必修5《解三角形》综合测试题及解析
(练习) 必修5第一章解三角形检测

必修5第一章解三角形检测一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a等于( ) A.6 B .2 C.3 D. 22.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c=A .1B .2 C.3-1 D. 33.△ABC 的三边分别为2m +3,m 2+2m ,m 2+3m +3(m >0),则最大内角度数为( )A .150°B .120°C .90°D .135°4.在△ABC 中,若cos A cos B =b a ,且cos B cos C =cb,则△ABC 是( )A .直角三角形B .等腰三角形C .等腰三角形或直角三角形D .正三角形5.在△ABC 中,关于x 的方程(1+x 2)sin A +2x sin B +(1-x 2)sin C =0有两个不等的实数根,则A 为( )A .锐角B .直角C .钝角D .不存在6.在△ABC 中,A =45°,b =4,c =2,那么cos B =( )A.31010 B .-31010C.55 D .-557.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( )A .30°或150°B .15°或75°C .30°D .15°8.△ABC 三边长分别是3,4,6,则它的较大锐角的平分线分三角形的面积比是( )A .1 1B .1 2C .1 4D .4 39.在△ABC 中,若|AB →|=2,|AC →|=5,AB →·AC →=-5,则S △ABC =( )A.532B. 3C.52D .510.关于x 的方程x 2-x cos A ·cos B -cos 2C2=0有一个根为1,则此三角形为( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形11.若△ABC 的三边为a 、b 、c ,它的面积为a 2+b 2-c243C 等于( )A .30°B .45°C .60°D .90°12.在△ABC 中,∠A 、∠B 的对边分别是a 、b ,且∠A =2∠B ,若a =xb ,则x 的取值范围是( )A .(0,3)B .(1,2) C.⎝⎛⎭⎫12,1D .(0,2) 二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.三角形一边长为14,它对的角为60°,另两边之比为8 5,则此三角形面积为________.14.已知△ABC 外接圆半径是2 cm ,∠A =60°,则BC 边长为__________. 15.在四边形ABCD 中,AB =6,BD =33,BC =4,∠ADB =∠CBD ,A =60°,则△BCD 面积为__________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,若tan A =3,cos C =55.(1)求角B 的大小; (2)若c =4,求△ABC 面积.18.(本小题满分12分)在△ABC 中,∠A >∠B >∠C ,且A =2C ,b =4,a +c =8,求a ,c 的长.20.(本小题满分12分)已知∠A 、∠B 满足条件b -b cos A =a -a cos B ,若∠A 、∠B 是△ABC 的内角,且∠A 的对边是a ,∠B 的对边是b .试确定△ABC 的形状.。
必修5-解三角形-综合复习卷(含答案)

2018年高中数学必修5 解三角形综合复习卷一、选择题:1.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=7,b=5,c=8,则△ABC的面积S等于()2.在△ABC中,内角A,B,C的对边分别为a,b,c,且,则是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形3.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定4.已知△ABC中,a,b,c分别是角A,B,C的对边,若,则B=()A. B. C. D.5.在△ABC中,已知a=2,则等于( )B.6.△ABC中,三内角A,B,C的对边分别为a,b,c.若△ABC的面积为S,且2S=(a+b)2﹣c2,则等于( ).A. B. C. D.7.在△ABC中,若lg sin A-lg cos B-lg sin C=lg 2,则△ABC是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.在△ABC中,内角A,B,C所对边分别是a,b,c,若3a=2b,则值为()A. B. D.9.已知锐角△ABC内角A,B,C对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=( )10.在△ABC中,若,,则△ABC的面积等于()C.11.若△ABC内角A,B,C对边分别为a,b,c,且,则等于()A. B. C. D.12.在△ABC中,a,b,c分别为内角A,B,C所对的边,若,则b+c最大值为()A. C.二、填空题:13.在△ABC中,sin2A≤sin2B+sin2C-sin Bsin C,则A的取值范围是__ _____.14.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=bc,sinC=2sinB,则A角大小为 .15.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若,且,△ABC面积的最大值为.16.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,,且a=3,则△ABC面积的最大值为.17.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足,则的最大值是__________.18.在△ABC中,角A,B,C的对边分别为a,b,c,且,若△ABC的面积为,则ab的最小值为.19.在锐角△ABC中,角A、B、C对边分别为a、b、c,若a2=b2+bc,则取值范围是.20.在△ABC中,内角A,B,C的对应边分别为a,b,c,已知,则△ABC面积的最大值等于.三、解答题:21.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为。
完整版高中数学必修5解三角形测试题及答案

高中数学必修5解三角形测试题及答案一、选择题:〔每题 5分,共60分〕1.在VABC 中,AB 3,A 45,C 75,那么BC=A .33 B . 2C .2D .3 32.以下关于正弦定理的表达或变形中错误的选项是..A .在VABC 中,a:b:c=sinA:sinB:sinCB .VABC 中,a=bsin2A=sin2Ba =b+cC .VABC 中,sin AsinB+sinCD .VABC 中,正弦值较大的角所对的边也较大sinAcosB B 的值为3.VABC 中,假设 a,那么bA .30B .45C .60D .90ab c,那么VABC 是4.在VABC 中,假设 =cosCcosAcosBA .直角三角形B .等边三角形C .钝角三角形5.以下命题正确的选项是A .当a=4,b=5,A=30时,三角形有一解。
B .当a=5,b=4,A=60时,三角形有两解。
A 〕B 〕B 〕〔B 〕.等腰直角三角形D 〕C .当a= 3,b=2,B=120时,三角形有一解。
D .当a=3 6,A=60时,三角形有一解。
2,b=26.ABC 中,a=1,b=3,∠A=30°,那么∠B 等于〔 B 〕A .60°B .60°或120°C .30°或150°D .120°7. 符 合 下 列 条 件 的 三 角 形 有 且 只 有 一 个 的 是〔 D〕A .a=1,b=2,c=3B .a=1,b=2,∠A=30°C .a=1,b=2,∠A=100°D .b=c=1,∠B=45°8. 假设 (a+b+c)(b+c - a)=3abc, 且sinA=2sinBcosC, 那 么 ABC 是〔 B〕A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形9.在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A=,a= 3,b=1,3c=那么(B)(A)1(B)2(C)3-1(D)3uur10.〔2021 重庆理〕设ABC 的三个内角A,B,C ,向量m ( 3sinA,sinB),ruurr1cos(AB),那么C =〔n(cosB,3cosA),假设mgnC 〕A .B .25C .D .66 3 311.等腰△ABC 的腰为底的2倍,那么顶角A 的正切值是〔 D 〕A. 3B.3C. 15D.1528712.如图:D,C,B 三点在地面同一直线上 ,DC=a,从C,D 两点测得A 点仰角分别是β,α(α<β),那么A 点离地面的高度 AB 等于〔A 〕Aasin sinasin sin A .)B .)sin(cos(asin cosacos sin C .)D .)sin(cos(αβBD C题号 1234567891011 12答案二、填空题:〔每题 5分,共 20分〕13.a 2,那么 abc _______2_______sinAsinBsinA sinC14.在ABC 1 (a 2+b 2-c 2),那么角∠C=______.中,假设S ABC =4415.〔广东2021理〕点A,B,C 是圆O 上的点, 且AB4, ACB450 ,那么圆O 的面积等于8.rrr rrr16.a2,b4,a 与b 的夹角为3,以a,b 为邻边作平行四边形,那么此平行四边形的两条对角线中较短的一条的长度为____2 3________三、解答题:〔 17题10分,其余小题均为 12分〕17.在ABC 中,c 2,b2 3 ,B450,解三角形ABC 。
高中数学必修五解三角形综合测试题二(基础含答案)

高中数学必修五解三角形综合测试题二(考试时间120分钟,总分150分)・选择题(本大题共12小题,每小题5分,共60分,请把正确答案填在答题卡上). 1、在 4ABC 中,A=60 , a=® b=,2,则 B 等于 2、 3、4、5、 6、7、 8、9、A. 45 或 135在△ ABC 中, 冗A.3 在△ ABC 中, AA /3+1B. 60C. 45D. 135若 5a=2bsin A,则 8为()C 九#2c.3a3冗a=2, A=30°, C = 45°,则△ ABC 的面积 S 2在△ ABC 中,若bB.\/3-1 =a 2+c 2+ ac, C.V3+2则B 等于()△ABC 等于( )D A /3-2A. 60B. 45 或 135C. 120D. 30 在△ ABC 中,已知 a = 9, b= 273, C=150°,则 c 等于 A. 39B. 8 3C . 10V2D. ). 7 3海上有A 、B 两个小岛相距 岛和A 岛成75°的视角,则 A. 10V3 n mile B.10^610 n mile,从A 岛望C 岛和B 岛成60°的视角,从B 岛望 B 、C 间的距离是()n mile C.5 2 n mileD. 5\/6 nmile在△ ABC 中,若 a= 7, b= 473, c=V13, 则△ ABC 的最小角为( ). A# B. 3 C 中 D. 7一 ,八 ,•一.八一,… .. 兀 兀 一 _____ 一11、4ABC 的内角A, B,C 的对边分别为a, b,c,已知b= 2 , B = — , C=—,则^ABC 的64面积为().A.2 3 2 B ., 3 1 C.2. 3 - 2 D., 3-112、已知锐角^ABC 的内角A, B, C 的对边分别为a, b, c, 23cos 2A+cos2A= 0 , a=7, c=6, WJb=().A. 10B. 9C. 8D. 5二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) , ,兀 一一 1 …13、在4ABC 中,若 b= 5, B=z ,sin A=3,则 a =.14、在 z\ABC 中,若 sinA : sin B : sinC=7 : 8 : 13,则C=。
(典型题)高中数学必修五第二章《解三角形》检测题(有答案解析)

