高中数学 第一章 解三角形B组测试题 新人教A版必修5

合集下载

人教版高中数学必修5第一章解三角形测试题及答案

人教版高中数学必修5第一章解三角形测试题及答案

必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。

高中数学人教A版必修5习题:第一章解三角形1.1.1含解析

高中数学人教A版必修5习题:第一章解三角形1.1.1含解析

01第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理课时过关·能力提升基础巩固1在△ABC中,下列关系一定成立的是().A.a>b sin AB.a≤b sin AC.a<b sin AD.a≥b sin A答案:D2在△ABC中,若A=60°,a=4√3,b=4√2,则B等于().A.45°或135°B.135°C.45°D.以上答案都不对答案:C3在△ABC中,若sin A>sin B,则角A与角B的大小关系是().A.A>BB.A<BC.A=BD.不确定答案:A4在△ABC中,若a∶b∶c=2∶5∶6,则sin A∶sin B∶sin C等于().A.2∶5∶6B.6∶5∶2C.6∶2∶5D.不确定解析:由正弦定理,知sin A∶sin B∶sin C=a∶b∶c=2∶5∶6.答案:A5在△ABC中,a=20,A=45°,B=75°,则边c的长为. 解析:C=180°-45°-75°=60°.由正弦定理得asinA =csinC,即20sin45°=csin60°,故c=20sin60°sin45°=20×√32√22=10√6.答案:10√66在△ABC中,角A,B,C所对的边分别为a,b,c,若a=√3,b=1,A=π3,则B=.解析:由正弦定理得asinA=bsinB,所以√3sinπ3=1sinB,解得sin B=12,所以B=5π6或B=π6,又因为a=√3,b=1,所以B<A,所以B=π6.答案:π67在△ABC中,A=2π3,a=√3c,则bc=.解析:由正弦定理知sinAsinC =ac=√3,即sin C=sin2π3√3=12,又a>c,可得C=π6,∴B=π−2π3−π6=π6,∴b=c,即bc=1.答案:18在△ABC中,若B=2A,a∶b=1∶√3,则A=.解析:∵B=2A,∴sin B=sin2A,∴sin B=2sin A cos A,∴sinAsinB=12cosA.由正弦定理,得ab =sinAsinB=√3,∴1 2cosA =√3∴cos A=√32.又0°<A<180°,∴A=30°.答案:30°9在△ABC中,a=5,B=45°,C=105°,求边c.解由三角形内角和定理,知A+B+C=180°, 故A=180°-(B+C)=180°-(45°+105°)=30°.由正弦定理,得c=a·sinCsinA=5·sin105°sin30°=5·sin(60°+45°)sin30°=5·sin60°cos45°+cos60°sin45°sin30°=52(√6+√2).10在△ABC中,已知a=√2,b=2,A=30°,解此三角形.解由asinA =bsinB,得sin B=bsinAa=√2=√22.∵0°<B<180°,∴B=45°或B=135°.当B=45°时,C=180°-(A+B)=180°-(30°+45°)=105°.∵csinC=asinA,∴c=asinCsinA =√2sin105°sin30°=√2×√6+√2412=√3+1.当B=135°时,C=180°-(A+B)=180°-(30°+135°)=15°,∴c=asinCsinA =√2sin15°sin30°=√2×√6-√2412=√3−1.综上可得,B=45°,C=105°,c=√3+1或B=135°,C=15°,c=√3−1.