(完整版)分数与小数的互化
分数,小数,百分数的互化

分数、小数、百分数,它们的互相转换技巧
详解
分数、小数、百分数,是学生们常见的数学概念。
但是,它们之间的互相转换却经常让学生们感到头疼。
本文将为大家细致地讲解这些数的互相转换技巧,帮助学生们更好地掌握数学知识。
一、分数转小数
将分子÷分母,得到一个小数,即可将分数转为小数。
例如:将5/8转为小数,5÷8=0.625。
二、小数转分数
将小数的小数点后的数作为分子,分母为1后约分得到的分数即为小数对应的分数。
例如:将0.75转为分数。
将0.75作为分子,1作为分母得到
75/100,约分得到3/4。
三、百分数转分数
将百分数去掉百分号,再将数字除以100,得到的数作为分数的分子。
分母为1。
例如:将20%转为分数。
去掉百分号得到20,除以100得到0.2,得到分数为2/10,即1/5。
四、分数转百分数
将分数转化为小数,再将小数乘以100即可得到分数对应的百分数。
例如:将4/5转为百分数。
4÷5=0.8,将0.8乘以100得到80%。
在学习中,我们要注意掌握上述的转换技巧,不仅可以更好地理解数学知识,也可以方便我们在实际应用中进行快速的计算和转换。
分数和小数的互化方法

13 65 13 0.65= 100 = 20 20
3
75
3
1.075=1 1000 = 1 40
40
A
11
三、分数化小数
7 10
=
331 100
=
4231 1000
=
分母是10、100、1000…的分数化小数, 可以直接去掉分母,看分母中 1 后面有 几个零,就在分子中从最后一位起向左 数出几位,点上小数点。
31 25
=
31÷25=1.24
A
4
既有分数又有小数时的比较大小
统一方法(也是最简单、方便的方法):
只将分数化成小数进行比较。
比如:比较下列各数的大小: 0.35 2 8 0.4 0.35
5 25
2 5
= 0.4
8 25
=
0.32
8 25
<
0.35
<
0.35 < A
0.4
=
2 5
5
A
6
0.72×50
2
3
1
20 0.12 9 0.375 5 3.025 3 8
A
20
变式训练
• 1.把0.9999……化成分数。 • 2.把7.383838……化成分数。 • 方法:纯循环小数化成分数,分子是一个循
环的小数所组成的数,分母的各位数字都是 9,9的各数同循环节的位数相同。
• 字母表示: 0.abab……= ab 99
=
0.28
分母不是10、100、1000… …的分数 化小数,要用 分子 去除以 分母;
11 = 11÷45≈0.24 (保留两位小数) 45
除不尽的,可以根据需要按四舍五入 法保留几位小数。
分数与小数的转换如何将分数转换为小数

分数与小数的转换如何将分数转换为小数分数与小数的转换是数学中常见的基本运算之一。
本文将介绍如何将分数转换为小数,并提供具体的计算步骤和示例。
一、分数与小数的定义和关系分数由分子和分母两部分组成,表示了一部分与整体之间的比例关系,常用于表示比率、比例、百分比等。
小数是以十进制为基础的表示方法,可以精确地表示任意数值。
分数与小数之间存在着转换关系,可以相互转换。
二、将分数转换为小数的方法1. 分子除以分母法将分数的分子除以分母,所得的商就是对应的小数。
示例:将分数3/4转换为小数,计算过程如下:3 ÷4 = 0.75所以,3/4可以转换为小数0.75。
2. 重复十进制法若分数的分母为10的整数倍或者其约数(如10、100、1000等),可通过将分子转换为对应位数的有限小数,简化转换过程。
示例:将分数2/10转换为小数,计算过程如下:2 ÷ 10 = 0.2所以,2/10可以转换为小数0.2。
3. 空白补零法若分数的分母不是10的整数倍,或者不方便整除时,可以借助补零的方法,将分数的分母补充为10的整数倍,然后按照重复十进制法进行转换。
