高中数学必修五综合测试题 含答案

合集下载

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。

试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。

(完整版)高中数学必修五综合测试题 含答案,推荐文档

(完整版)高中数学必修五综合测试题 含答案,推荐文档

n2 2
n
D.
1 2n1
n2 2
n
试卷第 1 页,总 6 页
3
7.若ΔABC的三边长a,b,c成公差为2的 等差数列,最大角的正弦值为 2 ,则这个三角形
的面积为( )
15
A. 4
15 3
B. 4
21 3
C. 4
35 3
D. 4
8.在△ABC 中,已知a = 2,b = 2,A = 450,则 B 等于( )
绝密★启用前
高中数学必修五综合考试卷
第 I 卷(选择题)
一、单选题
1.数列0,23,45,67⋯的一个通项公式是( )
A.
an
=
n−1 (n
n+1

N

)
B.
an
=
n−1 (n
2n + 1

N

)
C.
an
=
2(n−1)(n
2n−1

N

)
D.
an
=
2n 2n +
(n
1

N

)
x−1
2.不等式2−x ≥ 0的解集是( )
11.已知函数f(x) = ax2−c满足:−4 ≤ f(1) ≤ −1,−1 ≤ f(2) ≤ 5.则f(3)应满足( )
A. −7 ≤ f(3) ≤ 26
B. −4 ≤ f(3) ≤ 15 C. −1 ≤ f(3) ≤ 20
28
35
D.

3
≤ f(3) ≤
3
12.已知数列{an}是公差为 2 的等差数列,且a1,a2,a5成等比数列,则a2为 ( ) A. -2 B. -3 C. 2 D. 3

高一数学人教a必修5试题及答案

高一数学人教a必修5试题及答案

高一数学人教a必修5试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x + 3,则f(-1)的值为()。

