1180公里列出方程,求解即可.【解答】解:设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据题意,得200(x+)+280x=1180,解得x=2.25,2.25时=2时15分,7时+2时15分=9时15分.答:两车于9点15分相遇.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【分析】(1)设衬衫的单价为x元,则西装的单价为5x元,由两种产品共39000元为等量关系建立方程求出其解即可;(2)设单价为21元的A种产品为y件,单价为25元的B种产品为(105﹣y)件,根据支出总额为2447元为等量关系建立方程求出其解就可以判断结论.【解答】解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.【点评】本题考查了列一元一次方程的运用,解答时找准题目的等量关系是解答本题的关键.25.【分析】(1)根据OM的初始位置和旋转后在图2的位置进行分析;(2)依据已知先计算出∠BOC=135°,则∠MOB=135°﹣MOC,根据∠BON与∠MOB互补,则可用∠MOC表示出∠BON,从而发现二者之间的等量关系.【解答】解:(1)OM由初始位置旋转到图2位置时,在一条直线上,所以旋转了180°.故答案为180;(2)∵∠AOC:∠BOC=1:3,∴∠BOC=180°×=135°.∵∠MOC+∠MOB=135°,∴∠MOB=135°﹣∠MOC.∴∠BON=90°﹣∠MOB=90°﹣(135°﹣∠MOC)=∠MOC﹣45°.即∠COM﹣∠BON=45°.【点评】本题主要考查了角之间的和差关系,解题时一定要结合图形分析题目.。

2019—2020学年度济宁市汶上第一学期初一期末考试初中数学

2019—2020学年度济宁市汶上第一学期初一期末考试初中数学

2019—2020学年度济宁市汶上第一学期初一期末考试初中数学数学试卷总分值:120分 时限:120分钟一、选择题(每题3分,共36分)1.以下讲法正确的选项是 ( )A .非负数包括零和整数B .正整数包括自然数和零C .零是最小的整数D .整数和分数统称为有理数2.用四舍五入法按要求对0.05019分不取近似值,其中错误的选项是 () A .0.1(精确到0.1) B .0.05(精确到百分位)C .0.05(保留两个有效数字)D .0.0502(精确到0.0001)3.以下各组数中,相等的是 ( )A .2)3(-与23-B .23-与23-C .3)3(-与33-D .33-与33-4.沿图中虚线旋转一周,能围成的几何体是下面几何体中的( )5.如图,以下图讲法中错误的选项是( )A .OA 方向是北偏东30°B .OB 方向是北偏西15°C .OC 方向是南偏西25°D .OD 方向是东南方向6.以下结论正确的选项是( )A .直线比射线长B .过两点有且只一条直线C .过三点一定能作三条直线D .一条直线确实是一个平角7.下面四个图形中,不是左图的视图的是( )8.下面的讲法中,正确的选项是( )A .假设bc ac =,那么b a =B .假设b y b x =(b ≠0),那么y x =C .假设y x =,那么y x =D .假设121=-x ,那么x =2 9.日常生活中我们使用的数是十进制数,而运算机使用的数是二进制数,即数的进位方法是〝逢二进一〞,二进制只使用数字0、1,如二进制数1101记为1101(2),1101(2)通过式子1×23+1×22+0×2+1能够转换为十进制数13,仿照上面的转换方法,将二进制数11101(2)转换为十进制数是( )A .4B .25C .29D .33 10.如下图,a 、b 是有理数,那么式a b b a b a -++++化简的结果为( )A .b a +3B .b a -3C .a b +3D .a b -311.利用方程解决下面咨询题:相传有个人不讲究讲话艺术常引起误会,一天他摆宴席请客,他看到还有几个没来,就自言自语:〝如何该来的还不来呢?〞客人听了,心想难道我们是不该来的,因此有一半客人走了,他一看十分着急,又讲:〝不该走的倒走了!〞剩下的人一听,是我们该走啊!又有剩下的三分之二的人离开了,他着急地一拍大腿,连讲:〝我讲的不是他们。

