Hermes and the spin of the proton

合集下载

爱马仕经典广告语文案

爱马仕经典广告语文案

爱马仕经典广告语文案瞧,风从四面八方轻轻而至,激起我的思绪在时空中穿梭。

这个世界,仿佛与我相遇的原因就是那双双远方等待的眼眸。

在这个瞬间,一切真挚的情感都显示了出来。

这时候,我体会到了爱马仕所代表的那份优雅与奢华。

在你的世界里,我看到了爱的奏鸣曲。

它是一种由情感编织而成的音符,感动人心。

爱马仕不仅仅是奢侈品牌,更是一种生活态度的延续。

它不断迎合你内心的想象,倾诉你的故事。

带着它,你就是那个拥有无限可能的女神。

在这个瞬间,我忍不住重温那一句熟悉的口号:“让梦想成真。

”它如同一缕微风,让人心旷神怡。

因为,爱马仕给你机会改变境遇,改变命运。

这不仅仅是一件物品,更是你未来的期许,你的成全。

无论是绵长的丝巾、闪耀的钻石,还是那个传世经典的皮具,爱马仕让你不再安于平庸,因为你值得拥有更多。

在这个瞬间,我带上了爱马仕,走进了另一个时空。

毫无保留地,我感受到了那份独一无二的尊崇。

这不是一次简单的购买,而是一种身份的象征。

无论在哪个角落,无论遇到怎样的挑战,你都是特别的。

爱马仕带给你那份自信,让你散发出无可抵挡的魅力。

在这个瞬间,我发现自己仿佛置身于时尚之中。

爱马仕的创新与经典完美结合,呈现出一幅绚丽多彩的画卷。

时光的推移并不能改变它的魅力,反而让它更加耀眼夺目。

经典,是永恒的美。

正如爱马仕传承千年的品牌精神,它从未停止过对美的探索与追求。

在这个瞬间,我仿佛听到那份高贵与专注的声音。

无论是剪裁精细的西装还是流畅雅致的连衣裙,爱马仕注重每一个细节,追求完美。

它的每一个设计都是一个故事的延续,每一次创作都是艺术的升华。

用眼睛品味,用心灵感受,这便是爱马仕的精髓。

在这个瞬间,我收获了心灵与感悟的交汇。

无论走到哪里,爱马仕都是我最佳的伴侣。

它如同一位真诚的朋友,倾听我的心声,与我共度人生。

爱马仕向我展示了世界的美丽,也赋予了我点亮人生的勇气。

在这个瞬间,我明白了,爱马仕不仅仅是高级奢侈品牌,更是一种生活的态度。

用爱马仕,追求真实的梦想,记录每一个精彩的瞬间。

介绍爱马仕课件.ppt

介绍爱马仕课件.ppt

。为)
Nouveau de la Parfumerie
限先 量发 发出 行名
并后
香试 水后 ,先
的测



H Eau de
Doblis
1951年,CNP公司正式推出全新香型:Eau d' Hermes
。“仿佛柔软的皮革与香料及草木香气相互嬉戏” ,五十年后成为爱马仕调香师的Jean-Claude Ellena如是 说。
1976年,爱马仕进军高级腕表市场。
“皮革也呼吸”(Le cuir respire)是 爱马仕皮具使用过的一条广告宣传口号。 那皮革呼吸的是什么呢?当与伟大的调香 师Edmond Roudnitska邂逅之时,埃米尔 爱马仕得到了答案。


1947 CNP
公 司 (
Comptoir



和成 立
阿尔弗雷得·多尔所画的作品“四轮马车与马童”
狄耶里·爱马仕出生在
Rhenanie-Westphalie省的克雷菲尔德, 是当时波拿巴于1801年征伐的法国领土。 狄耶里是旅店老板的儿子,教父是一名 皮革技师。 他是一名旅行家,1828 年,他来到巴黎并于Christine Pierrart 克里斯蒂娜·皮耶雷尔结为连理。后来在 诺曼底的Pont-Audemer蓬托德梅尔诞 下他三个孩子中的两个。其中一子查理· 埃米尔(Charles-Emile),后来与他 一同工作,而狄耶里本人则曾在此处当
每一件经过200多道复杂精细加工 工艺的Hermès仕皮革制品,以其独 特而隽永的馨香、优雅而精妙的 设计、坚韧而精准的缝制、柔软 而细腻的手感,将六代Hermès人用 梦想和心血浇灌而成的皮革故事 娓娓道来。
20世纪80年代,象征身份的服饰穿着之 风卷土重来,爱马仕以出人意料之势迅速 发展。因摩洛哥王妃格雷斯·凯利得名的爱 马仕“凯利包(Kelly)”风行一时。