A. -1B. 1C. 5D. -5答案:D2. 已知集合A={1,2,3},B={2,3,4},则A∩B等于()。

A. {1,2}B. {1,3}C. {2,3}D. {4}答案:C3. 函数y=x^2-4x+c的图像与x轴有两个交点,则c的取值范围是()。

A. c>4B. c<4C. c≥4D. c≤4答案:B4. 已知等差数列{a_n}的前三项分别为2,5,8,则其公差d为()。

A. 3B. 2C. 1D. 4答案:A5. 函数y=x^3+2x^2-x-2的导数为()。

A. 3x^2+4x-1B. 3x^2+4x+1C. 3x^2-4x+1D. 3x^2-4x-1答案:A6. 若sinα=3/5,且α为锐角,则cosα的值为()。

A. 4/5B. -4/5C. √7/5D. -√7/5答案:A7. 已知等比数列{a_n}的前三项分别为2,4,8,则其公比q为()。

A. 2B. 1/2C. 1D. 1/4答案:A8. 函数y=x^2-6x+8的最小值为()。

A. 2B. -2C. 8D. -8答案:B9. 若cosα=-√3/2,且α为钝角,则sinα的值为()。

A. 1/2B. -1/2C. √3/2D. -√3/2答案:B10. 函数y=x^3-3x^2+4的极值点为()。

A. 1B. 2C. -1D. 0答案:A二、填空题(每题4分,共20分)1. 若a,b,c是等差数列,且a+b+c=9,则b=______。

答案:32. 已知函数f(x)=x^2-6x+8,其对称轴方程为______。

答案:x=33. 函数y=x^3-3x^2+4的极值点为______。

答案:14. 若sinα=3/5,且α为锐角,则tanα的值为______。

答案:4/35. 已知等比数列{a_n}的前三项分别为2,4,8,则其通项公式为______。

(完整版)高中数学必修五综合测试题 含答案

(完整版)高中数学必修五综合测试题 含答案

.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。

人教版高中数学必修5测试题及答案全套(20200731141056).pdf

人教版高中数学必修5测试题及答案全套(20200731141056).pdf
(2) 何时两人距离最近
16.在△ ABC中, a, b, c 分别是角 A,B, C的对边,且 cosB cosC
(1) 求角 B 的值;
b
.
2a c
(2) 若 b= 13 ,a+ c= 4,求△ ABC的面积 .
第二章 数列
测试三 数列
Ⅰ 学习目标
1.了解数列的概念和几种简单的表示方法 ( 列表、图象、通项公式 ) ,了解数列是一种特殊的函数 .
7.在等差数列 { an} 中,已知 a1+a2= 5, a3+ a4= 9,那么 a5+ a6= ________.
8.设等差数列 { an} 的前 n 项和是 Sn,若 S17= 102,则 a9=________. 9.如果一个数列的前 n 项和 Sn= 3n2+ 2n,那么它的第 n 项 an=________. 10.在数列 { an} 中,若 a1= 1, a2= 2, an+ 2-an= 1+ ( -1) n( n∈ N*) ,设 { an} 的前 n 项和是 Sn,则 S10= ________.
三、解答题
11.已知数列 { an} 是等差数列,其前 n 项和为 Sn, a3=7, S4= 24.求数列 { an} 的通项公式 .
12.等差数列 { an} 的前 n 项和为 Sn,已知 a10=30, a20= 50. (1) 求通项 an; (2) 若 Sn= 242,求 n.
13.数列 { an} 是等差数列,且 a1=50, d=-. (1) 从第几项开始 an< 0; (2) 写出数列的前 n 项和公式 Sn,并求 Sn 的最大值 .
②cos( A+ B) = cos C ③ sin A
B
C cos
2
2