一、选择题1.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,c =S =( )A .4B C .16D .122.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积S =根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC 的面积为( )AB .CD .3.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若3,60a b A ===︒,则边c =( ) A .1B .2C .4D .64.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin sin A C B A C +-=,1b =,则2a -的最小值为( )A .4-B .-C .2-D .5.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A .,12⎛⎫⎪⎪⎝⎭B .12⎛⎝⎭ C .,22⎛⎫⎪⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭6.在ABC 中,若2a =,b =30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒7.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形 8.在ABC 中,tansin 2A BC +=,若2AB =,则ABC 周长的取值范围是( )A .(2,B .(4⎤⎦C .(4,2+D .(2⎤+⎦9.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( )A .35mB .10mC .490013m D .10.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒11.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭( )A .1B .2C D 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( )A .BC .32D 二、填空题13.已知在锐角ABC ,且212tan tan sin A B A +=,其内角A ,B ,C 所对边分别为a ,b ,c ,则边c 的 最小值为_____________.14.在ABC 中,2AB =,4AC =,则C ∠的取值范围为______.15.在ABC 中,内角A 、B 、C 所对应的边分别是a ,b ,c .若()224c a b =-+,23C π=,则ABC 的面积是________. 16.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.17.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D 两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .18.如图,为了测量山坡上灯塔CD 的高度,某人从高为40h =的楼AB 的底部A 处和楼顶B 处分别测得仰角为60β=︒,30α=︒,若山坡高为32a =,则灯塔高度是________.19.在平面四边形ABCD 中,∠A =∠B =∠C =α(0<α<2π),已知AB 的取值范围是(1,2),则cos α的值为_____.20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.三、解答题21.在①222b c a bc +-=;②4AB AC ⋅=;③2sin 22cos 122A A π⎛⎫++=⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =, ?注:如果选择多个条件分别解答,按第一个解答计分.22.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5a =,6c =,3sin 5B =.(1)求b 和sin A 的值;(2)求三角形BC 边的中线AD 长; (3)求πsin(2)4A +的值. 23.已知在△ABC 中,a ∶b ∶c =2∶6∶3+1),求角A 的大小.24.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC -=tan cos A C -. (1)求角A 的大小;(2)若b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD .25.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin a S A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.26.在ABC 中,内角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C = ,求b【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 22C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.2.C解析:C【分析】首先根据正弦定理化简已知,求得1cos 2A =,再根据余弦定理求bc ,最后代入面积公式求解. 【详解】由正弦定理边角互化可知cos (2)cos 0a B b c A +-=化简为()sin cos sin 2sin cos 0A B B C A +-=, sin cos sin cos 2sin cos A B B A C A +=即()sin sin 2sin cos A B C C A +==sin 0C ≠,1cos 2A ∴=, 222141cos 2222b c a A bc bc +-==⇔=,解得:4bc =,根据面积公式可知S === 故选:C 【点睛】关键点点睛,本题考查数学文化,理解面积公式,对于面积公式可变形为S =3.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.4.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴22222a cb ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.5.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+, 由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos cos()cos A A A C A A ==∈-⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.6.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭, 所以23131cos 23sin sin sin cos sin 2322444B B B B B B B π⎛⎫-⎛⎫-=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 32cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭, 即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.8.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.9.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h,由已知可知,OA OB h ==,且150AOB ∠=,在三角形AOB中,由余弦定理得222352cos15033h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得h =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.10.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.11.D解析:D 【分析】根据()2243S a b c =+-3cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()22a b c =+-,可得2221sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以sin 2cos 2C ab C ab =+,cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, 又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭122224=+⨯=. 故选:D. 【点睛】 本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a>0,c >0,∴12=2a +3c ≥ac ≤6. 当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 622ABCSac B =≤⨯=∴△ABC 故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.2【分析】先化切为弦结合正余弦定理将角化边再由面积公式求得构造函数再用导数求得最值【详解】由得即结合正弦定理得再由余弦定理可得整理又由余弦定理可得代入上式得又锐角的面积所以时所以设函数求导可得由得所解析:2 【分析】先化切为弦,结合正、余弦定理将角化边,再由面积公式求得)22cos 3sin A c A-=,构造函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,再用导数求得最值.【详解】 由212tan tan sin A B A +=,得2cos sin cos sin 2sin sin sin A B B A A B A+=, 即2cos sin cos sin 2sin A B B A B +=,结合正弦定理得2cos cos 2b A a B b +=,再由余弦定理可得2222222222b c a a c b b a b bc ac+-+-⋅+⋅=,整理22234c b a bc +-=.又由余弦定理可得2222cos b a bc A c -=-,代入上式得()22cos c bc A =-,又锐角ABC 的面积1sin 2bc A =bc =)22cos 3sin A c A-=, 设函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,求导可得()212cos sin xf x x-'=,由()212cos 0sin x f x x -'==,得3x π=,所以在0,3π⎛⎫ ⎪⎝⎭上单调递减,在,32ππ⎛⎫⎪⎝⎭上单调递增,所以()3f x f π⎛⎫≥= ⎪⎝⎭于是24c =≥,即2c ≥,当且仅当3A π=时,等号成立. 故答案为:2 【点晴】结合正、余弦定理将角化边,构造函数求最值是本题解题的关键.14.【分析】先根据三角形任意两边之和大于第三边求出的范围再结合余弦定理可以用表示求出的范围进而求得的取值范围【详解】解:在中内角的对边分别是由题意得即令所以所以根据导数与函数单调性的关系得:函数在上单调解析:π0,6⎛⎤⎥⎝⎦【分析】先根据三角形任意两边之和大于第三边求出a 的范围,再结合余弦定理可以用a 表示cos C ,求出cos C 的范围,进而求得C ∠的取值范围. 【详解】解:在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c , 由题意得2c =,4b =, b c a b c -<<+,即26a <<,2222123cos 2882a b c a a C ab a a+-+===+, 令()382x f x x =+,所以()2221312'828x f x x x-=-=, 所以根据导数与函数单调性的关系得:函数()f x 在(2,上单调递减,在()上单调递增,所以当26x <<时,()f x 的取值范围为2⎫⎪⎢⎪⎣⎭.所以cos C ⎫∈⎪⎪⎣⎭又因为0πc <<, 所以π0,6C ⎛⎤∈ ⎥⎝⎦.故答案为:π0,6⎛⎤⎥⎝⎦.【点睛】本题考查余弦定理解三角形,三角形的性质,考查运算能力与化归转化思想,是中档题.15.【分析】利用余弦定理结合求出利用即可求出三角形的面积【详解】由可得:在中由余弦定理得:即所以即所以故答案为:【点睛】本题主要考查了余弦定理面积公式的应用属于中档题解析:3【分析】利用余弦定理,结合()224c a b =-+,23C π=求出43ab =,利用1sin 2ABCS ab C =,即可求出三角形的面积.【详解】由()224c a b =-+可得:22224c a b ab =+-+, 在ABC 中,由余弦定理得:2222cos c a b ab C =+-, 即222c a b ab =++, 所以24ab ab -+=, 即43ab =,所以114sin 223ABCSab C ==⨯=,【点睛】本题主要考查了余弦定理,面积公式的应用,属于中档题.16.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题 解析:3π【分析】先利用0m n ⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C ,即得角C . 【详解】因为()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥ 所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-= 即222sin sin sin sin sin A B C A B +-= 根据正弦定理得222a b c ab +-=故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈得3C π=故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题.17.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015. 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 7530203sin 75sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.18.28【分析】作于延长线交地面于则由求得从而可得然后即得【详解】如图于延长线交地面于则而所以即所以故答案为:28【点睛】本题考查解三角形的应用掌握仰角概念是解题基础测量高度问题常常涉及到直角三角形因此解析:28 【分析】作BN DC ⊥于N ,DC 延长线交地面于M ,则AM BN =,AM DM ⊥,tan DM AM β=,tan DN BN α=,由40DM DN -=求得BN ,从而可得DM ,然后即得DC . 