爱马仕语录

爱马仕语录

爱马仕语录标题:爱马仕语录:追求卓越的人生之道导语:爱马仕,作为世界顶级奢侈品牌,向来以其独特的品质和卓越的工艺闻名于世。

然而,爱马仕不仅仅是一种奢华的象征,更是一种生活态度和追求卓越的人生之道。

本文将从爱马仕的语录中汲取灵感,探讨如何在追求卓越的人生道路上获得启示。

第一段:追求卓越的决心“我不仅仅是想要做到最好,我想要做到唯一。

”这是爱马仕的创始人爱德华·爱马仕曾经说过的一句名言。

这句话体现了他对卓越的追求和对独特性的追崇。

在追求卓越的人生之道中,我们需要拥有坚定的决心,不仅仅满足于做到最好,更要追求独特,与众不同。

只有这样,我们才能在人生的舞台上脱颖而出,成为独一无二的存在。

第二段:追求卓越的勇气“勇气并不是没有恐惧,而是战胜恐惧。

”这是爱马仕的另一句名言。

追求卓越的人生之道并非一帆风顺,其中充满了挑战和困难。

然而,正是勇气使我们能够面对这些困难,并超越自我。

只有敢于面对恐惧,勇于迎接挑战,我们才能在追求卓越的道路上不断成长和进步。

第三段:追求卓越的耐心“卓越的工艺需要时间。

”这句话来自于爱马仕对工艺的追求。

在追求卓越的人生之道中,我们需要具备耐心。

卓越的成就不可能一蹴而就,它需要时间的积累和耐心的等待。

正如爱马仕的工匠们一样,他们花费数十年的时间磨练技艺,才能打造出完美无瑕的产品。

我们也需要耐心地追求卓越,不急于求成,相信付出和坚持终将得到回报。

结尾:爱马仕的语录为我们指引了追求卓越的人生之道。

在这个道路上,我们需要拥有决心、勇气和耐心。

只有如此,我们才能在追求卓越的旅程中不断超越自我,成就非凡。

让我们以爱马仕为榜样,追求卓越的人生,创造属于自己的辉煌。

爱马仕语录

爱马仕语录

爱马仕语录
在生活中,我们常常会遇到各种各样的困难和挑战。

而爱马仕的语录,不仅仅
是一句句简单的话语,更是一种生活的态度和哲学的体现。

爱马仕的语录所传达的不仅仅是对于奢华生活的追求,更是对于品质生活的追求,对于内心世界的探索和提升。

“生活是一种艺术,要么有品位,要么毫无意义。

”这句话体现了爱马仕对于
生活的态度,生活不仅仅是为了生存,更是为了追求品味和品质。

无论是在日常生活中,还是在工作中,我们都应该注重品位,追求品质,让生活变得更加有意义。

“生活不是等待风暴过去,而是学会在雨中翩翩起舞。

”这句话告诉我们,面
对生活中的困难和挑战,我们不能选择逃避和等待,而是要学会积极面对,勇敢应对,让自己在逆境中也能展现出自己的风采和勇气。

“要想得到别人的尊重,首先要学会尊重自己。

”这句话提醒我们,自尊自爱
是最基本的品质,只有尊重自己,才能得到别人的尊重。

在生活中,我们要学会珍惜自己,坚持自己的原则和价值观,不轻易被他人左右。

爱马仕的语录,不仅仅是一句句话,更是一种生活的态度和哲学的体现。

在追
求奢华的同时,更要注重品质生活,学会积极面对生活中的挑战,尊重自己,让生活变得更加有意义。

愿我们都能以爱马仕的语录为指引,过上精彩而有品位的生活。

爱马仕:无法复制的传奇

爱马仕:无法复制的传奇

球 的拍卖会 采 购到上等 的皮 革,精
选之 后 每 一块 皮革 只选最 好 的部 分。 手袋的缝 制自 始至终 由一个 师傅 进 行,
编上 号,刻 上 工匠的名字,一 件 精 品
就 此 诞 生。 要 想 拥 有 一 款 k l e y包, l
至 少提 前半 年就 要 预 订,即使 前 英国
0 赛,法国外交部 所在的国际大街 上都 有自 国成为新的经济中心。 作为 4个女儿的父亲, 仕 偏 偏 在 上 世 纪 3 年 此 己的展览大厅, 他们来到这 里, 认识了法国, E l Heme 很快 就有了 3个女婿,并 津 乐 道 的经 典 系列 : 后 mi e r s
也认 识了法国的奢 侈品。国际名流纷 纷订 将 他 们培 养 成 了卓 有 成 效,而 且 专 长互 补 的皮 包、皮 质 笔记 本 、公 者 购爱 马 仕 产 品,爱 马 仕的 足 迹 更 远 至 安 南 、 的 伙 伴 。接 着,公 司在 主 要 的法 国度 假 胜 专 用骑 马 装 束 及 夹 克 , 7 资 摘f l. 6 I 治文 o0 2 o 8
名 品
E l mi Heme 将家族企业扩大, e r s 他不但 他发现了当时还未被欧洲人所认识的拉链。
把爱马仕总店搬往巴黎著名的福宝大道 2 他 设 法 使 这 一 发 现 获 得 独 家 使 用专 利 权 , 地 开 设 了分 店。世 界 各 ± 4
号,与总统府为邻, 和当地 贵族 靠得更近, 不仅将拉链用在皮革制品上,亦将之引入 都必定要光临爱马仕。 还让 爱马仕走出巴黎。爱马仕制造 的高级 时装,他就此成为将拉链 引入法国的第一
申 下,R b r D ma 积 极 参 与 新 产 品的 获 得 了更大 的发 展 空间。 o et u s

时尚创意的引领者:尼古拉斯 普伊奇主导的爱马仕新篇章

时尚创意的引领者:尼古拉斯 普伊奇主导的爱马仕新篇章

时尚创意的引领者:尼古拉斯·普伊奇主导的爱马仕新篇章尼古拉斯·普伊奇(Nicolas Ghesquière)是法国著名设计师,现任爱马仕(Hermès)的艺术总监。