人教版高中数学必修5测试题及答案全套

人教版高中数学必修5测试题及答案全套

第一章解三角形测试一正弦定理和余弦定理Ⅰ学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形 . Ⅱ基础训练题一、选择题1.在△ ABC 中,若BC=2, AC= 2,B= 45°,则角 A 等于()(A)60°(B)30°(C)60°或120°(D)30°或150°2.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 2, b= 3,cosC=-1 ,则c 等于 () 4(A)2(B)3(C)4(D)53.在△ ABC 中,已知cos B 3,sin C2, AC= 2,那么边AB等于() 53(A) 5(B) 5(C) 20(D) 1243954.在△ ABC 中,三个内角A,B,C 的对边分别是a,b,c,已知B= 30°, c= 150,b= 50 3 ,那么这个三角形是()(A)等边三角形(C)直角三角形5.在△ ABC 中,三个内角A, B, C 的对边分别是(B)等腰三角形(D)等腰三角形或直角三角形a, b, c,假如 A∶ B∶ C= 1∶ 2∶3 ,那么a∶ b∶c 等于 ()(A)1∶ 2∶3(B)1∶ 3 ∶2(C)1∶ 4∶ 9(D)1∶2∶3二、填空题6.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 2, B= 45°, C=75°,则b=________.7.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 2, b= 2 3 ,c=4,则A= ________.8.在△ ABC 中,三个内角A, B,C 的对边分别是a,b, c,若2cosBcosC= 1-cosA,则△ ABC形状是________三角形 .9.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 3, b= 4,B= 60°,则c= ________.10.在△ ABC中,若tanA= 2, B= 45°, BC= 5 ,则AC=________.三、解答题11.在△ ABC中,三个内角A,B, C 的对边分别是a, b, c,若a= 2, b= 4,C=60°,试解△ABC.12.在△ ABC中,已知AB= 3, BC= 4,AC=13 .(1)求角 B 的大小;(2)若 D 是 BC的中点,求中线AD 的长 .13.如图,△ OAB 的极点为 O(0, 0), A(5, 2)和 B(- 9, 8),求角 A 的大小 .14.在△ ABC中,已知BC= a, AC= b,且 a,b 是方程 x2- 2 3 x+2=0的两根,2cos(A+B)=1.(1)求角 C的度数;(2)求 AB 的长;(3)求△ ABC的面积 .测试二解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 b2+c2- a2= bc,则角 A 等于 ()ππ2π5π(A)(B)(C)(D)63362.在△ ABC 中,给出以下关系式:① sin(A+ B)= sinC②cos(A+ B)= cosCA B C③ sin cos22此中正确的个数是 ()(A)0(B)1(C)2(D)3 3.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c.若 a= 3, sinA=2, sin(A+ C)=3,则 b 等于 () 34(A)4(B) 8(C)6(D)27384.在△ ABC中,三个内角A, B,C 的对边分别是a, b,c,若 a= 3,b= 4,sinC=2,则此三角形的面积是 () 3(A)8(B)6(C)4(D)35.在△ ABC 中,三个内角A, B, C 的对边分别是a,b, c,若 (a+ b+ c)(b+ c- a)= 3bc,且 sinA= 2sinBcosC,则此三角形的形状是 ()(A)直角三角形(B)正三角形(C)腰和底边不等的等腰三角形(D)等腰直角三角形二、填空题6.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 a=2, b= 2, B= 45°,则角 A= ________. 7.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 a= 2, b= 3,c=19 ,则角C=________.8.在△ ABC中,三个内角A,B,C 的对边分别是a,b,c,若 b= 3,c=4,cosA=3,则此三角形的面积为 ________. 59.已知△ ABC的极点 A(1,0), B(0, 2), C(4, 4),则 cosA= ________.10.已知△ ABC的三个内角A,B, C 知足 2B= A+ C,且 AB= 1,BC= 4,那么边 BC上的中线AD 的长为 ________.三、解答题11.在△ ABC中, a, b, c 分别是角A, B, C 的对边,且a= 3, b=4, C= 60° .(1)求 c;(2)求 sinB.12.设向量 a, b 知足 a· b= 3, | a| = 3, | b| =2.(1)求〈 a, b 〉;(2)求| a- b|.13.