能力提升1在△ABC中,A=60°,a=√13,则a+b+csinA+sinB+sinC等于().A.8√33B.2√393C.26√33D.2√3解析:由a=2R sin A,b=2R sin B,c=2R sin C,得a+b+csinA+sinB+sinC =2R=asinA=√13sin60°=2√393.答案:B2在△ABC中,若a=4,A=45°,B=60°,则b的值为().A.2√6B.2+2√3C.√3+1D.2√3+1解析:由正弦定理得,asinA =bsinB,则b=asinBsinA =4sin60°sin45°=2√6.答案:A★3在△ABC中,角A,B,C的对边分别为a,b,c,如果m=(a2,b2),n=(tan A,tan B),且m∥n,那么△ABC 一定是().A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形解析:由m∥n得a2tan B=b2tan A,结合正弦定理有sin 2Bsin2A =tanBtanA,∴sinBsinA=cosAcosB.∴sin2A=sin2B.∴2A=2B或2A+2B=π.∴A=B或A+B=π2,即△ABC是等腰三角形或直角三角形.故选D.答案:D4在△ABC中,角A,B,C所对的边分别为a,b,c,若3b cos A=c cos A+a cos C,则tan A的值是().A.-2√2B.−√2C.2√2D.√2解析:由正弦定理得b=2R sin B,c=2R sin C,a=2R sin A,则3(2R sin B)cos A=2R sin C cos A+2R sin A cos C,则有3sin B cos A=sin(C+A)=sin B.又∵sin B≠0,则cos A=13>0,∴A为锐角,∴sin A=√1-cos2A=√1-19=2√23,则有tan A=sinAcosA =2√2313=2√2.答案:C5在△ABC中,B=30°,C=120°,则a∶b∶c=. 解析:由题意得A=180°-B-C=30°,则sin A=12,sin B=12,sin C=√32,∴a∶b∶c=sin A∶sin B∶sin C=1∶1∶√3.答案:1∶1∶√36在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA +b2sinB+2csinC=.解析:由正弦定理得asinA=2R=2,b2sinB=R=1,2csinC=4R=4,故asinA+b2sinB+2csinC=2+1+4=7.答案:77已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量m=(√3,−1),n=(cos A,sin A),若m⊥n,且a cos B+b cos A=c sin C,则角B=.解析:由题意知m·n=0,∴√3cos A-sin A=0.∴tan A=√3,A=π3.又a cos B+b cos A=c sin C,∴由正弦定理,得sin A cos B+sin B cos A=sin2C,即sin(A+B)=sin2C,sin(π-C)=sin2C,sin C=sin2C.∴sin C=1.∴C=π2.∴B=π6.答案:π6★8已知△ABC为锐角三角形,角A,B,C分别对应边a,b,c,且a=2b sin A,求cos A+sin C的取值范围.解设R为△ABC外接圆的半径.∵a=2b sin A,∴2R sin A=4R sin B sin A.∵sin A≠0,∴sin B=12.∵B为锐角,∴B=π6.令y=cos A+sin C=cos A+sin[π-(B+A)]=cos A+si n(π6+A)=cos A+si nπ6cos A+co sπ6sin A=32cos A+√32sin A=√3sin(A+π3).由△ABC为锐角三角形,知π2−B<A<π2,∴π3<A<π2.∴2π3<A+π3<5π6,∴12<sin(A+π3)<√32.∴√32<√3sin(A+π3)<32,即√32<y<32.∴cos A+sin C的取值范围是(√32,3 2 ).。