2019-2020学年山东济宁七年级上数学期末试卷及答案

2019-2020学年山东济宁七年级上数学期末试卷及答案

2021-2021学年山东济宁七年级上数学期末试卷一、选择题1. 2020的相反数是( ) A.−12020 B.12020C.2020D.−20202. 假设a ,b 互为倒数,那么−4ab 的值为( ) A.−4 B.−1 C.1 D.03. 单项式2x 3y 1+2m 与3x n+1y 3的和是单项式,那么m +n 的值是( 〕 A.−3 B.3 C.6 D.−64. 下面各式中,计算正确的选项是( ) A.−42=16 B.(−12)3=−18C.23=6D.−5−2=−35. 如果x =3是关于x 的方程2x +m =7的解,那么m 的值为( 〕 A.−1 B.2C.1D.−26. 如图是由假设干个小正方体所搭成的几何体,那么从左边看这个几何体时,所看到的几何图形是( )A.B.C.D.7. 如图,检测4个足球,其中超过标准质量的克数记为正数,缺乏标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )A.B. C. D.8. 一个几何体的展开图如下图,这个几何体是( )D.圆柱9. 如图,点A 在点O 的北偏西60∘方向上,点B 在点O 的南偏东20∘的方向上,那么∠AOB 的大小为( )A.150∘B.140∘C.120∘D.110∘10. 实数a ,b 在数轴上的对应点的位置如下图,把−a ,b ,0按照从小到大的顺序排列,正确的选项是( )A.0<−a <bB.−a <0<bC.b <0<−aD.b <−a <011. 如图,C ,D ,E 是线段AB 的四等分点,以下等式不正确的选项是( )A.AB =4ACB.CE =12ABC.AE =34ABD.AD =12CB12. 某商场销售甲、乙两种服装,乙服装每件的本钱比甲服装贵50元,甲、乙服装均按本钱价提高 40% 作为标价出售.一段时间后,甲服装卖出了350件,乙服装卖出了200件,销售金额为129500元,假设用方程 350×1.4x +200×1.4×(x +50)=129500 表示其中的数量关系,那么式子中x 所表示的量是( )二、填空题13. 假设a是最小的正整数,b是最大的负整数,那么a+b=________.14. 写出一个含有两个字母,且次数为3的单项式________.15. 用科学记数法表示北京故宫的占地面积约为7.2×105m2,那么7.2×105的原数是________.16. 如图,射线ON,OE分别为正北、正东方向,∠AOE=35∘15′,那么射线OA的方向是北偏东________∘________′.17. 假设(m+3)x|m|−2+2=1是关于x的一元一次方程,那么m的值为________.18. 如图①,O为直线AB上一点,作射线OC,使∠AOC=120∘ ,将一个直角三角尺如图摆放,直角顶点在点O处,一条直角边OP在射线OA上,将图①中的三角尺绕点O以每秒5∘的速度按逆时针方向旋转〔如图②所示〕,在旋转一周的过程中第t秒时,OQ所在直线恰好平分∠BOC,那么t的值为________.三、解答题19. 计算:(1)(45−34+12)×(−20);(2)32×(−13)2÷(−3)−112×(−2).20. 计算:(1)(45−34+12)×(−20);(2)32×(−13)2÷(−3)−112×(−2).21. 如图,∠ABC=90∘,∠CBD=30∘,BP平分∠ABD.求∠ABP的度数.22. 解方程:x+12−3=2−x4.23.(1)如图1,点M在直线AB上,点P,Q在直线CD上.按以下语句画图:①画直线PM;②画线段QM;③过点P画直线,交线段QM于点N.(2)如图2,用适当语句表示图中点与直线的位置关系:①点P与直线AB的位置关系;②点Q与直线AB的位置关系.24. 先化简,再求值:3x2y−[2x2y−3(2xy−x2y)−xy],其中x=−1,y=−2.25. 列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率高,负氧离子多,真正到达了身心愉悦的进行体育锻炼.张老师和李老师登一座山,张老师每分钟登高10米,并且先出发30分钟,李老师每分钟登高15米,两人同时登上山顶,求这座山的高度.26. 如图,P是线段AB的中点,点C,D把线段AB三等分.线段CP的长为1.5cm,求线段AB的长.27. (1)阅读思考:小迪在学习过程中,发现“数轴上两点间的距离〞可以用“表示这两点数的差〞来表示,探索过程如下:如下图1,线段AB,BC,CD的长度可表示为:AB=3=4−1,BC=5=4−(−1),CD=3=(−1)−(−4),于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当b>a时,AB=b−a(较大数−较小数〕.(2)尝试应用:①如下图2,计算:OE=________,EF=________;②把一条数轴在数m处对折,使表示−19和2019两数的点恰好互相重合,那么m=________;(3)问题解决:①如下图3,点P表示数x,点M表示数−2,点N表示数2x+8,MN=4PM,求出点P和点N分别表示的数;②在上述①的条件下,是否存在点Q,使PQ+QN=3QM,假设存在,请直接写出点Q所表示的数;假设不存在,请说明理由.参考答案与试题解析2021-2021学年山东济宁七年级上数学期末试卷一、选择题1.【答案】D2.【答案】A3.【答案】B4.【答案】B5.【答案】C6.【答案】B7.【答案】C8.【答案】C9.【答案】B10.【答案】A11.【答案】D12.【答案】C 二、填空题13.【答案】14.【答案】−2m2n(答案不唯一)15.【答案】72000016.【答案】54,4517.【答案】318.【答案】24 s或60 s三、解答题19.【答案】解:(1)原式=45×(−20)−34×(−20)+12×(−20) =−16+15−10=−11.(2)原式=9×19÷(−3)−32×(−2)=1÷(−3)+3=−13+3=83.20.【答案】解:(1)原式=45×(−20)−34×(−20)+12×(−20) =−16+15−10=−11.(2)原式=9×19÷(−3)−32×(−2)=1÷(−3)+3=−13+3=83.21.【答案】解:∵ ∠ABC=90∘,∠CBD=30∘,∵ ∠ABD=120∘,∵ BP平分∠ABD,∵ ∠ABP=60∘.22.【答案】解:去分母得:2(x+1)−12=2−x,去括号得:2x+2−12=2−x,移项得:3x=12,系数化1得:x=4.23.【答案】解:(1)如下图1,直线PM、线段QM、直线PN即为所求;解:(2)①点P与直线的位置关系:点P在直线AB上;②点Q与直线AB的位置关系:点Q在直线AB外.24.【答案】解:原式=3x2y−2x2y+6xy−3x2y+xy=−2x2y+7xy,当x=−1,y=−2时,原式=−2x2y+7xy=−2×(−1)2×(−2)+7×(−1)×(−2)=18.25.【答案】解:设这座山高x米,根据题意得:x10−x15=30,解得:x=900,答:这座山高900米.26.【答案】解:∵ P为AB的中点,∵ AP=PB,∵ C,D把线段AB三等分,∵ AC=DB,∵ PC=PD,∵ P为CD中点,∵ CP=1.5,∵ CD=3,∵ AB=3CD=9cm.27.【答案】5,8,1000(3)①MN=2x+8−(−2),PM=−2−x,∵ MN=4PM,即2x+10=4(−2−x),∴ x=−3.∵ 点P表示的数为−3,点N表示的数为2;②存在.理由如下:设点Q表示的数为a,根据题意得:−3−a+2−a=3(−2−a),解得a=−5,或a+3+2−a=3(a+2),解得a=−13,故点表示的数为−5或−13.。