设△ OAB 的极点为O(0,0), A(5, 2)和 B(- 9, 8),若 BD⊥ OA 于 D.(1)求高线 BD 的长;(2)求△ OAB 的面积 .14.在△ ABC中,若 sin2A+ sin2B> sin2C,求证: C 为锐角 .(提示:利用正弦定理a b csin A sin B 2R ,此中 R 为△ ABC外接圆半径 )sin CⅡ拓展训练题15.如图,两条直路 OX与 OY 订交于 O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX、OY 上的 A、B 两点, | OA | = 3km ,| OB | = 1km,两人同时都以4km/h 的速度行走,甲沿XO方向,乙沿OY方向 .问: (1)经过 t 小时后,两人距离是多少(表示为 t的函数 )(2)何时两人距离近来cosB b16.在△ ABC中, a, b, c 分别是角A, B, C 的对边,且.cosC2a c(1)求角 B 的值;(2)若 b=13 ,a+c=4,求△ABC的面积.第二章数列测试三数列Ⅰ学 目1.认识数列的观点和几种 的表示方法(列表、 象、通 公式),认识数列是一种特别的函数.2.理解数列的通 公式的含 ,由通 公式写出数列各.3.认识 推公式是 出数列的一种方法,能依据 推公式写出数列的前几.Ⅱ 基一、1.数列 {a }的前四 挨次是: 4, 44, 444, 4444 ,⋯ 数列 {a }的通 公式能够是 ()nn (A)a = 4n(B)a = 4 nnn4 (10 n -1)(D)an(C)a =n =4×1192.在有必定 律的数列0, 3, 8,15, 24, x ,48, 63,⋯⋯中, x 的 是 ()(A)30(B)35(C)36(D)423.数列 {a n } 足: a 1= 1,a n = a n -1 +3n , a 4 等于 ()(A)4(B)13(C)28(D)434.156 是以下哪个数列中的一()(A){n 2+ 1}(B){n 2- 1} (C){n 2+ n}(D){n 2+ n -1}5.若数列 {a }的通 公式 a = 5-3n , 数列 {a }是 ()n nn(A) 增数列 (B) 减数列(C)先减后增数列(D)以上都不二、填空6.数列的前 5 以下, 写出各数列的一个通 公式:2 1 2 1 = ________;(1) 1, , , , , , a n3 2 5 3(2)0, 1, 0, 1, 0,⋯, a n = ________.n 21 .7.一个数列的通 公式是 a n =n 2(1)它的前五 挨次是________;(2)是此中的第 ________ .8.在数列 {a n }中, a 1= 2,a n + 1= 3a n +1 , a 4= ________.9.数列 {a }的通 公式 a n1* ), a =________.(n ∈Nn1 23( 2n 1)3nn2- 15n + 3, 它的最小 是第________ .10.数列 {a }的通 公式 a = 2n三、解答11.已知数列 {a n }的通 公式a n =14- 3n.(1)写出数列 {a n }的前 6 ; (2)当 n ≥ 5 , 明a n <0.nnn 2n 1 *).12.在数列 {a }中,已知a =3(n ∈ N(1)写出 a 10, a n + 1, a n 2 ;(2)79 2是不是此数列中的 假如,是第几313.已知函数1 n +).f ( x) x, a = f(n)(n ∈ Nx(1)写出数列 {a n }的前 4 ;(2)数列 {a n }是 增数列 是 减数列 什么测试四 等差数列Ⅰ 学 目1.理解等差数列的观点,掌握等差数列的通 公式,并能解决一些 .2.掌握等差数列的前n 和公式,并能 用公式解决一些 .3.能在详细的 情境中, 数列的等差关系,并能领会等差数列与一次函数的关系.Ⅱ基 一、1.数列 {a } 足: a = 3,a= a -2, a等于 ()n1n + 1n100(A)98(B)- 195 (C)- 201 (D)- 1982.数列 {a n }是首 a 1= 1,公差 d = 3 的等差数列,假如 a n = 2008 ,那么 n 等于 ( )(A)667(B)668 (C)669(D)6703.在等差数列 {a } 中,若 a + a = 16, a = 1, a12的 是()n794(A)15(B)30(C)31(D)644.在 a 和 b(a ≠ b)之 插入 n 个数,使它 与a ,b 成等差数列, 数列的公差()(A)b a(B)ba (C)ba (D)ba nn 1n 1n25. 数列 {a n }是等差数列,且a 2 =- 6, a 8= 6, S n 是数列 {a n }的前 n 和, ()(A)S < S(B)S = S(C)S < S(D)S = S45456565二、填空6.在等差数列 {a n } 中, a 2 与 a 6 的等差中 是 ________.7.在等差数列 {a n } 中,已知 a 1+ a 2= 5, a 3+ a 4= 9,那么 a 5+ a 6= ________.8. 等差数列 {a } 的前 n 和是 S ,若 S = 102, a = ________.nn 1799.假如一个数列的前n2 +2n ,那么它的第n a nn 和 S = 3n= ________.10.