示例:将分数1/3转换为小数,计算过程如下:1 × 10 ÷ 3 = 3.333...所以,1/3可以转换为无限循环小数3.333...。
三、将小数转换为分数的方法1. 观察法观察小数的数值特点,找出其分数形式的规律,并进行推理和转换。
示例:将小数0.6转换为分数,观察得到规律为:0.6 = 6/10 = 3/5所以,0.6可以转换为分数3/5。
2. 分数的计算法利用小数的位值特点,通过计算得到相应的分数。
示例:将小数0.25转换为分数,计算过程如下:0.25 = 25/100 = 1/4所以,0.25可以转换为分数1/4。
3. 无限循环小数的转换法对于无限循环小数,可以使用特殊的方法进行转换为分数。
示例:将无限循环小数0.666...转换为分数,设该分数为x:x = 0.666...10x = 6.666...通过减法计算:10x - x = 6.666... - 0.666...9x = 6x = 6/9 = 2/3所以,无限循环小数0.666...可以转换为分数2/3。
分数和小数的互化方法

5、比较下面每组数的大小
5 2 8 和 2.769 1 和 0.365 3
6、把下面各数按从小到大的顺序排列起来
3 20
0.15 3
2 9
0.222
3.025
3 5
0.6
1 38
3.125
0.12
0.375
20
‹ 0.12 ‹
2
9
‹
0.375
‹
3
5
‹ 3.025 ‹ 3 8
1
变式训练
• 1.把0.9999……化成分数。 • 2.把7.383838……化成分数。 • 方法:纯循环小数化成分数,分子是一个循 环的小数所组成的数,分母的各位数字都是 9,9的各数同循环节的位数相同。 • 字母表示: 0.abab……= ab
139 7 21 =0.139 =0.7 =0.21 1000 10 100 13 3 13 =1.3 =0.03 =0.013 10 100 1000 331 4231 =3.31 =4.231 100 1000 765431 3249 =76.5431 =32.49 10000 100
7 = 7÷25 = 0.28 25
常用分数与小数的互化(要牢牢记住):
1 =0.5 2 1 =0.25 4 3 =0.75 4 1 =0.2 5
2 =0.4 5 3 =0.6 5 4 =0.8 5 1 =0.125 8
1 =0.05 20
1 =0.04 25
小数化分数
★ 常用的小数化分数,直接写结果
2
比如:0.4
=
2 5
不要再写作 0.4 = 4
56÷0.04
0.9×0.21
45×0.7
21×0.4
《分数与小数的互化》说课稿(精选6篇)

《分数与小数的互化》说课稿《分数与小数的互化》说课稿(精选6篇)作为一位杰出的老师,往往需要进行说课稿编写工作,通过说课稿可以很好地改正讲课缺点。
那么你有了解过说课稿吗?以下是小编精心整理的《分数与小数的互化》说课稿,仅供参考,欢迎大家阅读。
《分数与小数的互化》说课稿篇1一、依据课标,说教材《百分数和分数、小数的互化》是九年义务教育六年制小学数学第11册的内容。
它是在学生学习了百分数的意义、明确了百分数同分数小数的联系的基础上教学的。
学习这部分的内容是为后面学习百分数的计算和应用打下基础。
例1、例2是教学小数与百分数的互化。
教材联系了分数、小数互化的知识,突出“先把小数化成分母为100的分数再写成百分数或先把百分数写成分数形式再化成小数”这一转化规律和转化过程,引导学生归纳概括出小数、百分数互化的简便方法。
例3、教学分数化成百分数,教材按照已掌握的小数化成百分数的方法,提出问题引导学生想先把分数化成小数再化成百分数;例4是教学百分数化成分数,只要把百分数写成分数形式,再约分。
教学例3、例4之后引导学生总结百分数和分数互化的方法。
基于以上的认识,我认为本课的教学目标应确定为:1、知识目标:使学生理解并掌握百分数和小数、百分数和分数互化的方法,能正确地进行百分数与小数、百分数与分数之间的互化。