2019-2020学年新人教版七年级上学期期末考试数学试卷含参考答案

2019-2020学年新人教版七年级上学期期末考试数学试卷含参考答案

2019-2020学年七年级上学期期末考试数学试卷一.选择题(共8小题)1.﹣5的绝对值是()A.5B.﹣C.﹣5D.2.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d3.如图是一个由两个小正方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.4.下列说法正确的是()A.﹣的系数是﹣2B.x2+x﹣1的常数项为1C.22ab3的次数是6次D.2x﹣5x2+7是二次三项式5.下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.6.已知等式3a=2b+5,则下列等式不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc D.a=+7.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.8.如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOD=90°,若∠BOD:∠BOE=1:2,则∠AOF的度数为()A.70°B.75°C.60°D.54°二.填空题(共6小题)9.把多项式2m2﹣4m4+2m﹣1按m的升幂排列.10.长春市奥林匹克公园于2018年年底建成,它的总占地面积约为528000平方米,528000这个数字用科学记数法表示为.11.如图,∠AOB=72°32′,射线OC在∠AOB内,∠BOC=30°40′,则∠AOC=.12.今年十一小长假期间,迟老师一家三口开着一辆轿车去长春市净月潭森林公园度假,若门票每人a元,进入园区的轿车每辆收费40元,则迟老师一家开车进入净月潭森林公园园区所需费用是元(用含a的代数式表示).13.如图,能与∠1构成同位角的角有个.14.如图,在三角形ABC中,AB⊥AC于点A,AB=6,AC=8,BC=10,点P是线段BC上的一点,则线段AP的最小值为.三.解答题(共10小题)15.计算:(1)(+﹣)×(﹣48)(2)(﹣5)3×(﹣)+32÷(﹣2)2×16.计算:(1)3x+2(x﹣)﹣(x+1)(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)17.解下列一元一次方程:(1)4x+7=32﹣x(2)8x﹣3(3x+2)=1(3)2(y﹣)=(3y﹣2)(4)﹣=118.先化前,再求值:2(a2+2a﹣1)﹣3(a2﹣2a﹣3),其中a=﹣2.19.如图,点P是∠AOB的边OB上的一点,点M是∠AOB内部的一点,按下述要求画图,并回答问题:(1)过点M画OA的平行线MN;(2)过点P画OB的垂线PC,交OA于点C;(3)点C到直线OB的距离是线段的长度.20.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG相交于点H,∠C=∠EFG,∠BFG=∠AEM,求证:AB∥CD.(完成下列填空)证明:∵∠BFG=∠AEM(已知)且∠AEM=∠BEC()∴∠BEC=∠BFG(等量代换)∴MC∥()∴∠C=∠FGD()∵∠C=∠EFG(已知)∴∠=∠EFG,(等量代换)∴AB∥CD()21.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.22.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.23.如图,直线AB、CD相交于点O,OF平分∠AOE,OF⊥CD,垂足为O.(1)写出图中所有与∠AOD互补的角;(2)若∠AOE=110°,求∠BOD的度数.24.感知:如图①,若AB∥CD,点P在AB、CD内部,则∠P、∠A、∠C满足的数量关系是.探究:如图②,若AB∥CD,点P在AB、CD外部,则∠APC、∠A、∠C满足的数量关系是.请补全以下证明过程:证明:如图③,过点P作PQ∥AB∴∠A=∵AB∥CD,PQ∥AB∴∥CD∴∠C=∠∵∠APC=∠﹣∠∴∠APC=应用:(1)如图④,为北斗七星的位置图,如图⑤,将北斗七星分别标为A、B、C、D、E、F、G,其中B、C、D三点在一条直线上,AB∥EF,则∠B、∠D、∠E满足的数量关系是.(2)如图⑥,在(1)问的条件下,延长AB到点M,延长FE到点N,过点B和点E分别作射线BP和EP,交于点P,使得BD平分∠MBP,EN平分∠DEP,若∠MBD=25°,则∠D﹣∠P =°.参考答案与试题解析一.选择题(共8小题)1.【分析】根据负数的绝对值是它的相反数是,可得答案.【解答】解:﹣5的绝对值是5.故选:A.【点评】本题考查了绝对值,利用了绝对值的性质是解题关键.2.【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3.【分析】根据题目中的几何图形,可以得到它的主视图,从而可以解答本题.【解答】解:由两个小正方体和一个圆锥组成的几何体,它的主视图是,故选:B.【点评】本题考查简单组合的三视图,解答本题的关键是明确题意,画出相应的图形.4.【分析】根据单项式和多项式的有关概念逐一求解可得.【解答】解:A.﹣的系数是﹣,此选项错误;B.x2+x﹣1的常数项为﹣1,此选项错误;C.22ab3的次数是4次,此选项错误;D.2x﹣5x2+7是二次三项式,此选项正确;故选:D.【点评】本题考查多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.5.【分析】根据三棱柱的展开图的特点进行解答即可.【解答】A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误.故选:B.【点评】此题主要考查了几何体展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.6.【分析】根据等式的性质,依次分析各个选项,选出等式不一定成立的选项即可.【解答】解:A.3a=2b+5,等式两边同时减去5得:3a﹣5=2b,即A项正确,B.3a=2b+5,等式两边同时加上1得:3a+1=2b+6,即B项正确,C.3a=2b+5,等式两边同时乘以c得:3ac=2bc+5c,即C项错误,D.3a=2b+5,等式两边同时除以3得:a=+,即D项正确,故选:C.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.7.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选:D.【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力.8.【分析】根据角平分线的定义和邻补角的性质计算即可.【解答】解:∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=∠DOF=90°,∴∠AOF=90°﹣36°=54°.故选:D.【点评】本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.二.填空题(共6小题)9.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:多项式2m2﹣4m4+2m﹣1按m的升幂排列为﹣1+2m+2m2﹣4m4,故答案为:﹣1+2m+2m2﹣4m4.【点评】本题考查多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528000=5.28×105,故答案为:5.28×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】根据图形进行角的计算即可【解答】解:∠AOC=∠AOB﹣∠BOC=72°32′﹣30°40′=41°52′,故答案为:41°52′.