在数列 {a n }中,若 a 1 =1, a 2= 2, a n + 2- a n = 1+ (-1)n (n ∈ N *), {a n }的前 n 和是 S n , S 10= ________.三、解答11.已知数列 {a n }是等差数列,其前n 和 S n ,a 3= 7, S 4=24.求数列 {a n }的通 公式 .12.等差数列 {a n }的前 n 和 S n ,已知 a 10= 30, a 20= 50.(1)求通 a n ;(2)若 S n = 242,求 n.13.数列 {a n }是等差数列,且a 1= 50,d =-.(1)从第几 开始a n <0;(2)写出数列的前 n 和公式S n ,并求 S n 的最大 .Ⅲ 拓展14. 数列 {a n }的前 n 和 S n ,若 3a n + 1=3a n + 2(n ∈ N * ), a 1+ a 3+ a 5+⋯+ a 99= 90,求 S 100.测试五 等比数列Ⅰ 学 目1.理解等比数列的观点,掌握等比数列的通 公式,并能解决一些.2.掌握等比数列的前 n 和公式,并能 用公式解决一些 .3.能在详细的 情境中, 数列的等比关系,并能领会等比数列与指数函数的关系.Ⅱ 基 一、1.数列 {a } 足: a = 3,a= 2an, a 等于 ()n1n + 14(A)3(B)24(C)48(D)5482.在各 都 正数的等比数列{a n }中,首 a 1= 3,前三 和 21, a 3+ a 4+ a 5 等于 () (A)33(B)72(C)84(D)1893.在等比数列 {a n } 中,假如 a 6= 6,a 9= 9,那么 a 3 等于 ()(A)4 (B) 316(D)32(C)94.在等比数列 {a } 中,若 a = 9, a = 243, {a}的前四 和 ()n 2 5n(A)81(B)120(C)168(D)1925.若数列 n n1 n -1{a } 足 a= a q (q > 1), 出以下四个 :① {a n }是等比数列;② {a n }可能是等差数列也可能是等比数列;③ {a n }是 增数列;④ {a n }可能是 减数列 .此中正确的 是 ( )(A)①③ (B)①④(C)②③(D)②④二、填空6.在等比数列 {a n } 中,a 1,a 10 是方程 3x 2+ 7x -9 =0 的两根, a 4a 7= ________.7.在等比数列 {a } 中,已知 a + a = 3, a + a = 6,那么 a + a= ________.n1 23 4 568.在等比数列 {a n } 中,若 a 5= 9, q =1, {a n }的前 5 和 ________.29.在 8 和27之 插入三个数,使 五个数成等比数列, 插入的三个数的乘 ________.3210. 等比数列 {a n }的公比 q ,前 n 和 S n ,若 S n + 1, S n ,S n + 2 成等差数列, q = ________.三、解答11.已知数列 {a}是等比数列, a =6, a =162. 数列 {a }的前 n 和 S .n25nn(1)求数列 {a n }的通 公式; (2)若 S n = 242,求 n.12.在等比数列 {a n }中,若 a 2a 6= 36, a 3+ a 5= 15,求公比q.13.已知 数 a , b , c 成等差数列, a + 1, b + 1,c + 4 成等比数列,且a +b +c = 15,求 a , b ,c.Ⅲ 拓展14.在以下由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列 .a ij 表示位于第 i 行第 j 列的数,此中241, a 4254 5a == 1 a=816a 11 a 12 a 13 a 14 a 15 ⋯ a 1j ⋯ a 21 a 22 a 23 a 24a 25⋯a 2j ⋯ a31 a 32aaa⋯a3j ⋯33 34 35 a41a42a a a ⋯ a 4j⋯434445⋯ ⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯a i1 a i2a i3 a i4 a i5a ij⋯⋯⋯⋯⋯⋯⋯⋯(1)求 q 的 ;(2)求 a ij 的 算公式 .测试六 数列乞降Ⅰ 学 目1.会求等差、等比数列的和,以及求等差、等比数列中的部分 的和 .2.会使用裂 相消法、 位相减法求数列的和.Ⅱ 基一、1.已知等比数列的公比2,且前 4 的和1,那么前 8 的和等于 ()(A)15(B)17(C)19(D)21n1的等差数列,它的前100 和 145, a 1 3599的 ()2.若数列 {a }是公差2+ a + a +⋯+ a(A)60(B)(C)85(D)120nn n -1 *n100· 2n(n ∈ N等于 ()3.数列 {a }的通 公式a = (- 1)), 其前 n 和 S ,S (A)100(B)- 100(C)200 (D)- 2001 4.数列(2n1)(2n1)的前 n 和 ()(A)n (B)2n(C)n (D)2n2n 12n 14n 2n 15. 数列 {a }的前 n 和 S , a = 1, a = 2,且 a=a n + 3(n = 1, 2, 3,⋯ ), S 等于 ()nn12n +2100(A)7000 (B)7250(C)7500(D)14950二、填空6.1111= ________.213 243n 1n17.