【详解】如图,BN DC ⊥于N ,DC 延长线交地面于M ,则tan DN BN α=,tan DM AM β=,而BN AM =,所以tan tan BN BN h βα-=,即(tan 60tan 30)40BN ︒-︒=,40203tan 60tan 30BN ==︒-︒,所以tan 60tan 603220333228DC AM CM BN =︒-=︒-=⨯-=. 故答案为:28.【点睛】本题考查解三角形的应用,掌握仰角概念是解题基础.测量高度问题常常涉及到直角三角形,因此掌握直角三角形中的三角函数定义是解题关键,有时还需要用三角函数恒等变换公式.19.【分析】延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在与中分别运用正弦定理可得关于的方程联立可得答案【详解】解:如图延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在中由正弦定理可得 解析:24【分析】延长BA ,CD 交与E 点,过点C 作CFAD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==,设BC x =,在BCE ∆与BCF ∆中,分别运用正弦定理可得关于cos α的方程,联立可得答案. 【详解】解:如图,,延长BA ,CD 交与E 点,过点C 作CF AD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==, 设BC x =,在BCE ∆中,由正弦定理可得:sin sin BC BEE BCE=∠∠,即:2sin(2)sin x παα=-,可得22cos xα=, 同理,在BCF ∆中,由正弦定理可得:sin sin BC BFBFC BCF=∠∠,即:1sin sin(2)x απα=-,可得2cos 1x α=, 故可得:2124cos α=,可得21cos 8α=,又02<<πα,故2cos α=, 故答案为:24. 【点睛】本题主要考查利用正弦定理解三角形,考查学生数学建模的能力与运算能力,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中 解析:7【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C ====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()A ϕ=+,其中tan ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.答案见解析 【分析】利用边角互化可得24c b ==,选①:利用余弦定理以及三角形的面积公式即可求解;选②:利用向量数量积的定义可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解;选③:利用诱导公式以及二倍角的余弦公式可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解.【详解】因为sin 2sin C B =,2b =,所以24c b ==,选①:因为222b c a bc +=+,所以2221cos 22b c a A bc +-==, 又因为()0,A π∈,所以3A π=.所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 选②:若4AB AC ⋅=,故cos 4AB AC A ⋅⋅=,则1cos 2A =,故3A π=, 所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 选③:若2sin 22cos 122A A π⎛⎫++=⎪⎝⎭,则cos2cos 0A A +=,故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去),故3A π=. 所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 22.(113;(2)2;(3)26. 【分析】(1)确定B 锐角,求得cos B ,由余弦定理求得b ,再由正弦定理得sin A ; (2)在ABD △中由余弦定理求得中线AD ,(3)确定A 是锐角,求得cos A ,由二倍角公式求得sin 2,cos 2A A ,然后由两角和的正弦公式求值. 【详解】(1)在ABC 中,因为a b >,故由3sin 5B =,可得cos 45B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b = 由正弦定理sin sin a b A B =,得sin sin a B A b ==. 所以,bsin A(2)设BC 边的中点为D ,在ABD △中,cos 45B = 由余弦定理得:2AD ===, (3)由(1)及a c <,得cos A =,所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 444A A A +=+=.【点睛】关键点点睛:本题考查正弦定理、余弦定理解三角形,解题时根据已知条件选用正弦定理或余弦定理求解,注意在用平方关系求得角的余弦时,先确定角的范围,然后计算.23.45A =︒【分析】利用余弦定理可求A 的大小. 【详解】由题设可设)2,,1(0)a k b c k k ===>,由余弦定理得,222222644cos 2k k k b c aA bc+-+-===, 而A 为三角形内角,故45A =︒. 24.(1)π4A =;(2)a =AD = 【分析】(1()sin sin sin tan cos C BA C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos B =3a BD ==,再由余弦定理即可求出AD . 【详解】解:(1()sin sin sin tan cos C BA C A C -=-, ()()sin sin sin tan cos C A CA C A C -+=-, ∴2sin sin cos cos sin sin sin cos cos AC A C A C C A C A--=-,∵sin 0C ≠,∴2sincos cos AA A+=∴cos 2A =0πA <<,∴π4A =.(2)由余弦定理可得:2222cos 1841210a b c bc A=+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==, 又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴AD = 【点睛】 关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.25.2+【分析】 利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长.【详解】 由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 26.4【分析】根据题意,在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,结合已知条件222a c b -=,联立即可得解.【详解】在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,又由已知222a c b -=,所以24b b =,解得4b =或0b =,由0b ≠,所以4b =.。
(典型题)高中数学必修五第二章《解三角形》测试卷(含答案解析)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且3CD =,3a b =,则c 的值为( )A .72B .473C .3D .232.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,3c =,则S =( ) A .3 B .36C .16D .3 3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且7c =,3C π=,则a =( )A .1B .221C .1或221D .21 4.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1 B .2C .4D .65.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .D .7.在ABC 中,内角A ,B ,C 的对边是a ,b ,c ,若sin sin CA=22b a -=,则cos C 等于( )A .12B .13C .14D .158.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =, 则cos C ( )A .63B .3C .3D .139.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B -=,且三边a b c ,,成等比数列,则2a cb +的值为( )A .4B .2C .1D .210.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫ ⎪⎝⎭11.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .D .二、填空题13.如图,点A 是半径为1的半圆O 的直径延长线上的一点,OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.14.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.15.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.16.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 17.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.18.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin :sin :sin 3:5:7A B C =,则ABC 的最大角的大小是________.20.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.三、解答题21.已知在△ABC 3sin (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.22.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.23.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知)cos cos A c a C =.(1)求c b;(2)若cos 2c A b =,且ABC 的面积为4,求a . 24.在ABC 中,,,a b c 分别为内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判ABC 断的形状.25.请从下面三个条件中任选一个,补充在下面的横线上,并解答.()cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,a b c =+=ABC 的面积.26.已知a ,b ,c 分别为锐角ABC 内角A ,B ,C 2sin 0b A -=. (1)求角B ;(2)若b =,5a c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值.【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 33c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以13cos ,sin 2C C ==.由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.3.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴sin3a ==②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.4.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.5.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin a b B A B =⇒=,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.A解析:A 【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sinsin CA=∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.8.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()sin sin 90cos 3BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,AB =BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos BAD ∠=,可得1sin 3BAD ∠=,则sin ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性9.