循环小数与分数互化
循环小数与分数的互化方法

循环小数与分数的互化方法
1. 哎呀呀,你知道吗,循环小数化成分数其实超简单的!就比如说……吧,这就是个典型的循环小数呀,它其实就等于 1/3 呢!只要找到规律,就能轻松搞定。
2. 嘿,告诉你个小秘密哦,把循环小数变成分数就像是解开一个有趣的谜题!像……这样的,它可神奇了,能转化为 1/7 哟,是不是很有意思呀?
3. 哇塞,循环小数和分数的互化真的很神奇呢!举个例子,……不就是2/3 嘛,就好像变魔术一样,一下子就变过去了。
4. 哎呀,你想想看呀,把像……这种循环小数转化成分数,多有成就感呀!它其实就是 5/7 呢,是不是很奇妙?
5. 哈哈,循环小数变分数呀,就像是给数字来个大变身!比如说……不就是 4/9 嘛,好有趣呀!
6. 哇哦,你懂得循环小数与分数的互化方法后,就像掌握了一把神奇钥匙!像……不就是 27/99 嘛,能打开好多数学的秘密大门呢!
7. 嘿呀,可别小瞧这循环小数和分数的互化呀!一旦掌握了,就像有了超能力一样。
比如……可以变成 5/6 呢,多厉害呀!
结论:循环小数和分数的互化虽然有一定规律可循,但也需要我们仔细琢磨和练习,才能真正掌握呀!。
小数与分数互化方法

小数与分数互化方法
小数与分数的互化方法是通过将小数转化为分数,以及将分数转化为小数。
将小数转化为分数的方法:
- 对于有限小数,例如0.4,可以先确定小数的位数,然后将小数部分除以对应位数的10的幂,分子为小数部分,分母为10的幂。
- 对于循环小数,例如0.333...,可以将循环部分表示为x,然后将整个小数表示为x = 0.333...,乘以一个适当的倍数,使得10x = 3.333...,然后两式相减得到9x = 3,解方程可得x = 1/3。
将分数转化为小数的方法:
- 对于分母为10的幂次方的分数,例如1/10、3/100等,可以直接将分子除以分母,得到小数形式。
- 对于其他分数,可以将分子除以分母,得到一个带有余数的除法形式,然后根据长除法的方法,将余数不断乘以10,并将商作为下一次的被除数,直到余数为0或者出现循环,将商的部分作为小数部分,循环部分根据循环的位置确定。
例如,将小数0.375转化为分数:0.375 = 375/1000 = 3/8
将分数5/6转化为小数:5/6 = 0.8333... (循环小数,循环部分为3)。
第二讲-循环小数化分数

第二讲 循环小数化分数学习提示:在进行分数和小数的大小比较以及分数、小数的混合运算中,常常要把分数化成小数,或者把小数化成分数。
所以,理解和掌握分数和小数互化的方法,不仅可以沟通分数和小数的联系,深刻理解分数、小数的意义,而且可以为学习分数、小数的混合运算打好基础。
从本质上看,小数(这里指有限小数和无限循环小数,不包括无限不循环小数)可以看作分数的另一种表示形式,所以分数和小数可以互化。
典型题解一、循环小数化成分数1.纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化成分数呢?看下面例题。
例1,把纯循环小数化分数: (1)0.6 (2)3.10210.610 6.6666 0.6=0.6666 0.69 6 62 0.6=93⨯=⨯==解:()两式相减得所以 23.1020.1020.1021000102.102.1020.1020.102.102 0.10299910210234 0.102999333102 3.1023999⨯==⨯=====解:()先看小数部分……?…两式相减得所以343333从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9,9的个数与循环节的位数相同。
能约分的要约分。
1、 混循环小数化分数不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2,把混循环小数化分数10.215 2 6.353()() 10.2151000=215.1515 0.21510=2.1515150.215990=2152215-2213710.215=990990330⨯⨯⨯-==解:()…………两式相减得20.3530.3531000=353.333 0.353100=35.3330.353900=35335353-3531853 0.353=900900150353-353186.353=66900⨯⨯⨯-===解:()先看小数部分…………两式相减得 所以 536900150=由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
五升六 第二讲 分数与小数的互化