他凭借其独特的视角和独到的设计理念,成功地将风格与畅销产品完美结合,为爱马仕带来了全新的活力与创意。

尼古拉斯·普伊奇主导的爱马仕,正如同一部精彩的故事,每一个季度都带来令人惊艳的时尚新篇章。

尼古拉斯·普伊奇的设计风格充满了现代感和创新思维。

他善于将经典与前卫相结合,让传统与时尚相互迸发出火花。

他以奢侈品之家的精神为基准,打造出在细节上令人惊叹的设计,每个作品都流露出独特的时尚气息。

他不仅关注衣物的造型,更注重品牌的整体形象。

他将爱马仕的品牌灵魂与设计理念完美融合,使每一季度的时装系列都体现出爱马仕的价值观和历史底蕴。

普伊奇以其对细节的关注而著名。

他深知细节能够决定整个作品的品质。

无论是衣物的裁剪,还是面料的选择,他总是能够抓住细节的精髓。

在他的设计中,每一条褶皱、每一处装饰都蕴含着他的用心与想象力。

他以自己独特的视角探索着时尚界的边界,并通过细腻的手法将其呈现给观众。

尼古拉斯·普伊奇的设计让人回味无穷,每一次展示都成为了时尚界的焦点。

除了对细节的关注,普伊奇擅长运用新颖的元素和技术。

他将科技与时尚相结合,创造出令人难以置信的作品。

他对面料的研究与创新,让他的设计在触感、质感上与众不同。

他善于利用亮片、3D印花和立体结构等元素,使作品更具时尚感和未来感。

同时,他还将环保理念融入到设计中,通过使用可再生材料和环保工艺,传递出对环境的关怀。

尼古拉斯·普伊奇主导的爱马仕新篇章不仅在设计层面上有所突破,还在品牌形象和市场战略方面取得了巨大成功。

他通过与年轻艺术家和摄影师的合作,为爱马仕注入了新的活力和创意。

通过不断推陈出新的广告策略和宣传手法,他成功地将爱马仕打造成一个时尚与艺术融合的品牌。

爱马仕语录

爱马仕语录

爱马仕语录
爱马仕,这个来自法国的奢侈品牌,以其精湛的工艺和高贵的品质而闻名于世。

它的产品不仅是一种奢侈品,更是一种象征,象征着奢华、品味和优雅。

爱马仕的创始人爱马仕·皮耶·蒂埃里在创立品牌之初就树立了“不断追求卓越,永不妥协”的品牌精神。

这种精神贯穿于品牌的每一个产品之中,无论是皮具、服装还是珠宝,都展现了爱马仕对于品质的严苛要求和对于工艺的精益求精。

爱马仕的每一款产品都是匠人们的心血之作,他们用心灵和技艺将每一个细节
雕琢得如同艺术品般完美。

正如品牌创始人所说,“要做到完美,你必须有耐心。

”这句话不仅是对于手工艺人的要求,更是对于每一位爱马仕的顾客的期许。

爱马仕的产品不仅仅是一种奢侈品,更是一种品味和生活方式的象征。

爱马仕的产品始终以其高贵的品质和独特的设计风格吸引着全球的顶级名流和
时尚达人。

无论是在红地毯上还是在日常生活中,爱马仕的产品都能展现出一种与众不同的气质和品味。

正如品牌的口号所言,“世界上最美丽的东西之一,就是你的梦想。

”爱马仕的产品就是那些追求卓越、追求美好生活的人们的梦想之一。

爱马仕的产品不仅是一种奢侈品,更是一种生活方式的象征。

它代表着对于品
质和美的追求,代表着对于优雅和尊贵的追求。

正如品牌的另一句口号所言,“爱马仕不仅仅是一种品牌,更是一种生活方式。

”选择爱马仕,就是选择了一种与众不同的生活方式,一种奢华与品味的象征。

爱马仕产品设计理念是什么

爱马仕产品设计理念是什么

爱马仕产品设计理念是什么
爱马仕(Hermès)作为一家历史悠久的奢侈品牌,其产品设计理念一直备受瞩目。

从丝巾到皮具,从珠宝到香水,爱马仕的产品无不展现着其独特的设计理念。

那么,爱马仕的产品设计理念究竟是什么呢?
首先,爱马仕的产品设计理念体现在对传统工艺的尊重和继承上。

作为一家拥
有百年历史的品牌,爱马仕深知传统工艺的珍贵和独特之处。

因此,在产品设计中,爱马仕始终坚持使用最高品质的材料,并注重手工制作的精湛工艺。

无论是丝巾上的印染工艺,还是皮具上的缝制工艺,爱马仕都力求做到尽善尽美,将传统工艺发扬光大。

其次,爱马仕的产品设计理念还体现在对自然的敬畏和热爱上。

爱马仕的设计
灵感往往来源于自然界的美好,例如丝巾上的花鸟图案、皮具上的动物纹理等等,都展现了对自然的热爱。

同时,爱马仕也积极倡导可持续发展的理念,致力于保护自然环境,推动绿色生产和消费。

此外,爱马仕的产品设计理念还体现在对艺术和文化的推崇和融合上。

爱马仕
经常与艺术家和设计师合作,推出限量版的产品,将艺术与奢华完美融合。

同时,爱马仕也致力于传承和弘扬法国的艺术和文化,例如在产品设计中融入法国传统的图案和元素,让产品更具文化底蕴。

综上所述,爱马仕的产品设计理念可以概括为对传统工艺的尊重和继承、对自
然的敬畏和热爱、对艺术和文化的推崇和融合。

这些理念不仅体现在产品设计中,也贯穿于爱马仕的品牌精神和企业文化中,使得爱马仕的产品始终散发着独特的魅力和价值。

正是这些理念的坚守和践行,让爱马仕成为了奢侈品行业的翘楚,赢得了无数消费者的青睐和喜爱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:h ep-e x /2815v112Aug22HERMES AND THE SPIN OF THE PROTON H.E.Jackson Physics Division,Argonne National Laboratory,Argonne,Illinois 60439,United States February 7,2008Abstract HERMES is a second generation experiment to study the spin struc-ture of the nucleon,in which measurements of the spin dependent prop-erties of semi-inclusive deep-inelastic lepton scattering are emphasized.Data have been accumulated for semi-inclusive pion,kaon,and proton double-spin asymmetries,as well as for high-p T hadron pairs,and single-spin azimuthal asymmetries for pion electroproduction and deep virtual Compton scattering.These results provide information on the flavor de-composition of the polarized quark distributions in the nucleon and a first glimpse of the gluon polarization,while the observation of the azimuthal asymmetries show promise for probing the tensor spin of the nucleon and isolating the total angular momentum carried by the quarks.1Introduction As Sir Isaac Newton speculated centuries ago in his treatise,Optics ,“There are therefore agents in nature able to make the particles of bodies stick together by very strong attractions.And it is the business of experimental philosophy to find them out.”Indeed,one of the central challenges of contempory nuclear physics is achieving an understanding of how quarks and gluons combine tomake mesons,baryons,and nuclei.One particular issue which has received much attention is how the constituent-parton spins combine to form the spin of the proton.This is not a new problem.The first experiments to explore the spin structure of the nucleon were performed 30years ago.[1]They took the form of measurements of inclusive spin asymmetries,the basic measurement which,until now,has provided most of our knowledge of nucleon spin structure.The objective of these studies was to determine what fraction of the spin of the nucleon was carried by the quarks.The nucleon spin can be decomposed conceptually,into the spin of its constituents according to the equations N z =12∆Σ+∆G +∆L z ,(1)1where the three terms are the quark and gluon spins,and the total orbital angu-lar momenta of the quarks and gluons,respectively.The original expectation, based on the constituent quark model was that the intrinsic spin of the valence quarks provided the total spin,ie∆Σ=1.More realistic calculations with current quarks[2]resulted in a“canonical value”of∆Σ≈2/3.Then came the first experiments with polarized deep-inelastic lepton scattering at SLAC[1]and then CERN[3]which led to the conclusion that∆Σ≈0.1−0.2.The prospect that the fraction of the nucleon spin carried by the quarks was so small provoked what was called the“spin crisis”.With these indications of the complexity of the spin structure,it was quickly realized that a simple leading order(LO)analysis which did not include contri-butions from gluons was naive.More recent next-to-leading order(NLO)treat-ments provide a picture more consonant with our present understanding of QCD. The focus has been on the spin dependent structure function for the proton, g1(x,Q2),given by[4]e2g1(x,Q2)=[C NS(1,αs(t))∆q NS(1)+C s(1,αs(t))a0(Q2)](3)2where we have followed the notation of Ref.