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.10.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈ ⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D.【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.11.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦,当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.二、填空题13.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.14.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π) 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.15.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角【分析】由题意利用直角三角形中的边角关系求出tan ACB ∠、tan NCB ∠的值,再利用两角差的正切公式求得tan tan()ACB MCB θ=∠-∠,从而求出BC 的值. 【详解】解:设BC x =,ACM θ∠=,则θ为锐角,∴3tan ACB x ∠=,2tan MCB x∠=, ∴tan tan()ACB MCB θ=∠-∠232132661x x x x x x x x -===+++, 依题意,若对于给定的ACM ∠,ABC ∆是唯一的确定的, 可得6x x=, 解得6x =BC 6,6. 【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.16.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦 解析:23),【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围. 【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<23,cos ()64A A ππ∴<<∴∈ sin 2sin cos 2cos (2,3)sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.17.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B =,根据正弦定理:sin sin b cB C=,∴=c , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:222222cos 2c a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:cos A =.故答案为:3. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.18.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数解析:3 【分析】由题意结合余弦定理得c =,进而可得a =,再由余弦定理即可求得cos B =,利用平方关系求得sin B =,进而求得sin tan 3cos B B B ==. 【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b a c -=-,又22212b a c -=,所以2212c c =-,所以3c =, 222222145299a b c b b b =-=-=,所以a =,所以22222258cos 233b b ba cb B ac +-+-===,所以sin B ==, 所以sin tan 3cos BB B==, 故答案为:3. 【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.19.【分析】根据设根据大角对大边确定角C 是最大角再利用余弦定理求解【详解】因为所以设所以角C 是最大角因为所以则的最大角是故答案为:【点睛】本题主要考查正弦定理余弦定理的应用还考查了运算求解的能力属于中档题 解析:23π 【分析】根据sin :sin :sin 3:5:7A B C =,设()3,5,7,0a t b t c t t ===>,根据大角对大边,确定角C 是最大角,再利用余弦定理求解. 【详解】因为sin :sin :sin 3:5:7A B C =, 所以设()3,5,7,0a t b t c t t ===>,所以角C 是最大角2221cos 22a b c C ab +-==-,因为()0,C π∈,所以23C π=, 则ABC 的最大角是23π. 故答案为:23π 【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 45CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题21.(1)3π;(2) 【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解. 【详解】 (1)∵(A +B )=1+2sin 22C,且A +B +C =π, ∴C =1+1﹣cos C =2﹣cos C C +cos C =2,∴sin (C +6π)=1.∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin ABACB∠=sin 3AB π=2×2=4,∴AB =23, ∵∠ACB =3π,∴∠ABC +∠BAC =23π,∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ, ∴∠ABI +∠BAI =3π,∴∠AIB =23π,设∠ABI =θ,则∠BAI =3π﹣θ,且0<θ<3π, 在△ABI 中,由正弦定理得,sin()3BIπθ-=sin AI θ=sin ABAIB ∠=232sin3π=4, ∴BI =4sin (3π﹣θ),AI =4sin θ, ∴△ABI 的周长为3+4sin (3π﹣θ)+4sin θ=33θ﹣12sin θ)+4sin θ =33θ+2sin θ=4sin (θ+3π)3 ∵0<θ<3π,∴3π<θ+3π<23π,∴当θ+3π=2π,即6πθ=时,△ABI 的周长取得最大值,最大值为3,故△ABI 的周长的最大值为3. 【点睛】关键点点睛:将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值是解题关键.22.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③.因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C ====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ) 由(ⅰ)(ⅱ)解得c =c =.【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.23.(1)3;(2) 【分析】(1)根据正弦定理边角互化以及两角和的正弦公式可求得结果; (2)根据三角形的面积公式以及余弦定理可求得结果. 【详解】(1)因为)cos cos A c a C =,cos sin sin cos C A C A C -=,()sin cos sin cos sin C C A A C A C =+=+,而()sin sin A C B +=b =,故3c b =.(2)由(1)知cos 6A =,则sin 6A =,又ABC 的面积为21sin 244bc A c ==,则3c =,b =由余弦定理得2222cos 2792327a b c bc A =+-=+-⨯=,解得a =. 【点睛】关键点点睛:利用正余弦定理以及三角形的面积公式求解是解题关键. 24.(1)120︒;(2)等腰钝角三角形. 【分析】(1)根据2sin (2)sin (2)sin a A b c B c b C =+++,利用正弦定理转化为222b c a bc +-=-,再利用余弦定理求解.(2)根据(1)利用两角差的正弦公式和辅助角公式转化为sin sin B C +=()sin 601B +=求解.【详解】(1)因为2sin (2)sin (2)sin a A b c B c b C =+++, 所以22(2)(2)a b c b c b c =+++, 即222b c a bc +-=-,所以2221cos 22b c a A bc +-==-, 因为()0,A π∈,所以120A =.(2)由(1)知()sin sin sin sin 60B C B B +=+-,()1cos sin sin 60122B B B =+=+=, 因为()0,60B ∈,所以6090B +=,解得30,30B C ==,所以ABC 是等腰三角形.【点睛】方法点睛:有关三角形形状的判断方法:灵活运用正、余弦定理实现边角转化,合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式辅助角公式等,通过边或角进行判断.25.(1)3A π=;(2 【分析】第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=; 方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=;方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c的关系式,再结合b c +=2bc =,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sin A C B B C A +=()2sin sin A C B A +=,2sin sin A A A =又()0,A π∈,所以sin 0A ≠,所以tan A = 所以3A π=方案②:由已知正弦定理得()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin C A B C A C C A C A C C=-=+-=+-所以2cos sin sin 0,A C C -=即2cos sin sin ,A C C =又()0,C π∈,所以sin 0,C ≠ 所以1cos 2A =所以3A π=方案③:因为tan tan tan tan A B C B C ++=所以tan tan tan tan tan tan()(1tan tan )A B C B C A B C B C ++==++⋅- ()tan tan 1tan tan tan tan tan A A B C A B C =--=tan tan tan tan B C A B C =又()0A B C π∈,,,,所以tan 0,tan 0B C ≠≠,所以1tan ,2A A ==所以3A π=()2由余弦定理2222cos ,2,3a b c bc A a A π=+-==,得224b c bc =+- 即()243b c bc +=+,又因为b c +=所以2bc =所以1sin 22ABC S bc A == 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.26.(1)3B π=;(2)2. 【分析】(12sin 0b A -=2sin sin 0A B A -=求解.(2)根据b =5a c +=,由余弦定理得到6ac =,代入三角形的面积公式求解. 【详解】(1)∵2sin 0b A -=, ∴2sin sin 0A B A -=,∵sin 0A ≠,∴sin 2B =, ∵B 为锐角, ∴3B π=.(2)由余弦定理得2222cos3=+-b a c ac π,整理得2()37a c ac +-=,∵5a c +=,∴6ac =,∴ABC 的面积1sin 2S ac B ==. 【点睛】 方法点睛:三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.。
高中数学必修五习题及解析