【五升六】第二讲分数与小数的互化姓名一个数的小数部分,如果从某一位起,一个或几个数字依次不断地重复出现,这样的数就叫循环小数.循环小数是无限小数,它的位数是无限的。
循环小数的小数部分中,依次不断重复出现的数字,叫作它的一个循环节。
如果循环节从小数部分第一位(十分位)开始,叫作纯循环小数,循环节不是从小数部分第一位开始的,叫作混循环小数。
根据分数和除法之间的关系,我们知道,任何一个分数可以通过分子除以分母化成小数或整数。
在学习把小数化成分数时,要重点掌握循环小数化成分数的方法。
循环小数与分数的互化也涉及周期问题,将下列分数化成分数,将分数化成小数。
=()=()=() 0.75=() 0.375=() 2.625=()【例1】将分数,,,化成小数。
【例2】将分数,,,化成小数。
试一试指出下面的分数中,哪些能化成有限小数?哪些能化成纯循环小数?,,,,,,【例3】将0.、0.、2.化成分数。
试一试将8.、6.、0.化成分数。
【例4】将0.、0.、3.化成分数。
试一试将0.、1.0、0.化成分数。
【例5】计算: 0.+0.+0.+++试一试 0.+0.125+0.+0.,结果保留三位小数【例6】在小数1.1020113中加上表示循环的圆点,一共可以得到多少个不同的循环小数?其中最大的一个是多少?最小的一个是多少?练一练在循环小数 2.0871818的某一位上再添上一个循环点,使新的循环小数尽可能大,则这个新的循环小数是多少?【例7】纯循环小数0.b化成分数时,分子与分母的和是135,那么这个循环小数是多少?试一试纯循环小数0.b化成最简分数时,分子与分母的和是62,那么这个循环小数是多少?【课后作业】1、计算下面各题(1)0.90.10.70.5 (2)0.3×0.1(3)0.50. (4)1.×1.2、将化成小数后,小数点后面第2012位上的数字是几?这2012位上的各位数字之和是多少?3、写出下面等式右边空白处的数,使等式能够成立:0.0.00.00……=2002÷( )4、甲、乙两数之和是323.2、乙数的小数点向右移动两位就等于甲数,求甲数5、真分数化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a是多少?、在小数1.80524102007上加两个循环点,能得到的最小的循环小数()(注:公元2007年10月24日北京时间18时05分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄做的时刻。
循环小数与分的互化,循环小数之间简单的加、减运算,

循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 1.17的“秘密” 10.1428577••=,20.2857147••=,30.4285717••=,…, 60.8571427••= 2.推导以下算式⑴10.19=&;1240.129933==&&;123410.123999333==&&;12340.12349999=&&; ⑵121110.129090-==&;12312370.123900300-==&;123412311110.123490009000-==&; ⑶ 1234126110.123499004950-==&&;123411370.123499901110-==&& 以0.1234&&为例,推导1234126110.123499004950-==&&. 设0.1234A =&&,将等式两边都乘以100,得:10012.34A =&&; 再将原等式两边都乘以10000,得:100001234.34A =&&, 两式相减得:10000100123412A A -=-,所以12341261199004950A -==. 3.循环小数化分数结论纯循环小数 混循环小数分子 循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n 个9,其中n 等于循环节所含的数字个数按循环位数添9,不循环位数添0,组成分母,其中9在0的左侧循环小数的计算教学目标知识点拨·0.9a a =; ··0.99ab ab =; ··10.09910990ab ab ab =⨯=; ··0.990abc a abc -=,……模块一、循环小数的认识 【例 1】 在小数l.80524102007上加两个循环点,能得到的最小的循环小数是_______(注:公元2007年10月24日北京时间18时05分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。
分数和小数的互化规律

分数和小数的互化规律
分数和小数可以通过一定的规律进行相互转化。
下面介绍一些基本的转化规律:
1. 小数转分数:
小数可以转化为分数形式,将小数点后的数字作为分子,分母为相应位数的10的幂。
例如:
- 小数0.25可以转化为分数为25/100,可以约分为1/4。
- 小数0.6可以转化为分数为6/10,可以约分为3/5。
2. 分数转小数:
分数可以转化为小数形式,将分子除以分母即可。
例如:
- 分数3/4 可以转化为小数为3 ÷4 = 0.75。
- 分数5/8 可以转化为小数为5 ÷8 ≈0.625。
3. 循环小数转分数:
对于循环小数,可以通过数学运算将其转化为分数。
例如:
- 循环小数0.666... 可以表示为2/3。
4. 分数转百分数:
分数可以转化为百分数形式,将分子除以分母,再乘以100。
例如:
- 分数3/5 可以转化为百分数为(3/5) ×100 = 60%。
5. 百分数转小数:
百分数可以转化为小数形式,将百分数除以100。
例如:
- 百分数80% 可以转化为小数为80 ÷100 = 0.8。
这些规律可以帮助你在分数和小数之间进行简单的转化。
第二讲 循环小数化分数