高中数学 第一章 解三角形 1.1.2 余弦定理练习(含解析)新人教B版必修5-新人教B版高二必修5

高中数学 第一章 解三角形 1.1.2 余弦定理练习(含解析)新人教B版必修5-新人教B版高二必修5

1.1.2 余弦定理课时过关·能力提升1已知在△ABC 中,a ∶b ∶c=1∶1∶√3,则cos C 的值为( ) A.23 B.-23C.12D.-122在△ABC 中,若2cos B sin A=sin C ,则△ABC 的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形D.等边三角形2cos B sin A=sin C ,得a 2+a 2-a 2aa·a=c , 所以a=b.所以△ABC 为等腰三角形.3已知在△ABC 中,AB=3,BC=√13,AC=4,则边AC 上的高是( ) A.3√22B.3√32C.32D.3√3,得cos A=aa 2+aa 2-aa 22aa ·aa =9+16-132×3×4=12.∴sin A=√32.∴S △ABC =12AB ·AC ·sin A=12×3×4×√32=3√3.设边AC 上的高为h ,则S △ABC =12AC ·h=12×4×h=3√3. ∴h=3√32.4已知在△ABC 中,∠ABC=π4,AB=√2,BC=3,则sin ∠BAC=( ) A.√1010 B.√105C.3√1010D.√55ABC中,由余弦定理,得AC2=AB2+BC2-2AB·BC cos∠ABC=2+9-2×√2×3×√22=5,即得AC=√5.由正弦定理aasin∠aaa =aasin∠aaa,即√5√22=3sin∠aaa,所以sin∠BAC=3√1010.5已知在△ABC中,∠B=60°,b2=ac,则△ABC一定是三角形.B=60°,b2=ac,由余弦定理,得b2=a2+c2-2ac cos B,得ac=a2+c2-ac,即(a-c)2=0,所以a=c.又∠B=60°,所以△ABC是等边三角形.6已知△ABC的内角∠A,∠B,∠C的对边分别为a,b,c,且3b2+3c2-3a2=4√2bc,则sin A=.7设△ABC的内角∠A,∠B,∠C的对边分别为a,b,c,且a=1,b=2,cos C=14,则sinB=.,得c2=a2+b2-2ab cos C=1+4-2×1×2×14=4,解得c=2,即b=c,故sin B=sin C=√1-(14)2=√154.8如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=2√23,AB=3√2,AD=3,则BD的长为.AD⊥AC,∴∠DAC=π2.∵sin ∠BAC=2√23,∴sin (∠aaa +π2)=2√23,∴cos ∠BAD=2√23.由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD=(3√2)2+32-2×3√2×3×2√23=3.∴BD=√3. √3 9在△ABC 中,已知∠B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.ADC 中,AD=10,AC=14,DC=6,由余弦定理,得cos ∠ADC=aa 2+aa 2-aa 22aa ·aa=100+36-1962×10×6=-12,∴∠ADC=120°,∴∠ADB=60°.在△ABD 中,AD=10,∠B=45°,∠ADB=60°, 由正弦定理,得aa sin∠aaa=aasin a, ∴AB=aa ·sin∠aaasin a=10sin60°sin45°=10×√32√22=5√6.10在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足c=2b cos A. (1)求证:∠A=∠B ;(2)若△ABC 的面积S=152,cos C=45,求c 的值.c=2b cos A ,由正弦定理,得sin C=2sin B ·cos A ,所以sin(A+B )=2sin B ·cos A ,所以sin(A-B )=0.在△ABC 中,因为0<∠A<π,0<∠B<π, 所以-π<∠A-∠B<π,所以∠A=∠B.(1)知a=b.因为cos C=45,又0<∠C<π,所以sin C=35.又因为△ABC 的面积S=152, 所以S=12ab sin C=152,可得a=b=5. 由余弦定理,得c 2=a 2+b 2-2ab cos C=10. 所以c=√10. ★11设△ABC 是锐角三角形,a ,b ,c 分别是内角∠A ,∠B ,∠C 所对的边,并且sin 2A=sin (π3+a )sin (π3-a )+sin 2B.(1)求∠A 的值;(2)若aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12,a=2√7,求b ,c (其中b<c ).因为sin 2A=(√32cos a +12sin a )·(√32cos a -12sin a )+sin 2B=34cos 2B-14sin 2B+sin 2B=34,所以sin A=√32.又∠A 为锐角, 所以∠A=π3.(2)由aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12,可得bc cos A=12.① 由(1)知∠A=π3, 所以bc=24.②由余弦定理知a 2=c 2+b 2-2bc cos A , 将a=2√7及①代入上式,得c 2+b 2=52,③ 由③+②×2,得(b+c )2=100,所以b+c=10. 因此b ,c 是一元二次方程t 2-10t+24=0的两个根. 解此方程并由c>b 知c=6,b=4.。