必修五第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320<0,∴B 为钝角. 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( ) A .A>B>CB .B>A>C C .C>B>AD .C>A>B解析 由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C 3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6.答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC →的值为( ) A .5 B .-5 C .15 D .-15 解析 在△ABC 中,由余弦定理得cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17.∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.假设三角形三边长之比是1:3:2,则其所对角之比是( ) A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a2-2a22·a ·3a=0,∴A =90°.设最小角为B ,则cosB =2a2+3a2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,假设a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sinB =a sinA ,得sinB =bsinAa =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90° 解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b)·b 2R , ∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满足ab =4,则该三角形的面积为( ) A .1 B .2 C. 2 D. 3解析 由a sinA =b sinB =csinC =2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴cosC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32.∴S △ABC =12absinC = 3.答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinBsinC 的值为( )A.85B.58C.53D.35解析 由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC ,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( ) A.2π3 B.5π6 C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3.答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 kmD.32km 解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =ACtan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1. 答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c.假设a =c =6+2,且A =75°,则b 为( ) A .2 B .4+2 3 C .4-2 3D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22⎝ ⎛⎭⎪⎫32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,假设b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sinB =sin(A +60°)=12sinA +32cosA.又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA.即32sinA =32cosA.∵cosA ≠0, ∴tanA =33.∵0°<A<180°,∴A =30°. 答案 30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______. 解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案 60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析 设⎩⎪⎨⎪⎧b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7. 答案 11:9:7三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)在非等腰△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a 2=b(b +c). (1)求证:A =2B ;(2)假设a =3b ,试判断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA2sinB,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.假设A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B. (2)∵a =3b ,由a 2=b(b +c),得3b 2=b 2+bc ,∴c =2b. 又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B)-3=0.求: (1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°. (2)∵a ,b 是方程x 2-23x +2=0的两个根, ∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6. ∴c = 6.S △ABC =12absinC =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求: (1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =126,由正弦定理,得AD =ABsinBsin ∠ADB=126×2232=24(nmile).(2)在△ADC 中,由余弦定理,得 CD 2=AD 2+AC 2-2AD ·AC ·cos30°. 解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)已知△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)假设m ∥n ,求证:△ABC 为等腰三角形;(2)假设m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b2R ,∴a =b.故△ABC为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab. 由余弦定理c 2=a 2+b 2-2abcosC 得 4=(a +b)2-3ab ,即(ab)2-3ab -4=0.解得ab =4,ab =-1(舍去).∴△ABC 的面积S =12absinC =12×4×sin π3= 3.第二章 数列1.已知正项数列{a n }中,a 1=l ,a 2=2,2a n 2=a n+12+a n−12〔n ≥2〕,则a 6=〔 〕 A .16 B .4 C .2√2 D .45【解答】解:∵正项数列{a n }中,a 1=1,a 2=2,2a n 2=a n+12+a n ﹣12〔n ≥2〕, ∴a n+12﹣a n 2=a n 2﹣a n ﹣12,∴数列{a n 2}为等差数列,首项为1,公差d=a 22﹣a 12=3,∴a n 2=1+3〔n ﹣1〕=3n ﹣2,∴a n =√3n +2 ∴a 6=√3×6−2=4, 故选:B 2.《张丘建算经》卷上第22题﹣﹣“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加〔 〕 A .47尺 B .1629尺 C .815尺 D .1631尺 【解答】解:设该妇子织布每天增加d 尺, 由题意知S 30=30×5+30×292d =390,解得d=1629.故该女子织布每天增加1629尺.故选:B .3.已知数列{a n }满足a 1=1,a n+1={2a n ,(n 为正奇数)a n +1,(n 为正偶数),则其前6项之和是〔 〕A .16B .20C .33D .120【解答】解:∵a 1=1,a n+1={2a n ,(n 为正奇数)a n +1,(n 为正偶数),∴a 2=2a 1=2,a 3=a 2+1=2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14 ∴其前6项之和是1+2+3+6+7+14=33故选C . 4.定义n p 1+p 2+⋯+p n为n 个正数p 1,p 2,…p n 的“均倒数”.假设已知数列{a n }的前n 项的“均倒数”为12n+1,又b n =a n +14,则1b 1b 2+1b 2b 3+⋯+1b 10b 11=〔 〕A . 111 B . 910C . 1011 D . 1112【解答】解:由已知得,na1+a 2+⋯+a n=12n+1∴a 1+a 2+…+a n =n 〔2n+1〕=S n当n ≥2时,a n =S n ﹣S n ﹣1=4n ﹣1,验证知当n=1时也成立,∴a n =4n ﹣1, ∴b n =a n +14,∴1bn ′b n+1=1n −1n+1∴1b1b 2+1b2b 3+⋯+1b10b 11=(1-12)+(12−13)+(13−14)+⋯+(110−111)=1−111=1011. 故选C .5.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.假设a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= 63 . 【解答】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根,所以a 1=1,a 3=4.设等比数列{a n }的公比为q ,则q 2=a 3a 1=41=4,所以q=2.则S 6=a 1(1−q 6)1−q=1×(1−26)1−2=63. 故答案为63.6.如图给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为a ij 〔i ≥j ,i ,j ∈N *〕,则a 53等于 ,a mn = 〔m ≥3〕.14 12,14 34,34,316【解答】解:①第k 行的所含的数的个数为k ,∴前n 行所含的数的总数=1+2+…+n=n(n+1)2.a 53表示的是第5行的第三个数,由每一列数成等差数列,且第一列是首项为12,公差d=12−14=14的等差数列,∴第一列的第5 个数=14+(5−1)×14=54;又从第三行起,每一行数成等比数列,而且每一行的公比都相等,由第三行可知公比q=3834=12,∴第5行是以为首项,12为公比的等比数列,∴a 53=54×(12)2=516.②a mn 表示的是第m 行的第n 个数,由①可知:第一列的第m 个数=14+(m −1)×14=m4,∴a mn =m 4×(12)n−1=m 2n+1.故答案分别为516, m2n+1.7.等差数列{a n }中,a 7=4,a 19=2a 9,〔Ⅰ〕求{a n }的通项公式;〔Ⅱ〕设b n =1na n,求数列{b n }的前n 项和S n .【考点】8E :数列的求和;84:等差数列的通项公式. 【分析】〔I 〕由a 7=4,a 19=2a 9,结合等差数列的通项公式可求a 1,d ,进而可求a n 〔II 〕由b n =1na n=2n(n+1)=2n −2n+1,利用裂项求和即可求解【解答】解:〔I 〕设等差数列{a n }的公差为d ∵a 7=4,a 19=2a 9,∴{a 1+6d =4a 1+18d =2(a 1+8d)解得,a 1=1,d=12∴a n =1+12(n −1)=1+n 2〔II 〕∵b n =1na n=2n(n+1)=2n −2n+1∴S n =2(1−12+12−13+⋯+1n −1n+1)=2(1−1n+1)=2nn+18.已知等差数列{a n },的前n 项和为S n ,且a 2=2,S 5=15,数列{b n }满足b 1=12,b n+1=n+12n b n . 〔1〕求数列{a n },{b n }的通项公式;〔2〕记T n 为数列{b n }的前n 项和,f (n )=2S n (2−T n )n+2,试问f 〔n 〕是否存在最大值,假设存在,求出最大值,假设不存在请说明理由. 将b n+1=n+12nb n 整理,得到{b n n}是首项为12,公比为12的等比数列,应用等比数列的通项即可求出b n ;〔2〕运用错位相减法求出前n 项和T n ,化简f 〔n 〕,运用相邻两项的差f 〔n+1〕﹣f 〔n 〕,判断f 〔n 〕的增减性,从而判断f 〔n 〕是否存在最大值. 【解答】解:〔1〕设等差数列{a n }首项为a 1,公差为d , 则{a 1+d =25a 1+10d =15解得a 1=1,d=1,∴a n =n ,又b n+1n+1=b n 2n ,即{b nn }是首项为12,公比为12的等比数列, ∴bn n =b 11(12)n−1,∴b n =n2n ;〔2〕由〔1〕得:T n =12+222+323+⋯+n2n ,12T n=123+223+324+⋯+n−12n +n2n+1,相减,得12T n =12+122+123+⋯+12n +n2n+1, =12(1−12n )1−12,∴T n =2−n+22n,又S n =12n 〔n+1〕,∴f (n )=2S n (2−T n )n+2=n 2+n 2n,∴f (n +1)−f (n )=(n+102+n+12n+1−n 2+n 2n=(n+1)(2−n)2n−1,当n >3时,f 〔n+1〕﹣f 〔n 〕<0,数列{f 〔n 〕}是递减数列, 又f (1)=1,f (2)=32,f (3)=32 ∴f 〔n 〕存在最大值,且为32.9.设数列{a n }的前项n 和为S n ,假设对于任意的正整数n 都有S n =2a n −3n .〔1〕设b n =a n +5,求证:数列{b n }是等比数列,并求出{a n }的通项公式。