2、能力目标:培养学生的观察、归纳和概括能力。
3、情感目标:渗透“事物之间互相联系、互相转化”的辩证唯物主义思想。
教学重点:掌握百分数与小数、百分数与分数互化的简便方法及运用方法解决实际问题。
教学难点:掌握百分数与分数、百分数与小数互化的简便方法。
二、以人为本,说策略。
《数学课程标准》指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发……”因此,结合本课教材特点、学生实际情况,我采取小组合作学习,引导学生应用学过的分数、小数互化的知识进行迁移、类推,学习新知识。
同时,让学生在尝试探究的积极活动中获取新知,发展能力。
分数与小数的相互转换知识点总结

分数与小数的相互转换知识点总结数学中,分数和小数是两种常见的数学表示形式。
在实际生活和学习中,我们经常需要将分数和小数进行转换。
本文将总结分数与小数相互转换的知识点,帮助读者更好地理解和运用这些转换方法。
一、分数转小数将分数转换为小数,通常有以下几种方法:1. 除法法:将分子除以分母即可求得小数。
例如,将4/5转换为小数,计算4÷5=0.8。
2. 长除法:当分子大于分母时,可以使用长除法进行计算。
将分子除以分母,并将结果的小数部分继续除以分母,直到小数部分出现循环节或达到所需精度为止。
例如,将7/6转换为小数,计算结果为1.16666...(循环节为6)。
3. 带状数线法:这种方法特别适合将有限小数转换为分数。
首先,在一个水平的线上写下小数,然后在上方写下负数和正数的数线。
从小数最前面的数字开始,通过连接相应的数线上的数字,得到一个分数。
例如,将0.75转换为分数,可以将0.75的数线连到带状数线上的3和4,得到3/4。
二、小数转分数将小数转换为分数,我们可以运用以下方法:1. 数位法:将小数中的数位与分数的位置对应。
小数点右边的第一个数位对应分母为10,第二个数位对应分母为100,以此类推。
例如,将0.3转换为分数,其对应的分数为3/10。
2. 扩大法:可以通过扩大小数的位数,使其成为一个整数。
然后将该整数与10的幂次相乘,作为分子,并选择相应的分母。
最后,将分子分母约分,得到最简分数。
例如,将0.25转换为分数,将其扩大100倍得到25/100,约分后得到1/4。
3. 无穷循环小数转分数:对于有限小数和纯循环小数,可利用分数的性质进行转换。
例如,将0.333...转换为分数,设x = 0.333...,则10x = 3.333...,从而可得到9x = 3,解得x = 1/3。
小节一:在转换分数与小数时,需要注意以下几点:1. 除法法和长除法适用于将任意分数转换为小数。
2. 对于有限小数,可以直接将小数的数位与分数的位置对应。
分数与小数的转化学习分数和小数的相互转化方法

分数与小数的转化学习分数和小数的相互转化方法在数学学习中,我们经常会遇到需要将分数和小数相互转化的情况。
掌握分数与小数的转化方法,不仅有助于我们在计算中的准确性,也可以提高数学运算的效率。
本文将介绍分数与小数相互转化的几种常见方法。
一、分数转化为小数的方法1. 除法法:将分数的分子除以分母,得到的结果即为分数的小数形式。
例如,将2/5转化为小数,计算2除以5,得到0.4。
这种方法简单易行,适合于分子较小、分母较大的分数。
2. 小数形式为有限小数的分数转化:若分数的小数形式是有限小数,我们可以按照小数的位数,将小数的各个位数位置上的数依次写在分子上,然后将分母写为10的位数次幂。
例如,将0.7转化为分数形式,可以写为7/10。
若小数形式是两位数,如0.36,则可以写为36/100。
3. 小数形式为循环小数的分数转化:若分数的小数形式是循环小数,我们可以通过观察循环节,将循环节写在分子上,并将循环节的位数用9、99、999等相应位数的数字写在分母上。