【点评】本题考查的是角的计算,掌握度、分的转化是解本题的关键.12.【分析】根据题意得:每辆车的收费与每个人门票之和列出代数式即可.【解答】解:根据题意得:(40+3a),故答案为:(40+3a)【点评】此题考查了列代数式,弄清题意是解本题的关键.13.【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.依此求解即可.【解答】解:由同位角的定义知,能与∠1构成同位角的角有∠2、∠3共2个.故答案为2【点评】本题考查了同位角、内错角、同旁内角.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.14.【分析】根据三角形的面积公式即可得到结论.【解答】解:∵AB⊥AC,∴∠BAC=90°,当AP⊥BC时,AP的值最短,∴AP===,∴线段AP的最小值为,故答案为:.【点评】本题考查了垂线段最短,三角形的面积,熟练掌握勾股定理的逆定理即可得到结论.三.解答题(共10小题)15.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算.【解答】解:(1)(+﹣)×(﹣48)=×(﹣48)+×(﹣48)﹣×(﹣48)=﹣40﹣42+46=﹣36;(2)(﹣5)3×(﹣)+32÷(﹣2)2×=(﹣125)×(﹣)+32÷4×=75+8×=75﹣10=65.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.【分析】(1)直接去括号,进而合并同类项得出答案;(2)直接去括号,进而合并同类项得出答案.【解答】解:(1)3x+2(x﹣)﹣(x+1)=3x+2x﹣1﹣x﹣1=4x﹣2;(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)=10a2b﹣2ab2﹣4a2b+2ab2=6a2b.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.17.【分析】(1)依次移项、合并同类项、系数化为1可得;(2)依次去括号、移项、合并同类项、系数化为1可得;(3)依次去括号、移项、合并同类项、系数化为1可得;(4)依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)4x+7=32﹣x,4x+x=32﹣7,5x=﹣25,x=﹣5;(2)8x﹣9x﹣6=1,8x﹣9x=1+6,﹣x=7,x=﹣7;(3)2y﹣3=y﹣4,2y﹣y=﹣4+3,﹣y=﹣1,y=2.(4)3(5y﹣1)﹣4(2y+6)=12,15y﹣3﹣8y﹣24=12,15y﹣8y=12+3+24,7y=39,y=.【点评】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a形式转化.18.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2a2+4a﹣2﹣3a2+6a+9=﹣a2+10a+7,当a=﹣2时,原式=﹣4﹣20+7=﹣24+7=﹣17.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.【分析】(1)根据平行线的判定画图,(2)根据垂线的定义画图,(3)根据点到直线的距离即可解决问题.【解答】解:(1)如图所示:(2)如图所示:(3)点C到直线OB的距离是线段PC的长度;故答案为:PC.【点评】本题考查作图﹣复杂作图,垂线,点到直线距离,平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【分析】根据同位角相等两直线平行,可证MC∥GF,进而利用平行线的性质和判定证明.【解答】证明:∵∠BFG=∠AEM(已知)且∠AEM=∠BEC(对顶角相等)∴∠BEC=∠BFG(等量代换)∴MC∥GF(同位角相等,两直线平行)∴∠C=∠FGD(两直线平行,同位角相等)∵∠C=∠EFG(已知)∴∠FGD=∠EFG,(等量代换)∴AB∥CD(内错角相等,两直线平行).故答案是:对顶角相等;GF;同位角相等,两直线平行;FGD;内错角相等,两直线平行.【点评】考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.21.【分析】求DE的长度,即求出AD和AE的长度.因为D、E分别为AC、AB的中点,故DE=,又AC=12cm,CB=AC,可求出CB,即可求出CB,代入上述代数式,即可求出DE的长度.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.【点评】此题要求学生灵活运用线段的和、差、倍、分之间的数量关系,熟练掌握.22.【分析】先判定AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.【解答】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC ﹣∠PBC ,∠2=∠BCD ﹣∠BCQ ,∴∠1=∠2.【点评】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.【分析】(1)根据邻补角的性质可知,与∠AOD 互补的角:∠BOD 与∠AOC ;(2)先求出∠BOE 的度数,然后根据OF 平分∠AOE 求出∠FOE ,再根据OF ⊥CD ,可知∠FOD =90°,求出∠EOD ,最后得出∠BOD =∠BOE ﹣∠EOD 求出答案.【解答】解:(1)与∠AOD 互补的角:∠BOD 与∠AOC ;(2)∵∠AOE =110°,∴∠BOE =180°﹣∠AOE =180°﹣110°=70°,∵OF 平分∠AOE ,∴∠FOE =∠AOE =,∵OF ⊥CD ,∴∠FOD =90°,∴∠EOD =∠FOD ﹣∠FOE =90°﹣55°=35°,∴∠BOD =∠BOE ﹣∠EOD =70°﹣35°=35°.【点评】本题考查了补角以及角平分线的性质.正确运用补角的定义和角平分线性质是解题的关键.24.【分析】作平行线利用平行线的性质与角平分线的性质通过角等量关系转化解题即可.【解答】解:感知:如图①,过点P 作PQ ∥AB∴∠A =∠APQ ,∵AB ∥CD ,PQ ∥AB∴PQ ∥CD ,∴∠C =∠QPC ,∴∠APQ +∠QPC =∠A +∠C ,∠APC =∠A +∠C .故答案为∠P =∠A +∠C ;探究:证明:如图③,过点P 作PQ ∥AB∴∠A=∠APQ∵AB∥CD,PQ∥AB∴PQ∥CD∴∠C=∠CPQ∵∠APC=∠APQ﹣∠CPQ∴∠APC=∠A﹣∠C.故答案为:∠APC=∠A﹣∠C,∠APQ,PQ,∠CPQ,∠APQ,∠CPQ,∠A﹣∠C.应用:(1)如图⑤,过点D作DH∥EF,∴∠HDE=∠E,∵AB∥EF,DH∥EF∴AB∥DH,∴∠B+∠BDH=180°,即∠BDH=180°﹣∠B,∴∠HDE+∠BDH=∠E+180°﹣∠B,即∠BDE+∠B﹣∠E=180°,故答案为∠D+∠B﹣∠E=180°,(2)如图⑥,过点P作PH∥EF,∴∠EPH=∠NEP,∵AB∥EF,PH∥EF,∴AB∥PH,∴∠MBP+∠BPH=180°,∵BD平分∠MBP,∠MBD=25°,∠MBP=2∠MBD=2×25°=50°,∠BPH=180°﹣50°=130°,∵EN平分∠DEP,∴∠NEP=∠DEN∴∠BPE=∠BPH﹣∠EPH=∠BPH﹣∠NEP=∠BPH﹣∠DEN=130°﹣(180°﹣∠DEF)=∠DEF﹣50°由①∠D+∠ABD﹣∠DEF=180°,∵∠MBD=25°,∴∠ABD=155°,∴∠D+∠155°﹣∠DEF=180°,∴∠DEF=∠D﹣25°∴∠BPE=∠DEF﹣50°=∠D﹣25°﹣50°=∠D﹣75°∠D﹣∠BPE=75°即∠D﹣∠P=75°,故答案75.【点评】本题考查了角平分线的性质与平行线的性质,正确运用角平分线与平行线的性质是解题的关键.。