[4]in denoting moments of coefficient functions and parton densities as f(N)= 10dx x N−1f(x).In the same scheme the singlet axial charge,a0,isαs(Q2)a0=∆Σ(1,Q2)−3of direct measurements of∆g[7].An additional issue in the analysis of the inclusive data from these experiments,is their sensitivity to SU(3)symmetry breaking.In a recent study,Leader and coworkers[8]find that the strange quark and gluon polarizations vary rapidly with variations in the SU(3)octet axial charge.Clearly,theseflavor separated polarizations are strongly dependent on the assumption of SU(3)symmetry.The key to further progress is more specific probes of the individual contri-butions of Eq.(1)to the proton spin.Determination of the polarization of the gluons is clearly of very high priority,and in addition,a more precise measure-ment will eliminate a major current ambiguity in the implications of existing inclusive data.A more direct determination of the strange quark polarization,∆s,will avoid the need for the use of data from hyperon decay and the assump-tion of SU(3)symmetry.Measurements which are sensitive to quark charges will allow the separation of quark and antiquark polarizations.The HERMES experiment attempts to achieve these objectives,by emphasizing semi-inclusive DIS in which aπ,K,or p is observed in coincidence with the scattered lepton. The added dimension offlavor in thefinal hadron provides a valuable probe of theflavor dependence and other features of polarized parton distributions. In the sections which follow,we present a brief description of the HERMES experiment followed by reports on recent results on theflavor decomposition of polarized parton distributions,gluon polarization,transverse spin physics, and deep-virtual Compton scattering.Indeed,such studies of semi-inclusive deep-inelastic scattering appear to mark a major advance in unraveling the spin structure of the proton.2The HERMES ExperimentDeep inelastic scattering events are generated in the HERMES experiment by the interaction of the polarized lepton beam of the HERA accelerator at DESY with polarized target gases which are injected into a40cm long,tubular open-ended storage cell[9]located at an interaction point on the lepton orbit.The lepton beam is self polarized by the Sokolov-Ternov effect[10]with a polariza-tion time which is typically about20minutes.The beam polarization is mea-sured continuously with Compton backscattering of circularly polarized laser beams[11,12].The beam polarization is routinely about0.55.Spin rotators in the ring provide longitudinal polarization at the interaction point.The polar-ized target gases,atomic H or D are generated by an atomic-beam source based on Stern-Gerlach separation which provides an areal density of about2×1014 atoms/cm2for H and7×1013atoms/cm2for D.The nuclear polarization is mea-sured with a Breit-Rabi polarimeter[13]and the atomic fraction with a target gas analyser[14].The target polarization is reversed within short time inter-vals to minimize systematic effects.The relative lumimosity is measured[15]by detecting Bhabha-or Mott-scattered target electrons in coincidence with the scattered lepton,in a pair of NaBi(WO4)2electromagnetic calorimeters.The HERMES spectrometer[16],shown in Fig.(1)is a forward angle open3Figure1:The HERMES Spectrometer.geometry system consisting of two halves which are symmetric about a central horizontal shielding plate in the spectrometer magnet.Afly’s eye calorimeter and a transition radiation detector furnish clean separation of hadrons and lep-tons.Identification ofπ′s,K′s and p′s is accomplished by means of a novel dual-radiator ring-imaging Cerenkov counter(RICH)[17]which is located between the rear tracking chambers.The combination of radiators consisting of a wall of clear aerogel and a gas volume of C4F10provide clean particle identification over almost the full acceptance of HERMES,i.e.2-15GeV.The scattered leptons and hadrons produced within an angular acceptance of±170mr horizontally, and40-140mrad vertically are detected and identified.Typical kinematics for studies of DIS are E=27.5GeV for the incident lepton,x>0.02where x=Q2/2Mνis the Bjorken scaling variable,0.1GeV2<Q2<15GeV2with −Q2the square of the momentum transfer,andν<24GeV whereν=E−E′with E(E′)is the energy of the incoming(scattered)lepton in the target rest frame.To insure that hadrons detected are in the current fragmentation re-gion,cuts of z=E h/ν>0.2and x F≈2p h parallel/W>0.1are imposed,where W=measured