例如,将0.3333...转化为分数形式,可以写为3/9,即1/3。
二、小数转化为分数的方法1. 有限小数转化为分数:将小数的数位全部写在分子上,将分母写为10的位数次幂。
例如,将0.6转化为分数形式,可以写为6/10,再进行约分,得到3/5。
2. 循环小数转化为分数:对于循环小数,我们要观察循环节的位数,将循环节的数写在分子上,将分母写为9、99、999等相应位数的数字。
例如,将0.45转化为分数形式,此小数只有两位小数,没有循环节,因此可以写为45/100。
然后再进行约分,得到9/20。
再例如,将0.4545...转化为分数形式,此小数循环节为45,因此可以写为45/99。
然后再进行约分,得到5/11。
需要注意的是,在转化小数为分数时,若小数出现无限循环,要根据循环节的位数来确定分母的位数。
总结起来,我们可以得到以下的结论:1. 无限循环小数的分母为以9结尾的数字,位数由循环节的位数决定;2. 小数的位数决定了分数的分母位数;3. 转化为分数后,进行约分,得到最简分数形式。
分数与小数的互化过程

分数与小数的互化过程分数和小数呀,就像两个性格不太一样但又能互相串门的小伙伴。
咱先来说说分数化成小数。
就拿咱常见的分数来说,比如说二分之一。
这二分之一怎么变成小数呢?其实就像分苹果,一个苹果分成两份,那每一份不就是0.5个苹果嘛。
具体的做法呢,就是用分子除以分母。
二分之一就是1除以2,这一除呀,就得到0.5啦。
再比如四分之一,那就是1除以4,算出来就是0.25。
这就好像是把一块蛋糕切成4份,其中的一份就是0.25块蛋糕。
有些分数呢,分子除以分母的时候可能除不尽。
像三分之一,1除以3,得到的是0.3333……这后面的3就像停不下来的小尾巴,一直循环下去。
这就像一个调皮的小孩子,在那不停地蹦跶。
还有像七分之三这样的,3除以7得到0.428571428571……这一串数字就一直在循环,可有意思了。
那小数怎么化成分数呢?如果是有限小数就简单得很。
像0.75这个小数,咱就看它小数点后面有两位,那就可以写成75除以100,然后约分一下,就变成了四分之三。
这就好比是把0.75块糖还原成原来糖的几分之几的模样。
再比如说0.2,这就是2除以10,约分后就是五分之一。
这就像是把0.2个小饼干变回原来饼干的分数形式。
要是循环小数化分数呢,就稍微复杂点。
比如说0.3333……这个循环小数,咱可以设这个数为x,那10x就是3.3333……然后用10x - x,也就是3.3333……减去0.3333……就得到3,而9x = 3,那x就等于三分之一啦。
这就像是玩一个数字猜谜的游戏,通过巧妙的计算把循环小数这个神秘的家伙变成分数这个熟悉的面孔。
再看0.142857142857……这个循环节比较长的循环小数。
同样设它为x,1000000x就是142857.142857……然后1000000x - x,就得到999999x等于142857,那x就是142857分之999999,约分后就是七分之一。
这就像在一个数字迷宫里绕来绕去,最后找到了出口,把循环小数变成了分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数与小数的互化、混合运算、应用题
【知识点1】
1.把一个分数化成小数的方法:分子除以分母
2.一个最简分数,如果分母中只含有素因数2和5,再无其他素因数,那么这个分数可以化成有限小数;否则就不能化成有限小数。
口答:判断下列分数能否化成有限小数?
7 8
4
15
12
25
5
12
17
40
32
5
3
24
3.小数化成分数的方法:小数化分数时,小数位数上有几位数字,分母上就有几个0 4.(1)循环小数:一个小数从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这个小数叫做循环小数。
口答:判断下列各数是不是循环小数,为什么?