【人教A版】高中数学:必修5全集第一章1.2第3课时三角形中的几何计算

【人教A版】高中数学:必修5全集第一章1.2第3课时三角形中的几何计算

2020年精品试题芳草香出品第一章 解三角形1.2 应用举例第3课时三角形中的几何计算A 级 基础巩固一、选择题1.在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,a =5,b=4,cos C =45,则△ABC 的面积是( ) A .8 B .6 C .4 D .2解析:因为cos C =45,C ∈(0,π), 所以sin C =35, 所以S △ABC =12ab sin C =12×5×4×35=6. 答案:B2.在△ABC 中,三边a ,b ,c 与面积S 的关系式为a 2+4S =b 2+c 2,则角A 为( )A .45°B .60°C .120°D .150°解析:4S =b 2+c 2-a 2=2bc cos A ,所以4·12bc sin A =2bc cos A , 所以tan A =1,又因为A ∈(0°,180°),所以A =45°.答案:A3.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32C. 3 D .2 3 解析:S △ABC =12AB ·AC ·sin A =32. 答案:B4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =1,B =π3,当△ABC 的面积等于3时,tan C 等于( ) A. 3 B .- 3 C .-2 3 D .-2解析:S △ABC =12ac sin B =12·1·c ·32=3,所以c =4, 由余弦定理得b 2=a 2+c 2-2ac cos B =13,所以b =13,所以cos C =a 2+b 2-c 22ab =-113, 所以sin C =1213, 所以tan C =sin C cos C =-12=-2 3. 答案:C5.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( ) A.152 B.15 C .2 D .3 解析:因为b 2-bc -2c 2=0,所以(b -2c )(b +c )=0,所以b=2c.由a2=b2+c2-2bc cos A,解得c=2,b=4,因为cos A=78,所以sin A=15 8,所以S△ABC=12bc sin A=12×4×2×158=152.答案:A二、填空题6.△ABC中,下述表达式:①sin(A+B)+sin C;②cos(B+C)+cos A表示常数的是________.解析:①sin(A+B)+sin C=sin(π-C)+sin C=2sin C,不是常数;②cos(B+C)+cos A=cos(π-A)+cos A=0,是常数.答案:②7.在△ABC中,已知a-b=4,a+c=2b,且最大角为120°,则该三角形的周长为________.解析:因为a-b=4,所以a>b,又因为a+c=2b,所以b+4+c=2b,所以b=4+c,所以a>b>c.所以最大角为A,所以A=120°,所以cos A=b2+c2-a22bc=-12,所以b2+c2-a2=-bc,所以b2+(b-4)2-(b+4)2=-b(b-4),即b2+b2+16-8b-b2-16-8b=-b2+4b,所以b=10,所以a=14,c=6.故周长为30.。

高中数学必修5复习题及答案(A组)免费范文

高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。

人教版数学高三第一章解三角形单元测试精选(含答案)1

人教版数学高三第一章解三角形单元测试精选(含答案)1
5
(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6

高中数学第1章解三角形课件新人教A版必修5(2024)

高中数学第1章解三角形课件新人教A版必修5(2024)
的面积。 • 解析:根据正弦定理$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$,代入已知条件可得
$\frac{a}{\frac{\sqrt{3}}{2}} = \frac{b}{\frac{\sqrt{2}}{2}} = \frac{2}{\sin C}$,解得$a = \frac{2\sqrt{6}}{3}, b = \sqrt{2}$。再根据三角形面积公式$S = \frac{1}{2}ab\sin C$,代入已知条件可得$S = \frac{\sqrt{3} + 1}{3}$。
例2
已知△ABC中,D、E分别是AB、AC上的 点,且AD/AB=AE/AC,求证: △ADE∽△ABC。
例3
已知△ABC中,∠C=90°,CD⊥AB于D, 若AD=3,BD=4,求CD的长。
28
06
2024/1/28
三角函数在解三角形中的应用
29
三角函数基本概念回顾
2024/1/28
角度与弧度的定义及转换 正弦、余弦、正切函数的定义域、值域及 性质 诱导公式及周期性质 两角和与差的正弦、余弦、正切公式
19
利用面积公式解决实际问题
2024/1/28
01
在测量工程中,经常需要计算不 规则地块的面积,可以通过测量 地块边界的长度,利用海伦公式 或向量叉积计算面积。
02
在建筑设计中,计算房间面积或 建筑物占地面积时,也可以利用 三角形面积公式进行计算。
20
面积公式在几何中的应用
在几何证明题中,有时需要计算某个 三角形的面积,以证明两个三角形面 积相等或成比例等关系。
解决几何问题中的最值问题
通过正弦定理可以解决一些几何问题中的最值问题,如求三角形中的最大角或最 小角等。