山东省济宁市2019-2020学年数学七上期末考试试题

山东省济宁市2019-2020学年数学七上期末考试试题

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.一张长方形纸片的长为m,宽为n(m>3n)如图1,先在其两端分别折出两个正方形(ABEF、CDGH)后展开(如图2),再分别将长方形ABHG、CDFE对折,折痕分别为MN、PQ(如图3),则长方形MNQP 的面积为()A.n2B.n(m﹣n)C.n(m﹣2n)D.2.如图,已知是直线上一点,,平分,的度数是()A. B. C. D.3.如图,∠1>∠2,那么∠2的余角是( )A.12∠1 B.12(∠1+∠2) C.12(∠1﹣∠2) D.不能确定4.如果4x2-2m=7是关于x的一元一次方程,那么m的值是( )A.-12B.12C.0D.15.一项工程甲单独做需20天完成,乙单独做需30天完成,甲先单独做4天,然后甲、乙两人合作x天完成这项工程,则下面所列方程正确的是()A.41202030x+=+B.41202030x+=⨯C.412030x+= D.412030x x++=6.已知某种商品的原出售价为204元,即使促销降价20%仍有20%的利润,则该商品的进货价为()A.136元 B.135元 C.134元 D.133元7.下列计算正确的是()A.4a﹣2a=2 B.2x2+2x2=4x4C .﹣2x 2y ﹣3yx 2=﹣5x 2yD .2a 2b ﹣3a 2b =a 2b 8.下列各式中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 2 9.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是( )A .96B .86C .68D .5210.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则|a ﹣b|+|b|等于( )A.aB.a ﹣2bC.﹣aD.b ﹣a 11.如图,点A ,B 在数轴上,以AB 为边作正方形,若正方形的面积是49,点A 对应的数是-2,则点B对应的数是( )A.3B.5C.7D.9 12.计算-3+(-5)的结果是( )A .- 2B .-8C .8D .2二、填空题13.已知 A 、B 、C 三点在同一条直线上,M 、N 分别为线段 AB 、BC 的中点,且 AB=60,BC=40, 则 MN 的长为 ______14.如图,C 、D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,10AD cm =,则线段DE =______cm .15.若代数式4x ﹣5与212x -的值相等,则x 的值是__________ 16.一件衬衫先按成本加价60元标价,再以8折出售,仍可获利24元,这件衬衫的成本是___元.17.若a+b=2019,c+d=-5,则代数式(a-2c )-(2d-b )=______.18.把四张大小相同的长方形卡片(如图①)按图②、图③两种放法放在一个底面为长方形(长比宽多6)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C 2,图③中阴影部分的周长为C 3,则C 2-C 3=______.19.数轴上A 、B 两点所表示的有理数的和是 ________.20.比较大小:13-_____﹣25三、解答题21.已知线段AB=8厘米,在直线AB上画线段BC=3厘米,求线段AC的长.22.某市有甲、乙两种出租车,他们的服务质量相同.甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.7元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x千米.(1)当x=5时,请分别求出乘坐甲、乙两种出租车的费用;(2)若某人乘坐的路程大于3千米,试解答下列问题:①计算此人分别乘坐甲、乙出租车所需要的费用(用含x的式子表示);②请帮他规划一下乘坐哪种车较合算?23.如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:(2)某同学用若干根火柴棒按上图呈现的规律摆图案,摆完了第1个,第2个,…,第n个图案后剩下了69根火柴棒,若要摆完第n+1个和第n+2个图案刚好差2根火柴棒.问最后能摆成的图案是哪二个图案?24.如图,已知O为直线AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,∠MON=56°.⑴∠COD与∠AOB相等吗?请说明理由;⑵求∠BOC的度数;⑶求∠AOB与∠AOC的度数.25.有理数a,b,c在数轴上的位置如图所示:请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.26.某中学七年级A班有50人,某次活动中分为四组,第一组有a人,第二组比第一组的一半多6人,第三组的人数等于前两组人数的和.(1)求第四组的人数.(用含a的式子表示);(2)试判断a=14时,是否满足题意.27.计算:(12)|)﹣﹣2|.28.计算:【参考答案】***一、选择题1.A2.D3.C4.B5.D6.A7.C8.A9.C10.B11.B12.B二、填空题13.10或5014.1cm15. SKIPIF 1 < 0解析:3 216.12017.202918.1219.-120.>三、解答题21.线段AC的长是5厘米或11厘米.22.(1)乘坐甲、乙两种出租车的费用分别为12.4元,11.4元;(2)①甲:(1.2x+6.4)元,乙:(1.7x+2.9)元;②当他乘坐的路程在大于3千米而小于7千米时,坐乙出租车较为合算;当他乘坐的路程为7千米时,坐两种出租车所需要的费用一样多;当他乘坐的路程大于7千米时,坐甲出租车较为合算.23.(1)13,16,19,3n+1;(2)这位同学最后摆的图案是第11个和第12个图案.24.(1)∠COD=∠AOB.理由见解析;(2)∠BOC=112°;(3)∠AOC=146°.25.a+3c-226.(1)38﹣3a;(2)当a=14时不满足题意,见解析.27.(1)1;(2)2.28.-2。