苏州市必修五第二章《解三角形》检测(含答案解析)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC 的面积为3154,则a =( ) A .2B .3C .4D .52.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形3.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c ac b +=+,则cos sin A C +的取值范围为( )A .33,2⎛⎫ ⎪ ⎪⎝⎭B .2,22⎛⎫⎪ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .()3,24.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知3a =,(2332)b ∈,,且223cos cos a b B b A =+,则cos A 的取值范围为( )A .[12,34] B .(12,34) C .[1324,34] D .(1324,34) 5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC 边上的高为3a ,则c bb c+的最大值是( ) A .8B .6C .32D .46.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .177.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( ) A .(2,22⎤⎦B .(22,4⎤⎦C .(4,222⎤+⎦D .(222,6⎤+⎦8.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若3013C c a =︒==,,,则ABC ∆的面积为A .3 B .3C .34D .329.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m10.在△ABC 中,AC 2=BC =1,∠B =45°,则∠A =( )A .30°B .60°C .30°或150°D .60°或120°11.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( ) A .35mB .10mC .490013m D .521m12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒二、填空题13.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,133sin sin B C +=,则bc 的值为______. 14.在ABC 中,角,,A B C 分别对应边,,a b c ,ABC 的面积为S ,若3cos cos 3S a B b A =+,cos sin 7tan cos sin 12A A A A π+=-,3c =,则a =__________. 15.在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,且a x =,3b =,60B =,若ABC ∆有两解,则x 的取值范围是__________.16.给出以下四个结论:①函数()211x f x x -=+的对称中心是()1,2-;②若关于x 的方程10x k x-+=在()0,1x ∈没有实数根,则k 的取值范围是2k ≥;③在ABC 中,若cos cos b A a B =则ABC 为等腰三角形;④若将函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后变为偶函数,则ϕ的最小值是12π.其中正确的结论是________.17.ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若2222b a c ac +-=,3sin B =,则C =__________. 18.如图,研究性学习小组的同学为了估测古塔CD 的高度,在塔底D 和A ,B (与塔底D 同一水平面)处进行测量,在点A ,B 处测得塔顶C 的仰角分别为45︒和30,且A ,B 两点相距127m ,150ADB ∠=︒,则古塔CD 的高度为______m .19.如图,要计算某湖泊岸边两景点B 与C 的距离,由于受地形的限制,需要在岸上选取A 和D 两点,现测得5km AB =,7km AD =,60ABD ∠=︒,15CBD ∠=︒,120BCD ∠=︒,则两景点B 与C 的距离为________km.20.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和132c b =,则tan B =______ 三、解答题21.将函数()sin f x x x =图象上所有点向右平移6π个单位长度,然后横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象. (1)求函数()g x 的解析式及单调递增区间;(2)在ABC 中,内角,,A B C 的对边分别为,,a b c ,若1sin cos 364B B ππ⎛⎫--= ⎪⎝⎭⎛⎫ ⎪⎝⎭,,6c g b π⎛⎫== ⎪⎝⎭ABC 的面积. 22.已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,22(sin sin )sin sin sin A B C A B -=-.(Ⅰ)求角C 的大小;(Ⅱ)若3a b =,求cos(2)B C +的值.23.在①22(sin sin )sin sin sin B C A B C -=-,②sin sin 2B Cb a B +=,③sin cos()6a Bb A π=-这三个条件中任选一个,补充在下面问题中并作答.问题:ΔABC 的内角,,A B C 的对边分别为,,a b c 2b c +=,______,求A 和C .注:若选择多个条件作答,按第一个解答计分.24.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且bcos A c ⋅=. (1)求角B ;(2)若ABC 的面积为BC 边上的高1AH =,求b ,c . 25.在ABC 中,角,,A B C 所对的边分别为,,a b c ,若角C 为23π,且()()()sin 2sin cos A C B C A B +=++.(1)求::a b c 的值;(2)若ABC 的内切圆的半径32r =,求ABC 的面积.26.在ABC 中,它的内角A ,B ,C 的对边分别为a ,b ,c ,且23B π=,b = (Ⅰ)若2cos cos 3A C =,求ABC 的面积; (Ⅱ)试问111a c+=能否成立?若能成立,求此时ABC 的周长;若不能成立,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 24ABCS bc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin A ==,1131sin 224244ABCSbc A a a ==⨯⨯⨯=,解得:4a =. 故选:C 2.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形, 故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状. 3.A解析:A 【分析】 由余弦定理求得6B π=,并求得32A ππ<<,利用三角恒等变换思想将cos sin A C +化为以角A 为自变量的正弦型函数,利用正弦函数的基本性质可求得cos sin A C +的取值范围.【详解】由222a cb ++和余弦定理得222cos 22a cb B ac +-==,又()0,B π∈,6B π∴=.因为三角形ABC 为锐角三角形,则0202A C ππ⎧<<⎪⎪⎨⎪<<⎪⎩,即025062A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32A ππ<<,1cos sin cos sin cos sin cos cos 662A C A A A A A A Aπππ⎛⎫⎛⎫+=+--=++=++ ⎪ ⎪⎝⎭⎝⎭3cos 223A A A π⎛⎫=+=+ ⎪⎝⎭, 32A ππ<<,即25336A πππ<+<,所以,1sin 23A π⎛⎫<+< ⎪⎝⎭,3cos sin 2A C <+<,因此,cos sin AC +的取值范围是32⎫⎪⎪⎝⎭. 故选:A. 【点睛】本题考查三角形中代数式取值范围的计算,涉及利用余弦定理求角,解题的关键就是利用三角恒等变换思想将代数式转化为以某角为自变量的三角函数来求解,考查计算能力,属于中等题.4.D解析:D 【分析】本题先求9c b=,再化简22222819cos 218b bc a b A bc +-+-==,接着求出22817545()42b b +∈,,最后求出cos A 的取值范围即可. 【详解】解:由题意有3a =,223cos cos a b B b A =+,由余弦定理得:2222222233232a c b b c a b b c bc+-+-=⋅+⋅⨯⨯,整理得:9bc = , 所以9c b=,则22222819cos 218b bc ab A bc+-+-==.因为b ∈,所以2(1218)b ∈,,所以22817545()42b b +∈,, 则133cos (,)244A ∈. 故选:D. 【点睛】本题考查余弦定理,利用函数ky x x=+,(0k >)的单调性求范围,是中档题. 5.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c+2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 22bc A a =,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c+的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.6.D解析:D 【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEF AD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.7.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯⎪⎝⎭,据此有:a b+≤△ABC 的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC 周长的取值范围是(4,2+. 本题选择C 选项.8.A解析:A 【分析】根据已知求出b 的值,再求三角形的面积.【详解】在ABC ∆中,301C c a =︒==,, 由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去).∴ABC ∆的面积为111sin 1222ab C =⨯=. 故选A . 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 3020320AB BC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.10.A解析:A 【分析】直接利用正弦定理求出sin A 的大小,根据大边对大角可求A 为锐角,即可得解A 的值. 【详解】因为:△ABC 中,BC =1,AC =∠B =45°,所以:BCAC sinA sinB=,sinA 112BC sinB AC ⨯⋅===. 因为:BC <AC ,可得:A 为锐角, 所以:A =30°. 故选:A . 【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.11.D解析:D【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h ,由已知可知3,OA h OB h ==,且150AOB ∠=,在三角形AOB 中,由余弦定理得22233352cos15033h h h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得521h m =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.12.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案.【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒.故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.二、填空题13.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin 3a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-,得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.14.【分析】先根据三角形面积公式以及正弦定理化简条件得再利用弦化切以及两角和正切公式化简条件得即得最后根据余弦定理解得【详解】由可知根据正弦定理知又得因为所以故因此又故故答案为:【点睛】本题考查三角形面【分析】cos cos a B b A =+得sin b A =再利用弦化切以及两角和正切公式化简条件cos sin 7tan cos sin 12A A A A π+=-得3A π=,即得4b =,最后根据余弦定理解得a =. 