新人教A版必修5高中数学第一章解三角形章末检测(B)

新人教A版必修5高中数学第一章解三角形章末检测(B)

第一章 解三角形章末检测(B )新人教A 版必修5(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.在△ABC 中,a =2,b =3,c =1,则最小角为( ) A.π12 B.π6 C.π4 D.π32.△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( ) A.π6 B.π3 C.π2 D.2π33.在△ABC 中,已知||=4,|AC →|=1,S △ABC =3,则AB →²AC →等于( )A .-2B .2C .±4D .±24.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 25.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为( )A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( )A .1<x < 5 B.5<x <13 C .1<x <2 5 D .23<x <2 57.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223C .-63 D.638.下列判断中正确的是( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解 9.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是( )A.34B.32C.3或32D.32或3410.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C为( )A. 3 B .1 C.33 D.3211.在△ABC 中,如果sin A sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 是( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形 12.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( ) A .60° B .45°或135°13.在△ABC 中,若sin A a=cos Bb,则B =________.14.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为________.15.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/小时.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H 、G 、B 三点在同一条直线上,在G 、H 两点用测角仪器测得A的仰角分别为α,β,CD=a,测角仪器的高是h,用a,h,α,β表示建筑物高度AB.18.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2b sin A.(1)求B的大小.(2)若a=33,c=5,求b.19.(12分)如图所示,已知⊙O的半径是1,点C在直径AB的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧.(1)若∠POB=θ,试将四边形OPDC的面积y表示为关于θ的函数;(2)求四边形OPDC面积的最大值.20.(12分)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.21.(12分)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b . (2)若sin B =2sin A ,求△ABC 的面积.22.(12分) 如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.第一章 解三角形 章末检测 答案 (B)1.B [∵a >b >c ,∴C 最小.∵cos C =a 2+b 2-c 22ab =22+32-122³2³3=32,又∵0<C <π,∴C =π6.]2.B [∵p ∥q ,∴(a +c )(c -a )-b (b -a )=0. ∴c 2=a 2+b 2-ab ,∵c 2=a 2+b 2-2ab cos C ,∴cos C =12,又∵0<C <π,∴C =π3.]∴||²|AC →|²sin A =12³4³1³sin A = 3. ∴sin A =32.又∵0°<A <180°,∴A =60°或120°.²AC →=|AB →|²|AC →|cos A=4³1³cos A =±2.] 4.D [由正弦定理得b sin B =csin C, ∴sin C =c ²sin B b =2sin 120°6=12,∵c <b ,∴C 为锐角.∴C =30°,∴A =180°-120°-30°=30°. ∴a =c = 2.]5.D [由余弦定理得BC 2=AB 2+AC 2-2AB ²AC ²cos A , 即72=52+AC 2-10AC ²cos 120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.]6.D [由题意,x 应满足条件⎩⎪⎨⎪⎧22+42-x 2>022+x 2-42>0解得:23<x <2 5.]7.D [由正弦定理得15sin 60°=10sin B.∴sin B =10²sin 60°15=33.∵a >b ,A =60°,∴B <60°. ∴cos B =1-sin 2B =1-332=63.]8.B [A :a =b sin A ,有一解; B :A >90°,a >b ,有一解; C :a <b sin A ,无解;D :c >b >c sin B ,有两解.]9.D [由余弦定理AC 2=AB 2+BC 2-2AB ²BC cos B ,∴12=(3)2+BC 2-2³3³BC ³32.整理得:BC 2-3BC +2=0. ∴BC =1或2.当BC =1时,S △ABC =12AB ²BC sin B =12³3³1³12=34.