0.5555,0.123123..., 2.235464309...,
12.121212..., 5.317317...,
(2)循环节:一个循环小数的小数部分中依次不断地重复出现的第一个最少的数字组,叫做这个循环小数的循环节。
如:0.1363636...的循环节为“36”,写作0.136&&。
5.一个分数总可以化为有限小数或循环小数;有限小数和循环小数也总可以化为分数。
【例题讲解】
例1.把下列最简分数化成有限小数,如果不能化成有限小数,将其结果保留三位小数。
(1)
2
15
(2)
31
4
(3)
5
6
(4)
16
25
(5)
4
27
(6)
17
100
例2.把下列小数分别化成分数:
(1)0.9(2)0.25(3)3.32(4)1.125【基础练习】
(1)把下列各数化成小数:38= ;625
= 。
(2)把下列各数化成分数:3.56= ;0.225= 。
(3)比较大小:
53 1.66;237
3.286。
(4)把下列各数化为循环小数:59= ;2533
= 。
(5)下列分数中:23、74、88、516、3825
,真分数有 个。
(6)已知n 是自然数,且分数8n 是假分数,11
n 是真分数,则满足条件的n 的值是 。
(7)38、21142、315、39中,能化为有限小数的是 。
2.小明3分钟打字169个,小红5分钟打字271个,问:小红、小明谁的的打字速度快?
小拓展:观察下列小数化成分数的结果:
20.2222 (9)
=; 370.373737 (99)
=; 5030.1503503 (999)
=; ……
总结:纯循环小数化分数时,若为无限小数,则小数的循环节有几位数字,化成的分数的分母就有几个9,循环节作为分数的分子。
小练习:把下列循环小数写成分数的形式:
0.6&= 2.61&&=
【知识点2】
1.分数、小数混合运算顺序:
2.整数中的运算律在分数、小数混合运算中成立。
【例题讲解】
(1)
3
10.75
5
-(2)
5
3 2.5
6
+(3)
33
4
115
⨯÷
(4)3263
53714
⨯+÷(5)
2111
1.25(2)2
5210
⨯-+÷
例4.计算:
(1)
35
24()
86
⨯+(2)
998
999999
999
⨯
【基础练习】1.计算:
(1)3
0.55
4
+(2)
1
0.25
3
-(3)
31
520.5
46
--
(4)33
3
84
÷⨯(5)
531
1243
÷÷(6)
6269
+
53714
⨯÷
(7)1121
0.6
12510
⨯-÷(8)
3
5059.2
4
-⨯⨯(9)
323
(1.5)+1.2
434
⨯-⨯
(10)433
1.6+177- (11)21(3 1.5+4)12056-⨯ (12)24[5+(10.6)3]3
÷-⨯÷
2.某单位节约用电,第一季度每个月用电量都是前一个月的710
,已知三月份用电490度。
求:三月份比一月份少用多少度电?若已知一月份用电490度,结果又会如何?
【例题讲解】
例5.根据下列题意列算式:
(1)12的
23
是多少? (2)一个数的23
是9,这个数是多少? (3)一根绳子长10米,剪去35
米,还剩多少米? (4)一根绳子长10米,剪去它的35,还剩多少米? (5)12比10多几分之几?
(6)10比12少几分之几?
例6.一天某书店运来科技书420本,( ),运来文艺书多少本?请根据括号内补充的不同的已知条件,列出相应的算式,并求出相应文艺书的本数。
(1)文艺书是科技书的
16
; (2)科技书是文艺书的16
; (3)文艺书比科技书多16
; (4)文艺书比科技书少16
; (5)科技书比文艺书多16;
(6)科技书比文艺书少1
6
;
【基础练习】
1.某数的3
7
是6的
2
5
,求这个数。
2.小明计划三天看完一本书,第一天看了全书的2
7
,第二天看了全书的
3
5
,第三天看了24
页,问这本书共有多少页?
3.小丽看一本书,第一天看了全书的1
8
多16页,第二天看了全书的
1
6
少2页,第三天看
完了剩下的88页,问这本书共有多少页?
4.一条绳子长120米,第一次用去了1
3
,第二次用去了剩下的
1
6
,第二次用去了多少米?。