2019-2020学年山东省济宁市兖州区七年级(上)期末数学试卷解析版

2019-2020学年山东省济宁市兖州区七年级(上)期末数学试卷解析版

2019-2020学年山东省济宁市兖州区七年级(上)期末数学试卷一、选择题:本大题共10道小题,每小题给出的四个选项中,只有一项符合题意,每小题选对得3分,满分共30分.1.(3分)如图所示,a与b的大小关系是()A.a<b B.a>b C.a=b D.b=2a2.(3分)下列各式运算正确的是()A.(﹣7)+(﹣7)=0B.(﹣)+(﹣)=﹣C.0+(﹣101)=101D.(﹣)+(+)=03.(3分)8时整,钟表的时针和分针构成多少度的角?()A.90°B.110°C.120°D.150°4.(3分)据CCTV新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为()A.0.1044×106辆B.1.044×106辆C.1.044×105辆D.10.44×104辆5.(3分)如图,将一副三角尺按不同的位置摆放,下列各图中,∠α与∠β互余的是()A.B.C.D.6.(3分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元7.(3分)如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.8.(3分)如图,“●、■、▲”分别表示三种不同的物体,已知前两架天平保持平衡,要使第三架也保持平衡,如果在?处只放“■”那么应放“■”()A.5个B.4个C.3个D.2个9.(3分)如表是某校七~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.课外小组活动总时间/h文艺小组活动次数科技小组活动次数七年级12.543八年级10.533九年级7☆☆则九年级文艺小组活动次数和科技小组活动次数(表中的两个五星)分别是()A.2,2B.1,3C.3,1D.1,210.(3分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73B.81C.91D.109二、填空题:本题共5道小题,每小题3分,共15分,请把正确答案填在试卷相应的横线上,要求只写出最后结果.11.(3分)如果收入15元记作+15元,那么支出20元记作元.12.(3分)﹣3的倒数是.13.(3分)如图,O是直线AB上的一点,∠AOC=53°17′,则∠BOC的度数是.14.(3分)一商店在某一时间以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a的值为.15.(3分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.16.(6分)在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来:﹣2.5,1,0,﹣1,3.517.(12分)计算:(1)5﹣3+4﹣;(2)﹣﹣(1﹣0.5)÷×[2+(﹣4)2];(3)x﹣2(x﹣)+(﹣x+y2),其中x=,y=﹣218.(6分)已知:点D在线段AB上,点C是线段AD的中点,AB=4.(1)如图1,点D是线段AB的中点,求线段CD的长度;(2)如图2,点E是线段BD的中点,求线段CE的长度.19.(6分)整理一批图书,由一个人做要80h完成.现计划由一部分人先做8h,然后增加4人与他们一起做6h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?20.(8分)数学老师布置了一道思考题“计算(﹣)÷(﹣)”.小明仔细思考了一番,用了一种不同的方法解决了这个问题:原式的倒数为(﹣)÷(﹣)=(﹣)×(﹣12)=﹣4+10=6,所以(﹣)÷(﹣)=.(1)请你通过计算验证小明的解法的正确性.(2)由此可以得到结论:一个数的倒数的倒数等于.(3)请你运用小明的解法计算:(﹣)÷(1﹣﹣).21.(8分)某通讯公司推出了移动电话的两种计费方式(详情见表).设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:t≤150150<t<350t=350t>350方式一计费/元58108方式二计费/元888888(Ⅱ)当t为何值时,两种计费方式的费用相等?(Ⅲ)请根据(Ⅰ)和(Ⅱ)的计算及生活经验,直接写出不同时间段,选用哪种计费方式省钱.22.(9分)如图,已知:OB是∠AOE的平分线,OD是∠COE的中分线.(1)若∠A0C=90°,∠COE=30°,求∠BOD的度数;(2)若(1)中的∠COE=α(α为锐角),其它条件不变,求∠BOD的度数;(3)若(1)中的∠AOC=β,其它条件不变,求∠BOD的度数;(4)从(1),(2),(3)的结果中猜想∠BOD与∠AOC的数量关系是,并说明理由.2019-2020学年山东省济宁市兖州区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10道小题,每小题给出的四个选项中,只有一项符合题意,每小题选对得3分,满分共30分.1.【解答】解:根据数轴得到a<0,b>0,∴b>a,故选:A.2.【解答】解:A、原式=﹣14,不符合题意;B、原式=﹣,不符合题意;C、原式=﹣101,不符合题意;D、原式=0,符合题意,故选:D.3.【解答】解:8时,时针和分针中间相差4个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8时,分针与时针的夹角是4×30°=120°,答:早晨8时整,时针和分针构成120度的角,故选:C.4.【解答】解:104400用科学记数法表示应为1.044×105,故选:C.5.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β不互余,故本选项错误;D、∠α与∠β互余,故本选项正确.故选:D.6.【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.7.【解答】解:因圆柱的展开面为长方形,AC展开应该是两线段,且有公共点C.故选:A.8.【解答】解:根据图示可得,2×〇=△+□①,〇+□=△②,由①、②可得,〇=2□,△=3□,∴〇+△=2□+3□=5□,故选:A.9.【解答】解:设文艺小组每次活动时间为x小时,科技小组每次活动时间为y小时,由题意得,,解得,x=2,y=1.5,设九年级文艺小组活动次数为a、科技小组活动次数为b,则2a+1.5b=7,又∵a、b都是正整数,∴a=2,b=2;故选:A.10.【解答】解:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选:C.二、填空题:本题共5道小题,每小题3分,共15分,请把正确答案填在试卷相应的横线上,要求只写出最后结果.11.【解答】解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故答案﹣20元.12.【解答】解:﹣3的倒数是﹣.13.【解答】解:∵∠AOC+∠BOC=180°,∴∠BOC=180°﹣∠AOC=180°﹣53°17′=126°43′,故答案为:126°43′.14.【解答】解:设第一件衣服的进价为x,依题意得:x(1+25%)=a,设第二件衣服的进价为y,依题意得:y(1﹣25%)=a,因为卖出这两件衣服商店共亏损8元,可得:,解得:a=60,故答案为:60.15.【解答】解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,=,即经过分钟丙容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为:分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤. 16.【解答】解:以上各数在数轴上表示为:其中点A,B,C,D,E分别表示﹣2.5、﹣1、0、、3.5所以,得出:﹣2.5<﹣1<0<1<3.5.17.【解答】解:(1)原式=5﹣﹣3+4=5+1=6;(2)原式=﹣﹣×3×18=﹣﹣27=﹣27;(3)原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=,y=﹣2时,原式=﹣2+4=2.18.【解答】解:(1)因为AB=4,点D在线段AB上,点D是线段AB的中点,所以AD=AB=×4=2,因为点C是线段AD的中点,所以CD=AD=×2=1.(2)因为点D在线段AB上,点C是线段AD的中点,点E是线段BD的中点,所以CD=AD,DE=BD,所以CE=CD+DE=AD+BD=(AD+BD)=AB,因为AB=4,所以CE=2.19.【解答】解:设应先安排x人工作,由题意可得:8x+6(x+4)=80,解得:x=4,答:应先安排4人工作.20.【解答】解:(1)∵(﹣)÷(﹣)=﹣÷(﹣)=﹣×(﹣2)=6,∴小明的解法正确;(2)一个数的倒数的倒数等于它本身;故答案为:它本身;(3)原式的倒数为:(1﹣﹣)÷(﹣)=(﹣﹣)×(﹣)=﹣×+×+×=﹣2+1+=﹣,∴原式=﹣3.21.【解答】解:(Ⅰ)①当150<t<350时,方式一收费:58+0.25(t﹣150)=0.25t+20.5;②当t>350时,方式一收费:108+0.25(t﹣350)=0.25t+20.5;③方式二当t>350时收费:88+0.19(t﹣350)=0.19t+21.5.故答案是:0.25t+20.5;0.25t+20.5;0.19t+21.5;(Ⅱ)∵当t>350时,(0.25t+20.5)﹣(0.19t+21.5)=0.06t﹣1>0,∴当两种计费方式的费用相等时,t的值在150<t<350取得.∴列方程0.25t+20.5=88,解得t=270.即当主叫时间为270分时,两种计费方式的费用相等.(Ⅲ)当t<270时,选择方式一省钱;当t=270时,两种方式收费一样多;当t>270时,选择方式二省钱.22.【解答】解:(1)∠AOE=∠AOC+∠COE=90°+30°=120°∵OB平分∠AOE,OD平分∠COE,∴∠BOE=∠AOE=×120°=60°,∠DOE=∠COE=×30°=15°.∴∠BOD=∠BOE﹣∠DOE=60°﹣30°=45°.答:∠BOD的度数为45°;(2)∠AOE=∠AOC+∠COE=90°+α∵OB平分∠AOE,OD平分∠COE,∴∠BOE=∠AOE=×(90°+α)=45°+α,∠DOE=∠COE=α.∴∠BOD=∠BOE﹣∠DOE=45°+α﹣α=45°.答:∠BOD的度数为45°;(3)∠AOE=∠AOC+∠COE=β+30°∵OB平分∠AOE,OD平分∠COE,∴∠BOE=∠AOE=×(β+30°)=β+15°,∠DOE=∠COE=×30°=15°.∴∠BOD=∠BOE﹣∠DOE=β+15°﹣15°=β.答:∠BOD的度数为;(4)∵OB平分∠AOE,OD平分∠COE,∴∠BOE=∠AOE,∠DOE=∠COE.∴∠BOD=∠BOE﹣∠DOE=(∠AOE﹣∠DOE)=∠AOC.故答案为∠BOD=∠AOC.。