【详解】cos cos S a B b A =+1sin cos cos 2ab C a B b A =+,1sin sin sin cos sin cos sin 2A b C AB B AC ⋅=+=,又0,sin 0C C π<<>,得sin b A =cos sin 1tan cos sin 1tan A A A A A A ++=--7tan tan 412A ππ⎛⎫=+= ⎪⎝⎭,因为()0,A π∈,所以7412A ππ+=,故3A π=,因此4b =,又2222cos 13a b c bc A =+-=,故a .【点睛】本题考查三角形面积公式、正弦定理、余弦定理,考查综合分析求解能力,属中档题.15.【分析】利用正弦定理得到再根据有两解得到计算得到答案【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理有两解意在考查学生的计算能力解析:【分析】利用正弦定理得到sinA =ABC ∆有两解得到sin sin 1B A <=<,计算得到答案. 【详解】由正弦定理得:sinsin sin sin a b x A A B A =⇒== 若ABC ∆有两解:sin sin 13B A x <=<⇒<<故答案为 【点睛】本题考查了正弦定理,ABC ∆有两解,意在考查学生的计算能力.16.①③④【分析】将化成后可得图象的对称中心故可判断①的正误;参变分离后考虑在上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出的值从而可判断④的正误【详解】对于①因为故的图解析:①③④ 【分析】将()f x 化成()321f x x -=++后可得图象的对称中心,故可判断①的正误;参变分离后考虑1y x x=-在()0,1上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出ϕ的值,从而可判断④的正误. 【详解】对于①,因为()321f x x -=++,故()f x 的图象可以看出3y x-=向左平移1个单位,向上平移2个单位,故()f x 的图象的对称中心为()1,2-,故①正确. 对于②,考虑方程10x k x -+=在()0,1上有实数根即1k x x=-在()0,1上有实数根, 故(),0k ∈-∞, 故关于x 的方程10x k x-+=在()0,1x ∈没有实数根时,则[)0,k ∈+∞,故②错误. 对于③,由正弦定理得到sin cos sin cos =B A A B ,故()sin 0B A -=, 因为(),B A ππ-∈-,故0B A -=即B A =,故③正确. 对于④,平移后得到的图象对应的解析式为sin 223πy x φ⎛⎫=-- ⎪⎝⎭, 因为该函数为偶函数,故202,32ππφk πk Z ⨯--=+∈, 故5,212k ππφk Z =--∈,因为0ϕ>,故min 12πϕ=,故④正确. 故答案为:①③④. 【点睛】本题考查分式函数的图象性质、函数值域的求法、正弦定理和三角变换以及正弦型函数的图象特征,注意在三角形中,可利用正弦定理把边角的混合关系转化为边的关系或角的关系,而正弦型函数图象的性质,可利用整体法结合正弦函数的性质来讨论,本题属于中档题.17.【分析】首先利用余弦定理将题中条件整理得到根据正弦定理可得结合三角形内角的取值范围最后求得结果【详解】内角的对边分别为且整理得所以由正弦定理得整理得因为所以故答案为:【点睛】该题考查的是有关解三角形 解析:6π【分析】首先利用余弦定理将题中条件整理得到cos b C c =,根据正弦定理可得sin tan B C ==,结合三角形内角的取值范围,最后求得结果. 【详解】ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2222b a c ac +-=, 整理得222cos 22b a c ab ac C +-==,所以cos b C c =,由正弦定理得sin cos sin B C C =,整理得sin tan 3B C ==,因为(0,)C π∈,所以6B π=,故答案为:6π. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理、正弦定理、已知三角函数值求角,属于中档题.18.12【分析】设用表示出在中由余弦定理列方程求出【详解】由题意知:平面设则在中由余弦定理得:即解得故答案为:12【点睛】此题考查了余弦定理以及特殊角的三角函数值熟练掌握余弦定理是解本题的关键属于中档题解析:12 【分析】设CD h =,用h 表示出,AD BD ,在ABD △中,由余弦定理列方程求出h . 【详解】由题意知:CD ⊥平面,45,30,150,,ABD DAC DBC ADB AB ∠=︒∠=︒∠=︒=设CD h =,则,AD CD h BD ====,在ABD △中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅⋅∠即(222233h h h =++,解得12h m =故答案为:12 【点睛】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键,属于中档题.19.【分析】在中根据由余弦定理解得然后在中利用正弦定理求解【详解】在中因为由余弦定理得整理得解得或(舍去)在中因为所以由正弦定理得:所以故答案为:【点睛】本题主要考查余弦定理和正弦定理的应用还考查了运算【分析】在ABD △中,根据5km AB =,7km AD =,60ABD ∠=︒,由余弦定理解得8BD =,然后在BCD △中,利用正弦定理sin sin BD BCBCD BDC=∠∠求解.【详解】在ABD △中,因为5km AB =,7km AD =,60ABD ∠=︒, 由余弦定理得2222cos AD AB BD AB BD ABD =+-⋅⋅∠, 整理得249255BD BD =+-, 解得8BD =或3BD =-(舍去),在BCD △中,因为15CBD ∠=︒,120BCD ∠=︒, 所以45BDC ∠=︒, 由正弦定理得: sin sin BD BCBCD BDC=∠∠,所以sin 45sin1203BD BC ⋅︒==︒.【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 1sin 2tan 2A B A B B B +==+又因为12c b =+1=2+12+1tan 2B =. 故答案为:12.【点睛】本题考查了正余弦定理的综合运用,属于中档题.三、解答题21.(1)()2sin 26g x x π⎛⎫=+⎪⎝⎭,单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈;(2)【分析】(1)由题可得()2sin 26g x x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-+≤+≤+即可解得单调递增区间;(2)由题可得2c =,6B π=或2B π=,由余弦定理可求得a ,即可求出面积.【详解】(1)()sin 2sin 3f x x x x π⎛⎫=+=+⎪⎝⎭, ()f x 图象向右平移6π个单位长度得到2sin 6y x π⎛⎫=+ ⎪⎝⎭的图象,横坐标缩短为原来的12 (纵坐标不变)得到2sin 6y x π⎛⎫=+ ⎪⎝⎭图象, 所以()2sin 26g x x π⎛⎫=+ ⎪⎝⎭, 令222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+,所以()g x 的单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈ (2)由(1)知,62c g π⎛⎫⎪⎝⎭==, 因为21sin cos cos 3664B B B πππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-+=+=,所以1cos 62B π⎛⎫ ⎪⎝=±⎭+ 又因为()0,B π∈,所以7,666B πππ+=⎛⎫ ⎪⎝⎭, 当1cos 62B π⎛⎫⎪⎝=⎭+时,,636B B πππ+==,此时由余弦定理可知,2422cos 126a a π+-⨯⨯=,解得a所以12sin262ABCSπ=⨯⨯⨯=, 当1cos 62B π⎛⎫⎪⎝=-⎭+时,2,632B B πππ+==,此时由勾股定理可得,a ==,所以122S =⨯⨯△ABC 【点睛】关键点睛:本题考查三角函数的图象变换求三角函数的性质,以及解三角形的应用,解题的关键是根据图象变换正确得出变换后的解析式. 22.(Ⅰ)3π;(Ⅱ)17-. 【分析】(Ⅰ)利用正弦定理的边角互化以及余弦定理即可求解.(Ⅱ)利用正弦定理的边角互化可得sin 3sin A B =,再由23A B π+=求出tan B =再利用两角和的余弦公式即可求解. 【详解】(Ⅰ)∵22(sin sin )sin sin sin A B C A B -=- ∴由正弦定理得22()a b c ab -=-,即222a b c ab +-= ∴1cos 2C =, 又∵(0,)C π∈ ∴3C π=;(Ⅱ)∵3a b =,∴由正弦定理得sin 3sin A B =, ∵23A B π+=,∴2sin 3sin 3B B π⎛⎫-= ⎪⎝⎭,∴tan B =,∴0,2B π⎛⎫∈ ⎪⎝⎭∴sin B B == ,∴11sin 22sin cos 214B B B B === ∴1cos(2)cos 2cos sin 2sin 7B C B C B C +=-=-23.选择见解析;3A π=,512C π=.【分析】若选择条件①,先由正弦定理和余弦定理求出角A ,再利用正弦定理化简2b c +=,把23B C π=-代入,化简求值即可;若选择条件②,利用正弦定理和二倍角公式解出sin2A的值,进而得出角A ; 若选择条件③,由正弦定理结合两角和与差的正弦公式可求出tan A ,进而得出角A 和C .【详解】(1)选择条件①,由()22sin sin sin sin sin B C A B C -=-及正弦定理知,()22b c a bc -=-,整理得,222b c a bc +-=;由余弦定理可得,2221cos 222b c a bc A bc bc +-===;又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=(2)选择条件②,因为A B C π++=,所以222B C Aπ+=-; 由sinsin 2B C b a B +=得,cos sin 2Ab a B =由正弦定理知,sin cos sin sin 2sin cos sin 222A A AB A B B ==; 又sin 0B >,sin02A >,可得1sin 22A =;又因为()0,A π∈,所以,26A π=,故3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. (3)选择条件③,由sin cos 6a B b A π⎛⎫=-⎪⎝⎭及正弦定理知, sin sin sin cos 6A B B A π⎛⎫=- ⎪⎝⎭又sin 0B >,从而1sin cos sin 62A A A A π⎛⎫=-=+ ⎪⎝⎭,解得tan A =又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. 【点睛】方法点睛:本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,解三角形问题中可以应用正余弦定理的题型有: 1.已知一边和两角;2.已知两边和其中一边的对角;3.已知两边和它们所夹的角;4.已知三边.24.(1)6π;(2)b =2c =. 【分析】(1)化角为边,化简得222c a b +-=,再利用余弦定理求角B ;(2)由正弦定理算出c ,由面积公式算出a ,由余弦定理计算b 中即可. 【详解】解:(1)因为cos b A c =-,所以2222b c a b c bc +-⋅=-,所以22222b c a c +-=,即222c a b +-=.由余弦定理可得222cos 22c a b B ac +-==, 因为(0,)B π∈,所以6B π=.(2)由正弦定理可得sin sin 22sin sin6AH AH AHBc Bππ∠===.因为ABC的面积为11sin 22ac B a ==a =由余弦定理可得2222cos b a c ac B =+-=4842228+-⨯⨯=,则b = 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 25.(1)2【分析】(1)利用诱导公式可将已知等式化简得到sin sin A B =,知A B =,a b =,由正弦定理可知::sin :sin :sin a b c A B C =,由此可求得结果; (2)根据()12ABC S a b c r =++⋅△和1sin 2ABCS ab C =,根据(1)中c =,可构造方程求得a ,代入可得所求面积. 【详解】 (1)A B C π++=,()sin sin A C B ∴+=,()sin sin B C A +=,()cos cos A B C +=-,由()()()sin 2sin cos A C B C A B +=++得:2sin 2sin cos 2sin cossin 3B AC A A π=-=-=,A B ∴=,a b =,2::sin :sin :sin sin:sin :sin 663a b c A B C πππ∴=== (2)由(1)知:c =, ()()1132222ABC S a b c r a ⎫=++⋅=+⎪⎭,又21sin 24ABC S ab C a ==,(23222a ⎫+⎪⎝⎭∴=,解得:1a =,2ABC S ∴==. 【点睛】关键点点睛:第二问求解三角形面积的关键是能够利用两种不同方式表示出所求三角形的面积,即()11sin 22S a b c r ab C =++⋅=,从而构造方程求得所需的边长. 