semi-inclusive spin asymmetry,A h,and the corresponding photon-nucleon asymmetry,A h1,for the hadron of type h are given byA(h) =N↑↓(h)−N↑↑(h)D(1+ηγ),(5)where,for simplicity,we assume unity beam and target polarizations and con-stant luminosity.Here D is the depolarization factor for the virtual photon,ηis a kinematic factor[18],and N↑↑(N↑↓)are the number of DIS events with coincident hadrons for target polarization parallel(anti-parallel)to the beam polarization.In leading order QCD assuming the validity of factorization,one can write the semi-inclusive DIS cross section,σh(x,Q2,z),to produce a hadron with energy fraction,z=E h/νasσh(x,Q2,z)∝Σf e2f q f(x,Q2,z)D h f(x,Q2)(6) where the sum is over quark and antiquark types f=(u,d,s,1z min dz f′e2f′q f′(x)·D h f′(z)·∆q f(x)1+γ2(7)= f P h f(x,z)∆q f(x)1+γ2.(8)The quantities,P h f(x,z),are the integrated purities[19,20]which are defined by Eq.(8).They are spin-independent quantities in leading order and represent the probability that the quark,q f was struck in the DIS event.The ratio R=σL/σT of the longitudinal to transverse photon cross section corrects for the longitudinal component that is included in experimental parameterizations of q f(x,Q2)but not in∆q f(x,Q2).The termγ=u,d,s. For thefirst time,a global analysis of inclusive spin asymmetries and semi-inclusive spin asymmetries forπ+,π−,K+,and K−has been carried out for5xxx Figure2:Semi-inclusive hadron,pion and kaon asymmetries for a deuterium target.The hadron asymmetries are compared with data from the SMC col-laboration.The error bars of the HERMES data are statistical and the bandsare systematic uncertainties.These data form the deuteron portion of the data base used in the purity analysis described in the text.longitudinally polarized targets of hydrogen,and deuterium.The measured spin asymmetries A h1(x,Q2,z)were integrated in each x bin over the correspondingQ2-range and the z-range from0.2to1to yield A h1(x).The data for A h1(x)ob-tained with the deuterium target are shown in Fig.(2).There the semi-inclusivedata are compared to earlier results from the SMC collaboration[22].The puri-ties were obtained with a Monte Carlo calculation which used CTEQ5leading order parton distributions[23]and a LUND fragmentation model[24]tuned to HERMES kinematics.The simulation included effects of the acceptance of the experiment.Systematic uncertainties were estimated by varying the fragmen-tation parameters and using alternative parton distributions[25].The results of the decomposition obtained by solving Eq.(9)are presentedin in Fig.(3).A symmetric strange sea polarization was assumed,i.e.∆s/s=∆s.The general features of quark densities follow those of earlier decompositions[26,27].The u-quarks show a strong positive polarization,while the d-quarks havea substantial negative polarization.The non-strange sea quarks are not signif-icantly polarized.However,the strange sea appears to be positively polarized, contrary to the conclusions drawn within leading order QCD[28]from earlier inclusive data.The triplet strength∆q3=∆u−∆d extracted from the HER-MES data is in agreement with the Bjorken sum rule.The polarization of the strange sea can be extracted directly from the same data set by means of a purity analysis which uses only two spin asymmetries,A D1(x)and A K++K−1,D(x).For this analysis,fragmentation functions from e+e−collider experiments canbe used to calculate purities.This method measures the quantity∆s+∆0.2-0.2-0.10.1-0.10.1-0.100.1x Figure 3:The x -weighted polarized quark densities.The plots show a five pa-rameter fit to the data assuming a symmetric strange sea polarization.The data have been evolved to a common Q 2=2.5GeV 2.The dashed line shows a GRSV parameterization,and the dashed-dotted curve an alternate parameterization of Bluemlein and Boettcher (hep-ph/0203155).7that∆d>0.The data do not support recent conjectures of a strong breaking of theflavor symmetry of the light sea.The results for the quantity∆u−∆d are shown in Fig.(4)together with a prediction based on the chiral quark soliton model[29] (χQSM).Although the statistics are limited,the data indicate that anyflavor asymmetry in the nonstrange sea is substantially smaller that the prediction of theχQSM.In addition,the conclusion that a large negative polarization of the strange sea is the explanation for the violation of the Ellis-Jaffe sum rule in inclusive DIS is ruled out by the new results from HERMES.Analysis of the HERMES data is continuing.A point of major interest which will emerge is a determination of the octet strength∆q8=∆u+∆d−2∆s as a test of SU(3) symmetry.The HERMES results represent thefirst completeflavor decompo-sition of the quark contribution in Eq.