当BC =2时,S △ABC =12AB ²BC sin B =12³3³2³12=32.]10.C [由S △ABC =12BC ²BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ²BC cos B ,∴AC =3,∴△ABC 为直角三角形, 其中A 为直角,∴tan C =AB AC =33.]11.C [由已知,得cos(A -B )+sin(A +B )=2, 又|cos(A -B )|≤1,|sin(A +B )|≤1, 故cos(A -B )=1且sin(A +B )=1, 即A =B 且A +B =90°,故选C.] 12.B [由a 4+b 4+c 4=2c 2a 2+2b 2c 2,得cos 2C =a 2+b 2-c 22ab2=a 4+b 4+c 4+2a 2b 2-2c 2a 2-2b 2c 24a 2b 2=12⇒cos C =±22.∴角C 为45°或135°.]13.45°解析 由正弦定理,sin A a =sin Bb.∴sin B b =cos Bb.∴sin B =cos B .∴B =45°.14.10 3解析 设AC =x ,则由余弦定理得: BC 2=AB 2+AC 2-2AB ²AC cos A ,∴49=25+x 2-5x ,∴x 2-5x -24=0. ∴x =8或x =-3(舍去).∴S △ABC =12³5³8³sin 60°=10 3.15.8 6解析 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =64³32=326,∴v =MN4=86(海里/小时).16.33解析 由(3b -c )cos A =a cos C ,得(3b -c )²b 2+c 2-a 22bc=a ²a 2+b 2-c 22ab,即b 2+c 2-a 22bc =33,由余弦定理得cos A =33.17.解 在△ACD 中,∠DAC =α-β, 由正弦定理,得AC sin β=DCα-β,∴AC =a sin βα-β∴AB =AE +EB =AC sin α+h =a sin βsin αα-β+h .18.解 (1)∵a =2b sin A ,∴sin A =2sin B ²sin A ,∴sin B =12.∵0<B <π2,∴B =30°.(2)∵a =33,c =5,B =30°. 由余弦定理b 2=a 2+c 2-2ac cos B=(33)2+52-2³33³5³cos 30°=7. ∴b =7.19.解 (1)在△POC 中,由余弦定理, 得PC 2=OP 2+OC 2-2OP ²OC ²cos θ =5-4cos θ, 所以y =S △OPC +S △PCD =12³1³2sin θ+34³(5-4cos θ) =2sin ⎝ ⎛⎭⎪⎫θ-π3+534.(2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.20.解 ①需要测量的数据有:A 点到M 、N 点的俯角α1、β1;B 点到M 、N 点的俯角α2、β2;A 、B 的距离d (如图所示).②第一步:计算AM ,由正弦定理AM =d sin α2α1+α2;第二步:计算AN .由正弦定理AN =d sin β2β2-β1;第三步:计算MN ,由余弦定理 MN =AM 2+AN 2-2AM ³AN α1-β1. 21.解 (1)由余弦定理及已知条件得 a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,由此得ab =4.联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由正弦定理及已知条件得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =233.22.解 ∵CP ∥OB ,∴∠CPO =∠POB =60°-θ, ∠OCP =120°.在△POC 中,由正弦定理得OP sin ∠PCO =CPsin θ,∴2sin 120°=CP sin θ,∴CP =43sin θ.又OC -θ=2sin 120°,∴OC =43sin(60°-θ).因此△POC 的面积为S (θ)=12CP ²OC sin 120°=12²43sin θ²43sin(60°-θ)³32 =43sin θsin(60°-θ)=43sin θ⎝⎛⎭⎪⎪⎫32cos θ-12sin θ =2sin θ²cos θ-23sin 2θ=sin 2θ+33cos 2θ-33=233sin ⎝⎛⎭⎪⎫2θ+π6-33∴θ=π6时,S (θ)取得最大值为33.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数学必修5)第一章:解三角形
[综合训练B 组] 一、选择题
1.在△ABC 中,::1:2:3A B C =, 则::a b c 等于( )
A .1:2:3
B .3:2:1
C .2
D .
2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定
3.在△ABC 中,若B A 2=,则a 等于( ) A .A b sin 2 B .A b cos 2 C .B b sin 2 D .B b cos 2
4.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A , 则△ABC 的形状是( )
A .直角三角形
B .等边三角形
C .不能确定
D .等腰三角形
5.在△ABC 中,若,3))((bc a c b c b a =-+++ 则A = ( )
A .0
90 B .0
60 C .0
135 D .0
150
6.在△ABC 中,若14
13cos ,8,7===C b a , 则最大角的余弦是( )
A .51-
B .61-
C .7
1- D .81-
7.在△ABC 中,若tan
2A B a b
a b
--=+,则△ABC 的形状是( ) A .直角三角形 B .等腰三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
二、填空题
1.若在△ABC 中,060,1,ABC A b S ∆∠===则
C
B A c
b a sin sin sin ++++=_______。