第二讲 循环小数化分数学习提示:在进行分数和小数的大小比较以及分数、小数的混合运算中,常常要把分数化成小数,或者把小数化成分数。
所以,理解和掌握分数和小数互化的方法,不仅可以沟通分数和小数的联系,深刻理解分数、小数的意义,而且可以为学习分数、小数的混合运算打好基础。
从本质上看,小数(这里指有限小数和无限循环小数,不包括无限不循环小数)可以看作分数的另一种表示形式,所以分数和小数可以互化。
典型题解一、 循环小数化成分数1、 纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化成分数呢?看下面例题。
例1把纯循环小数化分数:(1)0.6(2)3.102 10.610 6.6666 0.6=0.66660.69 6 62 0.6=93⨯=⨯== 解:()两式相减得所以2 3.1020.102 0.1021000102.102.1020.1020.102.102 0.10299910210234 0.102999333102 3.1023999⨯==⨯===== 解:()先看小数部分…… 两式相减得所以343333从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9,9的个数与循环节的位数相同。
能约分的要约分。
2、 混循环小数化分数不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数10.215 2 6.353()()10.2151000=215.1515 0.21510=2.1515150.215990=2152215-221371 0.215=990990330⨯⨯⨯-== 解:()………… 两式相减得20.3530.3531000=353.333 0.353100=35.3330.353900=35335353-3531853 0.353=900900150353-353186.353=66900⨯⨯⨯-=== 解:()先看小数部分………… 两式相减得 所以 536900150=由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
【精品】循环小数与分的互化循环小数之间简单的加减运算

【关键字】精品循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.的“秘密”,,,…,2.推导以下算式⑴;;;;⑵;;;⑶;以为例,推导.设,将等式两边都乘以100,得:;再将原等式两边都乘以10000,得:,两式相减得:,所以.3.循环小数化分数结论纯循环小数混循环小数分子循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n个9,其中n等于循环节所含的数字个数按循环位数添9,不循环位数添0,组成分母,其中9在0的左侧;;;,……模块一、循环小数的认识【例 1】在小数上加两个循环点,能得到的最小的循环小数是_______(注:公元2007年10月24日北京时间18时05分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。
)【考点】循环小数的认识【难度】2星【题型】填空【关键词】第六届,希望杯,1试【解析】因为要得到最小的循环小数,首先找出小数部分最小的数为0,再看0后面一位上的数字,有05、02、00、07,00最小,所以得到的最小循环小数为【答案】【巩固】给下列不等式中的循环小数添加循环点:0.19980.19980.19980.1998【考点】循环小数的认识【难度】3星【题型】计算循环小数的计算【解析】根据循环小数的性质考虑,最小的循环小数应该是在小数点后第五位出现最小数字1的小数,因此一定是,次小的小数在小数点后第五位出现次小数字8,因此一定是.其后添加的循环点必定使得小数点后第五位出现9,因此需要考虑第六位上的数字,所以最大的小数其循环节中在9后一定还是9,所以最大的循环小数是,而次大数为,于是得到不等式:【答案】【例 1】真分数化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么是多少?【考点】循环小数的认识【难度】3星【题型】计算【解析】,,,,,.因此,真分数化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以,即.【答案】【巩固】真分数化成循环小数之后,从小数点后第1位起若干位数字之和是,则是多少?【考点】循环小数的认识【难度】3星【题型】计算【解析】我们知道形如的真分数转化成循环小数后,循环节都是由1、2、4、5、7、8这6个数字组成,只是各个数字的位置不同而已,那么就应该由若干个完整的和一个不完整组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环小数化分数
一、把循环小数的小数部分化成分数的规则
①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各
位都是9,9的个数与循环节的位数相同,最后能约分的再约分。
1478
0.14789999
②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的
数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循
环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。
278943270.278943999900
二、分数转化成循环小数的判断方法:
①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那
么这个分数化成的小数必定是混循环小数。
9
2523
②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数
必定是纯循环小数。
9
25252