(1)to the spin of the nucleon.4Gluon PolarizationIndications from the analysis of the Q2evolution of inclusive spin asymmetries[4, 6]suggest that thefirst moment of the gluon polarization,∆g(1,Q2)is positive and large,although the precise value is poorly constrained.A direct measure-xFigure4:Flavor asymmetry∆u−∆d of the light sea extracted from the HER-MESfive-component purity analysis.The curve describes a prediction of the χQSM model(see text).The error bars give statistical uncertainties and the shaded band the systematic error.8Figure5:Feyman diagrams for processes which are major contributors to pro-duction of high-p T pairs,photon-gluon fusion(left)and QCD Compton scatter-ing(right).ment of∆g(1,Q2)is of high priority in understanding the proton spin,and much effort is focused on its measurement.A number of processes have been suggested as probes of this quantity.The photon gluon fusion process,shown in Fig.(5)is an obvious choice.Two experimental signatures of this process are charm production and dijet production with high transverse momentum, p T.Both have been used to measure directly the unpolarized gluon structure function,g(x g,Q2).Bravar et al.[30]have noted that at the lower energies char-acteristic offixed target experiments,high-p T hadrons can serve as pseudo jets in a measurement of∆g(1,Q2).The spin asymmetry asymmetry associated with this process is expected to provide a large sensitivity to∆g(x g,Q2).HERMES has exploited this sensitivity by measuring the spin asymmetry in photoproduction of pairs of high-p T hadrons produced on a polarized hydrogen target.Events are selected by requiring at least two hadrons of opposite charge with an invariant mass assuming both hadrons to be pions of M(2π)>1.0 GeV/c2to suppress contributions from vector mesons.The observation of the scattered lepton is not required in the event,thus allowing inclusion of the near real photoproduction region(Q2≈0)which dominates the measured cross section.Fig.(6)presents A as measured for the highest p T values accessible in HERMES.Here events are selected if they contain hadron pairs of opposite charge,each with p>4.5GeV/c,and a transverse momentum p T>0.5GeV/c where p T is defined as the momentum transverse to the incident beam.In the top(bottom)panel the positive(negative)hadron was required to have a p T>1.5GeV/c and A is plotted as a function of the p T of the opposite charge. For the case where the negative hadron has p T>1.5GeV/c,a substantial negative asymmetry is observed when p T>1.0GeV/c for the positive hadron. This negative asymmetry is to be contrasted with the positive asymmetries expected from DIS on protons,or the small positive asymmetries associated with diffractive production of vector bining the data of the two panels of Fig.(6)over the the bins where p h1T>1.5GeV/c and p h2T>1.0GeV/c where h1signifies the hadron with the higher p T yields a negative asymmetry A =−0.28±0.12(stat.)±0.02(syst).When the requirement p h1T>1.5GeV/c9ph- (GeV/c)pTh+ (GeV/c)Figure6:A (p h+T,p h−T)for p h+T>1.5GeV/c(top)and for p h−T>1.5GeV (bottom).The error bars represent the statistical uncertainty.is relaxed,A is consistent with zero.While a number of processes can,in principle,contribute the asymmetry for high-p T hadron pairs,Monte-Carlo simulations using LEPTO and PYTHIA event generators[31]show that only photon-gluon fusion(PGF)and the QCD Compton effect(QCDC)generate significant asymmetries at the kinematics of Fig.(6).In this case the experimental asymmetry takes the formA =(A P GF f P GF+A QCDC f QCDC)D,(10) where f i is the unpolarized fraction of events from process i and D is the virtual photon depolarization parameter.In the HERMES analysis,the asymmetries A′i s have been approximated by products of hard-process asymmetries and par-ton polarizations.These hard-process asymmetriesˆa P DF=ˆa(γg→qG f P GF+ˆa QCDC∆qxG1010Figure7:The extracted value of∆G/G compared with phenomenological QCDfits to a subset of the world’s data on g p,n1(x,Q2).The curves are from Ref’s.33,34evaluated at a scale of2(GeV/c)2.The error indicated on∆G/G repre-sents statistical and experimental systematic uncertainties only;no theoretical uncertainty is included.bar represents the standard deviation of the x G distribution which corresponds to the kinematic range for the hadrons measured,as given in the Monte Carlo simulation.Measurements have recently been extended to the study of high-p T kaon pairs for which the sensitivity to∆G/G is enhanced by the suppression of fragmentation of non-strange quarks into strange hadrons.As was the case for unidentified hadron pairs,for kaon pairs negative spin asymmetries are observed when both kaons have p T>1.0GeV/c.Again the data suggest a substantial positive gluon polarization.5Transverse Spin PhysicsThree structure functions are required to provide a complete description of the quark structure of the proton at leading order.They are the unpolarized struc-ture function,f1(x,Q2),the longitudinal spin structure function,g1(x,Q2),and a transverse structure function(transversity),h1(x,Q2)which