2.若,A B 是锐角三角形的两内角,则B A tan tan _____1(填>或<)。

3.在△ABC 中,若=+=C B C B A tan tan ,cos cos 2sin 则_________。

4.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________。

5.在△ABC 中,若=+=
==A c b a 则2
2
6,2,3_________。

6.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________。

三、解答题
1. 在△ABC 中,0120,,ABC A c b a S =>== c b ,。

2. 在锐角△ABC 中,求证:1tan tan tan >⋅⋅C B A 。

3. 在△ABC 中,求证:2
cos 2cos 2cos 4sin sin sin C B A C B A =++。

4. 在△ABC 中,若0
120=+B A ,则求证:
1=+++c
a b c b a 。

5.在△ABC 中,若2
23cos
cos 222
C A b a c +=,则求证:2a c b +=
第一章 [综合训练B 组]答案
一、选择题
1.C 12,,,::sin :sin :sin ::26
3
2
222
A B C a b c A B C π
π
π
=
=
=
==
= 2.A ,A B A B ππ+<<-,且,A B π-都是锐角,sin sin()sin A B B π<-= 3.D sin sin 22sin cos ,2cos A B B B a b B === 4.D sin sin lg
lg 2,2,sin 2cos sin cos sin cos sin A A
A B C B C B C
===
sin()2cos sin ,sin cos cos sin 0,B C B C B C B C +=-= sin()0,B C B C -==,等腰三角形
5.B 22()()3,()3,a b c b c a bc b c a bc +++-=+-=
2222
2
2
1
3,c o s ,60
22
b c a b c a bc A
A bc +-+-==== 6.C 222
2cos 9,3c a b ab C c =+-==,B 为最大角,1
cos 7
B =-
7.D 2cos
sin
sin sin 22tan 2sin sin 2sin cos 22
A B A B
A B a b A B A B A B
a b A B +----===+-++, tan
2tan ,tan 022tan 2A B A B A B A B ---=
=+,或tan 12A B += 所以A B =或2
A B π
+=
二、填空题
1.
339
2
2
11s i n
,4,113
222
ABC S bc A c c a a ∆==⨯==
=
=
sin sin sin sin 3a b c a A B C A ++===
++
2.> ,22A B A B ππ+>>-,即sin()2tan tan()2cos()2
B A B B π
ππ->-=-
cos 1sin tan B B B ==,1tan ,tan tan 1tan A A B B
>> 1. 2 s i n s i n
t a n t a n c o s c o s
B C B C B C +=+
sin cos cos sin sin()2sin 1cos cos sin sin 2
B C B C B C A
B C A A +++===
2. 锐角三角形 C 为最大角,cos 0,C C >为锐角
5. 060
2
2
2
23
1cos 22
b c a A bc +-=
=== 6

222
222
2222222
13,49,594a b c c a c b
c c c c b a c ⎧⎧+>>⎪⎪+>+><<<<⎨⎨⎪⎪+>+>⎩
⎩。

相关文档
最新文档