26.(Ⅰ;(Ⅱ)不能成立,理由见解析. 【分析】(Ⅰ)由于3A C π+=,cos()cos cos sin sin A C A C A C +=-,得1sin sin 6A C =,结合正弦定理与面积公式可得结果;(Ⅱ)假设111a c+=能成立,得a c ac +=,由余弦定理,2222cos b a c ac B =+-可得3ac =,结合基本不等式判断即可.【详解】(Ⅰ)由23B π=,得3A C π+=,cos()cos cos sin sin A C A C A C +=-, 即1cos cos sin sin 2A C A C =-. 又∵2cos cos 3A C =,∴1sin sin 6A C =.∵sin sin a c A C ===∴a A =,c C =.∴1sin 4sin sin sin 2ABC S A C B A B C =⋅⋅⋅=△146=⨯=. (Ⅱ)假设111a c +=能成立,∴a c ac +=. 由余弦定理,2222cos b a c ac B =+-,∴226a c ac =++.∴2()6a c ac +-=,∴2()60ac ac --=,∴3ac =或-2(舍),此时3a c ac +==.不满足a c +≥,∴111a c +=不成立. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修5第一章《解三角形》综合测试题(A )及解析第Ⅰ卷(选择题)一、选择题(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.某三角形的两个内角为o45和o60,若o45角所对的边长是6,则o60角所对的边长是 【 A 】A .B ... 答案:A .解析:设o60角所对的边长是x ,由正弦定理得o o6sin 45sin 60x=,解得x =.故选A .2.在ABC ∆中,已知a =10c =,o30A =,则B 等于 【 D 】A .o 105B .o60 C .o15 D .o105或o15 答案:D .解析:在ABC ∆中,由sin sin a c A C=,得sin sin 2c A C a ==,则o 45C =或o135C =.故 当o45C =时,o105B =;当o135C =时,o15B =.故选D .3.在ABC ∆中,三边长7AB =,5BC =,6AC =,则AB BC ⋅u u u r u u u r的值等于 【 D 】A .19B .14-C .18-D .19- 答案:D .解析:由余弦定理得49253619cos 27535B +-==⨯⨯,故AB BC ⋅=u u u r u u u r ||AB ⋅u u u r ||cos(BC πu u u r )B -= 1975()1935⨯⨯-=-.故选D .4.在ABC ∆中,sin <sin A B ,则 【 A 】 A .<a b B .>a b C .a b ≥ D .a 、b 的大小关系不确定 答案:A .解析:在ABC ∆中,由正弦定理2sin sin a b R A B==,得sin 2a A R =,sin 2bB R =,由sin A <sin B ,得<22a bR R,故<a b .故选A .5.ABC ∆满足下列条件:①3b =,4c =,o 30B =;②12b =,9c =,o60C =;③b =,6c =,o60B =;④5a =,8b =,o30A =.其中有两个解的是 【 B 】 A .①② B .①④ C .①②③ D .②③ 答案:B .解析:① sin <<c B b c ,三角形有两解;②o<sin 60c b ,三角形无解;③b =sin c B ,三角 形只有一解;④sin <<b A a b ,三角形有两解.故选B .6.在ABC ∆中,已知2220b bc c --=,且a =7cos 8A =,则ABC ∆的面积是 【 A 】A B .2 D .3 答案:A .解析:由2220b bc c --=,得(2)()0b c b c -+=,故2b c =或b c =-(舍去),由余弦定理2222cos a b c bc A =+-及已知条件,得23120c -=,故2c =,4b =,又由7cos 8A =及A 是ABC ∆的内角可得sin A =,故1242S =⨯⨯=.故选A .7.设a 、1a +、2a +是钝角三角形的三边长,则a 的取值范围为 【 B 】 A .0<<3a B .1<<3a C .3<<4a D .4<<6a 答案:B .解析:设钝角为C ,由三角形中大角对大边可知C 的对边为2a +,且cos C =222(1)(2)2(1)a a a a a ++-+⋅⋅+(3)(1)<02(1)a a a a -+=+,因为>0a ,故1>0a +,故0<<3a ,又(1)>+2a a a ++,故>1a ,故1<<3a .故选B .8.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,且4a =,5b c +=,tan tan A B ++tan A B =⋅,则ABC ∆的面积为 【 C 】A .32 B ..2 D .52答案:C .解析:由已知,得tan tan tan tan )A B A B +=-⋅,即tan()A B +=,又A 、B 是ABC ∆的内角,故o 120A B +=,则o 60C =,由2224(5)24(5)c c c =+--⨯⨯-ocos60,解得72c =,故32b =,故113sin 4222ABC S ab C ∆==⨯⨯=.故选C .第Ⅱ卷(非选择题)二、填空题(每小题5分,共30分) 9.在ABC ∆中,1sin 3A =,cos B =1a =,则b =_________..解析:由cos B =,得sin B ===,由sin sin a b A B =,得b =1sin 31sin 3a BA⨯==10.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若c =b =,o 120B =,则a =______..解析:由余弦定理得2222cos b a c ac B =+-,即2o62cos120a =+-,即24a +-0=,解得a =(舍去负值).11.如果ABC ∆的面积是222S =,那么C =____________.答案:o30.解析:由题意得2221sin 2ab C =cos C C =,故tan 3C =,故o30C =.12.ABC ∆的三内角A 、B 、C 的对边分别为a 、b 、c ,若o60A =,1b =,三角形的面积S =,则sin sin sin a b cA B C++++的值为____________.答案:3. 解析:由o11sin sin6022S bc A c ===,得4c =.由余弦定理得22a b =+22cos c bc A - 13=,故a =.故osin sin sin 3sin 60a b c A B C ====,由等比性质,得sin sin sin sin a b c a A B C A ++==++13.一蜘蛛沿正北方向爬行x cm 捉到一只小虫,然后向右转o105,爬行10cm 捉到另一只小虫,这 时它向右转o135爬行回它的出发点,那么x =____________.xABCo135o105解析:由题意作出示意图如图所示,则ABC ∠=ooo18010575-=, BCA ∠=ooo18013545-=,10BC =,故ooo1807545A =--=o 60,由正弦定理得o o10sin 45sin 60x =,解得x =(cm). 14.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c,向量1)m =-u r ,(cos ,sin )n A A =r,若m n ⊥u r r,且cos cos sin a B b A c C +=,则B =____________.答案:6π或o30.解析:由m n ⊥u r r 得0m n ⋅=u r rsin 0A A -=,即sin 0A A =,故2sin()3A π-0=,故3A π=.由cos cos sin a B b A c C +=,得sin cos sin cos A B B A +=2sin C ,即2sin()sin A B C +=,故2sin sin C C =,故sin 1C =,又C 为ABC ∆的内角,故2C π=,故()()326B AC πππππ=-+=-+=.三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)在ABC ∆中,已知2a =,c =o 45A =,解此三角形.解:由正弦定理,得sin sin c A C a ===o 60C ∠=或o120. 当o 60C ∠=时,oo180()75B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯=+1b =+.当o 120C ∠=时,oo180()15B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯=-1b =.故1b =+,o 60C ∠=,o 75B ∠=或1b =-,o 120C ∠=,o 15B ∠=.16.(本题满分12分)如图,在四边形ABCD 中,已知BA AD ⊥,10AB =,BC =o60BAC ∠=,o135ADC ∠=,求CD 的长.解:在ABC ∆中,由正弦定理,得sin sin AB BACBCA BC⋅∠∠=o ==,因>BC AB ,故>CAB BCA ∠∠,故o 45BCA ∠=,故o75B =,由正弦 定理,得oo10sin 751)sin 45AC ==,在ACD ∆中,因o o 9030CAD BAC ∠=-∠=,由正弦 BDAAC定理,得o o sin 30sin135AC CD ==.答:CD 的长为2.17.(本题满分14分)a 、b 、c 是ABC ∆的内角A 、B 、C 的对边,S是ABC ∆的面积,若4a =, 5b =,S =c . 解:由11sin 45sin 22S ab C C ==⋅⋅⋅=sin 2C =,则1cos 2C =或1cos 2C =-. (1)当1cos 2C =时,由余弦定理,得211625245212c =+-⋅⋅⋅=,故c =; (2)当1cos 2C =-时,由余弦定理,得211625245612c =++⋅⋅⋅=,故c =.综上可知c .18.(本题满分14分)在ABC ∆中,sin sin cos B A C =,其中A 、B 、C 是ABC ∆的三个内角, 且ABC ∆最大边是12,最小角的正弦值是13. (1)判断ABC ∆的形状;(2)求ABC ∆的面积.解:(1)由sin sin cos B A C =根据正弦定理和余弦定理,得2222a b c b a ab+-=⋅,得222b c a +=,故ABC ∆是直角三角形.(2)由(1)知12a =,设最小角为α,则1sin 3α=,故cos3α=(舍去负值),故ABC S ∆=1111sin cos 121222233bc a a αα=⋅=⋅⋅⋅⋅=. 19.(本题满分14分)海上某货轮在A 处看灯塔B 在货轮的北偏东o75,距离为A处看灯塔C 在货轮的北偏西o30,距离为由A 处行驶到D 处时看灯塔B 在货轮的北偏东o120.求 (1)A 处与D 处之间的距离; (2)灯塔C 与D 处之间的距离. 解:由题意画出示意图,如图所示.(1)ABD ∆中,由题意得o 60ADB ∠=,o45B ∠=,由正弦定理得oosin 45sin 60AD =24= (海里).(2)在ABD ∆中,由余弦定理,得2222CD AD AC AD AC =+-⋅ocos302224=+-224⨯⨯,故CD =海里).答:A 处与D 处之间的距离为24海里,灯塔C 与D 处之间的距离为.● 以下两题任选一题作答20.(本题满分14分)在锐角ABC ∆中,边a 、b 是方程220x -+=的两根,A 、B 满足2sin()A B +0=,解答下列问题:(1)求C 的度数; (2)求边c 的长度; (3)求ABC ∆的面积.解:(1)由题意,得sin()2A B +=,因ABC ∆是锐角三角形,故o 120A B +=,o60C =;(2)由a 、b 是方程220x -+=的两根,得a b +=2a b ⋅=,由余弦定理,得22222cos ()31266c a b ab C a b ab =+-=+-=-=,故c =(3)故1sin 2ABC S ab C ∆==12222⨯⨯=. 20.(本题满分14分)ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若AB AC BA BC ⋅=⋅u u u r u u u r u u u r u u u r1=.解答下列问题:(1)求证:A B =;(2)求c 的值;(3)若||AB AC +=u u u r u u u r ABC ∆的面积. 证:(1)因AB AC BA BC ⋅=⋅u u u r u u u r u u r,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得sin cos sin cos B A A B =,故sin()0A B -=,因为<<A B ππ--,故0A B -=,故 A B =.解:(2)因1AB AC ⋅=u u u r u u u r ,故cos 1bc A =,由余弦定理得22212b c a bc bc+-⋅=,即222b c a +-=2;又由(1)得a b =,故22c =,故c =解:(3)由||AB AC +=u u u r u u u r 22||||2||6AB AC AB AC ++⋅=u u u r u u u r u u r u u u r ,即2226c b ++=,故22c b +4=,因22c =,故b =ABC ∆是正三角形,故面积2ABC S ∆=⨯=.。