measures the quark spin distribution perpendicular to its momentum at infinite momentum. Because h1(x,Q2)is chiral odd,it is not measurable in inclusive DIS.How-ever,it is of considerable intrinsic interest because of its unique properties. At low scales,Q2≈1GeV2,most theories give h1(x,Q2)≈g1(x,Q2),while thefirst moment of h1(x,Q2),the“tensor charge”includes only valence con-tributions.The Q2evolution of h1(x,Q2)is much simplier than that of its LO brothers,because it does not couple to gluons.It is very much a valence quantity.Transversity can be probed[35]by measuring the azimuthal distribu-11Figure8:Kinematics for pion electroproduction in semi-inclusive DIS. tion of hadrons produced in polarized DIS,and with highest sensitivity from a transversely polarized target.In spite of its odd chirality,h1(x,Q2)is accessible in semi-inclusive DIS if combined with a fragmentation process which also has a chiral odd structure. This chiral odd structure results from the Collins effect[36],i.e.a correlation between the axis of transverse spin and pπ× q,a chiral odd correlation.Single spin asymmetries are well known in proton-induced pion production from the data of FNAL experiment E704[37]at200GeV.More recent theoretical calcu-lations by Mulders and Tangerman[38]have established,at LO,that sin(φ)and sin(2φ)azimuthal variations in pion single spin asymmetries signal chiral-odd fragmentation.This establishes the very exciting possibility that spin asymme-tries such as A sin(φ)p↑(p t)>0can be used as quark polarimeters for measurementsof transversity in the proton.HERMES has made thefirst measurements of single-spin azimuthal asymme-tries for semi-inclusive pion production in DIS,using both unpolarized and lon-gitudinally polarized proton targets in the HERA27.5GeV polarized positron storage ring.The kinematic cuts for these measurements were1GeV2<Q2< 15GeV2,W>2GeV,0.023<x<0.4and y<0.85.Pions were identified over the range4.5GeV<Eπ<13.5GeV.Exclusive production was suppressed with the requirement0.2<z<0.7.The limit p⊥>50MeV was applied to the pions to insure accurate measurement of the angleφ.Measurements were made with all combinations of beam and target helicities to permit measure-ment of single and double spin asymmetries in the cross section.The kinematics of pion electroproduction are presented in Fig.(8).Here k and k′are the four momenta of the incoming and outgoing lepton,respectively.The transverse mo-mentum(p⊥)of the pion is defined with respect to the virtual photon direction in the initial photon-proton center-of-mass system.The angleφis the Collins angle which provides the chiral odd azimuthal dependence in the fragmentation process.The HERMES measurements of the single spin asymmetryA UL(φ)=1N+(φ)+N−(φ),(12) 12Figure9:Single spin asymmetry A UL for pions as a function of the Collins angleφ.The curve forπ+corresponds to thefit A=P1+P2sin(φπ)with P1=−0.007±0.003and P2=0.020±0.004.The corresponding curve forπ−is given by P1=0.003±0.004and P2=−0.001±0.005.where the subscript UL refers to unpolarized beam and longitudinally polarized target,provide a clear signature of the Collins effect.The data are shown in Fig.(9).Forπ+the distribution shows a strong sin(φ)dependence,the signature of the Collins effect,while the curve forπ−is isotropic.The difference between theπ+andπ−data can be ascribed to the dominance of u quark fragmentation from the proton to theπ+.Analysis of the data was performed under the assumption that the cross section factors into a hard scattering term times a fragmentation function. When this cross section is integrated over thefinal transverse momentum of the hadrons,the T-odd terms leading to single-spin asymmetries vanish.The various contributions to theφdependent asymmetry are isolated by extract-ing moments of the cross section weighted by the correspondingφdependent functions.In the present case,sin(φ)was the weighing function of interest. Kotzinian and Mulders[39]have established that even with a longitudinally po-larized target,one expects a significant single spin asymmetry with a sin(φ) moment of the form+ (13)sin(φ) OL∝S TΣa e2a h a1(x)H⊥a1which arises from the small target spin component transverse to the direction of the virtual photon.Here,H⊥ais the Collins spin dependent fragmentation1function.The analyzing powers for the beam and target polarizations,A sinφUL and A sinφ,were evaluated by calculating the azimuthially weighted moments of LUthe event spectra.A substantial analyzing power is observed forπ+,A sinφ=UL 0.022±0.005(stat.)±0.003(syst.),while forπ−,A sinφ=0.002±0.006(stat.)