人教版2019-2020年度七年级(上)期末数学试卷 含答案解析

 人教版2019-2020年度七年级(上)期末数学试卷  含答案解析

人教版2019-2020年度七年级(上)期末数学试卷含答案解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作()A.259 B.﹣960 C.﹣259 D.4422.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.63.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.5.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.6.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣22xab2的次数是6D.﹣的系数是7.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=38.钟表上的时间指示为两点半,这时时针和分针之间形成的角(小于平角)的度数为()A.120°B.90°C.100°D.105°9.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)11.如图,数轴上的A、B、C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A与点B之间B.点B与点C之间C.点B与点C之间(靠近点C)D.点B与点C之间(靠近点C)或点C的右边12.将正偶数按表1排成5列:根据上面的排列规律,2018应在()A.第252行,第1列B.第252行,第4列C.第253行,第2列D.第253行,第5列二、填空题(本大题共6小题,每小题4分,共24分)13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.方程﹣2x﹣1=1的解为x=15.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.16.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示从上到下第m排,从左到右第n个数,如(4,2)表示整数8.则(62,55)表示的数是.三、解答题(本大题共9小题,共78分。

人教版2019-2020学年七年级(上)期末数学试卷 含答案解析

 人教版2019-2020学年七年级(上)期末数学试卷 含答案解析

人教版2019-2020学年七年级(上)期末数学试卷含答案解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣22.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,53.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.95.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<08.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.110.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天二、填空题(每小题3分,共18分)11.﹣1的倒数是.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.13.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为km.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有.(填序号)三、解答题(本大题共72分)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.18.计算:(1)10﹣(﹣5)+(﹣9)+6﹣12018﹣6÷(﹣2)×(2)19.解方程:(1)2(3﹣x)=﹣4(x+5)(3)20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.24.去年微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?参考答案与试题解析一.选择题(共10小题)1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣2【分析】将各数按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣2<﹣1<0<5,则最小的数是﹣2,故选:D.2.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,5【分析】根据单项式系数及次数的定义来求解.【解答】解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.3.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=【分析】根据一元一次方程的定义,可得答案.【解答】解:A、是一元二次方程,故A错误;B、是一元一次方程,故B正确;C、是二元一次方程,故C错误;D、是分式方程,故D错误;故选:B.4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.9【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而得出m,n的值,即可分析得出答案.【解答】解:∵﹣x3y n与3x m y2是同类项,∴m=3,n=2,则mn=6.故选:C.5.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点【分析】根据线段的性质:两点之间,线段最短进行解答即可.【解答】解:2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是两点之间,线段最短,故选:B.6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°【分析】直接利用方向角的概念分别分析得出答案.【解答】解:A、射线OA的方向是北偏东30°方向,故此选项错误;B、射线OB的方向是北偏西25°,故此选项错误;C、射线OC的方向是东南方向,正确;D、射线OD的方向是南偏西15°,故此选项错误;故选:C.7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<0【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.8.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【解答】解:根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在右边,“快”在左边.故不正确的是C.故选:C.9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.1【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2018÷3,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴个位数字分别为3、9、7、1依次循环,∵2018÷4=504……2,∴32018的个位数字与循环组的第2个数的个位数字相同,是9,故选:B.10.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天【分析】此题是工程问题,把此工作分段进行分析,甲自己做了3天做了,则可知道甲自己做需要3÷=12天,再用方程求出各自做完需要的时间,利用工作量=工作时间×工作效率求剩余时间,而后即可求得总时间.【解答】解:设乙自己做需x天,甲自己做需3÷=12天,根据题意得,2(+)=﹣解得x=24则还需÷(+)=4天所以完成这项工作共需4+5=9天故选:A.二.填空题(共6小题)11.﹣1的倒数是﹣.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣1=﹣的倒数是:﹣.故答案为:﹣.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为 1 .【分析】根据一元一次方程的解得概念即可求出m的值.【解答】解:将x=2代入mx﹣2=02m﹣2=0m=1故答案为:113.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=﹣7 .【分析】将a﹣b=﹣10、c+d=3代入原式=a+d﹣b+c=a﹣b+c+d,计算可得.【解答】解:当a﹣b=﹣10、c+d=3时,原式=a+d﹣b+c=a﹣b+c+d=﹣10+3=﹣7,故答案为:﹣7.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为9或25 km.【分析】设A、B两地的距离为xkm,分C地在A、B两地之间、A地在B、C两地之间两种情况考虑,根据时间=路程÷速度即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设A、B两地的距离为xkm,当C地在A、B两地之间时(如图1所示),有+=5.1,解得:x=25;当A地在B、C两地之间时(如图2所示),有+=5.1,解得:x=9.故答案为:9或25.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有①②④.(填序号)【分析】根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.【解答】解:∵∠A和∠B互补,∴∠A+∠B=180°,①∵∠B+(90°﹣∠B)=90°,∴90°﹣∠B是∠B的余角,②∵∠B+(∠A﹣90°)=∠B+∠A﹣90°=180°﹣90°=90°,∴∠A﹣90°是∠B的余角,③∵∠B+(∠A+∠B)=∠B+×180°=∠B+90°,∴(∠A+∠B)不是∠B的余角,④∵∠B+(∠A﹣∠B)=(∠A+∠B)=×180°=90°,∴(∠A﹣∠B)是∠B的余角,综上所述,表示∠B余角的式子有①②④.故答案为:①②④.三.解答题(共9小题)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.【分析】(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB的中点E,画射线DE与射线CB交于点O;(3)画线段AD,然后从A向D延长使DF=AD.【解答】解:如图所示:.18.计算:(1)10﹣(﹣5)+(﹣9)+6(2)﹣12018﹣6÷(﹣2)×【分析】(1)将减法转化为加法,再计算即可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=10+5﹣9+6=21﹣9=12;(2)原式=﹣1+3×=﹣1+1=019.解方程:(1)2(3﹣x)=﹣4(x+5)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2x=﹣4x﹣20,移项合并得:2x=﹣26,解得:x=﹣13;(2)去分母得:9+3x﹣6=2x+4,移项合并得:x=1.20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,当x=﹣2,y=1时,原式=﹣10+1=﹣9.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,然后乘以0.3即可解答本题.【解答】解:(1)(+8)+(﹣9)+(+4)+(﹣7)+(﹣2)+(﹣10)+(+11)+(﹣3)+(+7)+(﹣5)=8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=8+4+11+7﹣9﹣7﹣2﹣10﹣3﹣5=30﹣36=﹣6(千米),答:收工时,检修工在A地的西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66(千米)66×0.3=19.8(升)答:从A地出发到收工时,共耗油19.8升.22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.【分析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单价利润×数量即可求出销售完这批货物的总利润,用其除以进价×100%再与40%比较后,即可得出结论.【解答】解:(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据题意得:10x+15(100﹣x)=1300,解得:x=40,∴100﹣x=60.答:该店用1300元可以购进A种型号的文具40只,B种型号的文具60只.(2)(12﹣10)×40+(23﹣15)×60=560(元),∵560÷1300×100%≈43.08%>40%,∴若把所购进A,B两种型号的文具全部销售完,利润率超过40%.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.【分析】(1)先根据角平分线定义求出∠AOC、∠COB的度数,再求出∠BOD的度数即可求解;(2)求出∠BOE的度数,根据角的和差关系即可得出答案.【解答】解:(1)∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∴∠AOC=∠BOD;(2)∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.24.去年(2017年)微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.【分析】(1)先根据题中所描述的6条规则,列出式子得到一个三位数,然后根据规则判断手机号的最后一位及年龄,再根据年份验证即可;(2)根据题意列出代数式,从数学式子进行解释即可;(3)根据(2)中的式子进行判断是否符合,然后根据年份为2018,修改规则即可.【解答】解:(1)根据题意得:(7×2+5)×50+1767﹣2004=713第一位数字7是你手机号的最后一位,接下来13就是你的实际年龄,2017﹣2004=13,准确;(2)设手机尾号为x,由题意得:(2x+5)×50+1767=100x+2017去年是2017年,此数减去你出生的那一年后,正好是你的年龄,而百位上的第一个数字是手机尾号;(3)设手机尾号为x,(2x+5)×50+1767=100x+2017今年是2018年,用2017年这个数减去你出生的那一年后,不符合,可以修改规则⑤为:“把得到的数目加上1768”(2x+5)×50+1767=100x+2018,这样在今年就仍然准了.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?【分析】(1)利用非负数的性质求出a与b的值,确定出AB即可;(2)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可;(3)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可.【解答】解:(1)∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7;(2)若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10;(3)若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