±UL130.20.40.60.10.2z x P ⊥ (GeV)0.250.50.751Figure 10:Analyzing power A sinφUL for pions as a function of the fractional pion energy z ,the Bjorken variable x ,and the pion transverse momentum p ⊥.Error bars include only statistical uncertainties.The open and filled bands at the bottom of the panels represent the systematic uncertainties for neutral and charged pions,respectively.The shaded areas show a range of model predictions,(see text).0.003(syst.).For both π+and π−the beam-related analyzing powers A sinφLU are consistent with zero,as is the other target related analyzing power A sin 2φUL .This is already a strong signal that pion single spin asymmetries provide a large analyzing power for measuring the transverse distribution function,h 1(x,Q 2).The measurements have been extended to include neutral pions.The results are summarized in Fig.(10)where A sinφUL is shown for each charge as a function ofz ,x ,and the pion transverse momentum,p ⊥,after averaging over the other two kinematic variables.The π0and π+analyzing powers exhibit similar behaviour in each variable.The increase of A sinφUL with increasing x suggests that single-spin asymmetries are valence quark effects.The increase of A sinφUL with p ⊥can be related to the dominant role of intrinsic quark transverse momentum when p ⊥remains below about 1GeV/c.The results for π+and π0follow the predic-tions of a model calculation[40]in which the distribution function of Eq.(13)is approximated by h 1.The range of predictions shown in Fig.(10)correspond to the limits h 1=g 1(non-relativistic limit)and h 1=(f 1+g 1)/2(Soffer in-equality),where g 1and f 1are the usual polarized and unpolarized distributionfunctions.The T-odd fragmentation function H ⊥(1)1(z )was assumed to followthe Collins parameterization[35].The success of this simple model calculation provides confidence that accurate determinations of transversity distributions are possible through observation of pion single spin asymmetries with trans-versely polarized targets.Such measurements are scheduled by the HERMES collaboration in the immediate future.146Deep Virtual Compton ScatteringDeep virtual Compton scattering (DVCS)can be viewed as the scattering of a virtual photon generated in lepton scattering into the continuum.Although little data on the process are available,the process is of wide interest because exclusive DVCS is the simpliest example of a reaction described by a new class of parton distributions,i.e.generalizations of the usual forward parton distribu-tions (pdf’s).While ordinary pdf’s give the probability of finding a quark with a momentum fraction x =k/p in the nucleon,generalized parton distributions (GPD’s)describe the removal of a quark q (k −∆2).The example ofDVCS is shown graphically in Fig.(11).Factorization theorms have been formulated[41]which demonstrate that contributions for hard exclu-sive reactions have the form of products of GPD’s times hard scattering coeffi-cients which are calculable from perturbative QCD.There are four families of GPD’s,one pair of unpolarized distribution functions,H q (x,ξ,t )and E q (x,ξ,t ),and a second pair of polarized distribution functions,˜Hq (x,ξ,t )and ˜E q (x,ξ,t ).The relevant light cone variables are the longitudinal momentum fraction x ,the skewness variable ξ=−∆+/2P +,and the four momentum transfer to the nucleon squared t =∆2.H q and ˜H q conserve the helicity of the nucleon,while E q and ˜Eq describe processes in which the nucleon helicity may flip.GPD’s combine the character of ordinary parton distributions and nucleon form factors through their kinematic limits and moments,e.g.q (x )=H q (x,ξ=0,t =0),and ∆q (x )=˜H q (x,ξ=0,t =0).The first moments constrain nucleon form fac-tors through the relations 1−1dxH q (x,ξ,∆2)=F q 1(∆2), 1−1dxE q (x,ξ,∆2)=F q 2(∆2), 1−1dx ˜H q (x,ξ,∆2)=g q A (∆2),and 1−1dx ˜E q (x,ξ,∆2)=h q A (∆2).F 1(t )and F 2(t )are the Dirac and Pauli form factors,while g A (t )and h A (t )are the axial vector and pseudoscalar form factors,respectively.The strong interest in GPD’s comes,in part,from the observation[42]that their second moments can be connected to the total orbital angular momentum carried by the partons0Figure 11:Graphic representation of processes involving generalized parton dis-tributions,deep virtual Compton scattering (left)and exclusive pion production (right).The GPD describes the emission of a parton of momentum k −∆2.15through the relationJ q =12 1−1xdx [H q (x,ξ,t =0)+E q (x,ξ,t =0)].(14)Thus,GPD’s may provide a measure of the J q and therefore with prior knowl-edge of ∆Σ,of the orbital angular momentum of the partons,L q .DVCS is coherent with Bethe-Heitler bremstrahlung,and the interference between these two processes provides the opportunity to isolateDVCS ampli-tudes.The cross section for exclusive photon production is of the form[43]d 4σ32(2π)4Q 4|τBH +τDV CS |22−x B (F 1+F 2)˜H1−∆2−M 2x .The missing mass region between −1.5and +1.7GeV was selected for isolating exclusive DVCS.This region contains both exclusivescattering to the proton ground state and the ∆(1232)resonance.However,be-cause the Bethe-Heitler process is strongly dominated by the elastic channel the16。

相关文档
最新文档