济宁市兖州区2019-2020年人教版七年级上数学期末试题4-15学年度第一学期期末试卷
七年级数学(人教实验版)
时间:100分钟满分:100分
一、精心选一选,慧眼识真!(每小题3分,共30分)
1.-1
3的倒数是().
(A )3 (B )-3 (C )1
3(D )-1
3
2.我校七年级(!)班的张明同学,今年1月1日至4日观测了每天的最高气温与最低气温如下表
其中温差最大的是()
A. 1月1日
B. 1月2日
C. 1月3日
D. 1月4日
3.下列各数据中,哪个是近似数()
A 、七年级上册数学课本共有200页;
B 、小李称得体重67千克;
C 、1纳米相当于1毫米的一百万分之一;
D 、数学考试时间100分钟。

4.下面一些角中,可以用一副三角尺画出来的角是()
(1)15°的角,(2)65o 的角,(3)75o 的角,(4)135o 的角,(5)145o 的角。

A 、(1)(3)(4);
B 、(1)(3)(5);
C 、(1)(2)(4);
D 、(2)(4)(5)
5.下列四个图形中, 能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形是( )
A B C D
6.据报载,目前移动彩铃声用户已超过40000000,占移动2亿余用户总数的近
20%,40000000用
科学记数法可表示为:()
A.74.010B.74010C.40×109D.0.4×109
7.下列说法正确..的是()
A..两点之间直线最短
B..用一个放大镜能够把一个图形放大,也能够把一个角的度数放大
C..把一个角分成两个角的射线叫角的平分线
D..直线l 经过点A ,那么点A 在直线l 上
8.下列调查中不适合...抽样调查的是( )
A.调查居民日平均用水量;
B.了解全国食盐加碘情况;
C.调查某棉花新品种的发芽率;
D.保证“神舟6号”载入飞船的成功发射
9.下图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为()
日期1月1日1月2日1月3日1月4日最高气温5℃4℃0℃4℃
最低气温-8℃-7℃-9℃-6℃
1
2
1 2 4 3
10.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x 米,根据题意,列出方程为()
A.24204340x B.24724340
x C.24724340x D.24204340
x 二、细心填一填,一锤定音!(每题3分,共24分)
11.比较大小:-π______-3.14
12.请写出一个含有两个字母、系数为-2的二次单项式__________________________。

.
13.如果2|1|(2)0a b ,则(a+b)值是______________。

14.如果2x m-1y 2与-x 2y n 是同类项,则n m = ______________。

.
15.下列单项式:-x ,2x 2,-3x 3,4x 4,… -19x 19,20x 20, …根据你发现的规律,第个单项式是______________。

16. 如果一个角的余角是30°36′,那么这个角是______。

17. 如图所示, ∠AOB 是平角, ∠AOC=300, ∠BOD=600, 射线OM 、ON 分别是∠AOC 、∠
BOD 的平分线, ∠MON 等于_________________。

18.上美术课时,一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为
1
分米的正方体摆在课桌上成如图6形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为______。

三、用心做一做,马到成功!(本大题共46分)
19. 计算:(每题5分,共10分)
(1)-22÷94×(-32)2 (2)
)
3()4()2(810220.解方程:(每题5分,共10分)
(1)、-2(x -1)=4.(2)421
1
23x x 21.先化简,后求值(本题共5分)
(4a 2-2a-6)-2( 2a 2-2a-5 ),其中 a = -1
22.(本题共5分)如图,延长线段AB 到C,使BC=3AB,点D 是线段BC 的中点,如果CD=3㎝,那么线段AC 的长度是多少?
23.(本题满分10分)为了了解学生参加体育活动的情况,我团中学教务处对学生进行随机抽样调查,其中一个问题是
“你平均每天参加体育活动的时间是多少?”,共有4个选项: A .1.5小时以上 B .1~1.5小时 C .0.5—1小时 D .0.5小时以下
图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图1中将选项B 的部分补充完整;
(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
24. (本小题满分6分)为了防控冬季呼吸道疾病,我校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共
100瓶,其中甲种每瓶6元,乙种每瓶9元,如果购买这两种消毒液共花去780元,求甲、乙两种消毒液各购买了多少瓶?
D B C
A 图1 图2。

相关文档
最新文档