数列 {n +2n }的前 n 和 ________.8.数列 {a n } 足: a 1= 1,a n + 1= 2a n , a 12 + a 22 +⋯+ a n 2 =________.9. n ∈ N * , a ∈ R , 1+ a + a 2+⋯+ a n = ________. 10. 11 2 1 31n1 = ________.2 482n三、解答11.在数列 {a n }中, a 1=- 11, a n +1= a n +2(n ∈ N * ),求数列 {| a n |} 的前 n 和 S n .12.已知函数 f(x)= a 1x + a 2x 2+ a 3 x 3+⋯+ a n x n (n ∈ N * , x ∈ R),且 全部正整数n 都有 f(1)= n 2 建立 .(1)求数列 {a }的通 a ;nn(2)求11 1.a 2a 3a nan 1a 1a 21 11n 和 S n .13.在数列 {a n }中, a 1= 1,当 n ≥ 2 , a n = 142n 1 ,求数列的前2Ⅲ拓展14.已知数列 {a n }是等差数列,且a 1= 2, a 1+ a 2+ a 3= 12.(1)求数列 {a }的通 公式;n(2)令 b n n nn }的前 n 和公式 .= a x (x ∈ R),求数列{b测试七数列综合问题Ⅰ基一、1.等差数列 {a n }中, a 1 =1,公差 d ≠0,假如 a 1, a 2, a 5 成等比数列,那么 d 等于 ( )(A)3(B)2(C)- 2(D)2 或- 22.等比数列 {a n}中, a n> 0,且 a2a 4+ 2a3a5+ a4 a6= 25, a3+ a5等于 ()(A)5(B)10(C)15(D)203.假如 a , a , a,⋯, a各都是正数的等差数列,公差d≠ 0, ()1238(A)a1a8> a4a5(B)a1a8< a4 a5(C)a1+ a8> a4+ a5(D)a1a8= a4a54.一定函数y=f(x)的象在以下中,并且随意a1∈ (0,1),由关系式a n+1= f(a n)获取的数列 {a n}足 a n+1>a n(n ∈N* ),函数的象是()5.已知数列 {a n}足 a1=0,a n 1a n3) 3a n(n∈ N* ), a20等于 (1(A)0(B)-3(C) 33 (D)2二、填空11a n ,n为偶数,2a2=________, a3= ________.6.数列 {a n}的首 a1=,且 a n 14a n 1,n为奇数 . 47.已知等差数列 {a n}的公差2,前 20 和等于150,那么 a2+ a4+ a6+⋯+ a20= ________.8.某种菌的培育程中,每20分分裂一次 (一个分裂两个 ), 3 个小,种菌能够由1个生殖成________个 .9.在数列 {a n}中, a1= 2,a n+1= a n+3n(n∈ N* ), a n= ________.10.在数列 {a n}和 {b n}中, a1= 2,且随意正整数n 等式 3a n+1-a n= 0建立,若 b n是 a n与 a n+1的等差中, {b n}的前 n 和 ________.三、解答11.数列 {a n}的前 n 和 S n,已知 a n= 5S n- 3(n∈ N* ).(1)求 a , a , a ;123(2)求数列 {a }的通公式;n(3)求 a 1+ a3+⋯+ a2n-1的和 .12.已知函数 f(x)=x22(x> 0), a1= 1, a n21· f(a n)= 2(n∈ N* ),求数列 {a n}的通公式 . 413.等差数列 {a }的前 n 和 S ,已知 a = 12, S>0, S< 0.n n31213(1)求公差 d 的范;(2)指出 S1, S2,⋯, S12中哪个最大,并明原因 .Ⅲ拓展14.甲、乙两物体分从相距70m 的两地同相向运.甲第 1 分走2m,此后每分比前 1 分多走1m,乙每分走 5m.(1)甲、乙开始运后几分相遇(2)假如甲、乙抵达方起点后立刻折返,甲每分比前 1 分多走 1m ,乙每分走5m ,那么开始运几分 后第二次相遇15.在数列 {a n }中,若 a 1 ,a 2 是正整数,且a n = | a n -1- a n -2| , n = 3, 4, 5,⋯ 称 {a n } “ 差数列”.(1) 出一个前五 不 零的“ 差数列” (只需求写出前十);(2)若“ 差数列”{a n }中, a 1= 3, a 2= 0, 求出通a n ;(3)* 明:任何“ 差数列”中 含有无 多个 零的.测试八 数列全章综合练习Ⅰ基一、1.在等差数列 {a } 中,已知 a + a = 4, a + a = 12,那么 a + a 等于 ()n12 345 6(A)16(B)20(C)24 (D)362.在 50 和 350 所有末位数是1 的整数和 ()(A)5880(B)5539(C)5208(D)48773.若 a , b , c 成等比数列, 函数y = ax 2+ bx + c 的 象与 x 的交点个数 ()(A)0 (B)1(C)2(D)不可以确立4.在等差数列 {a } 中,假如前 5 的和S =20,那么 a等于 ()n53(A)- 2(B)2(C)- 4(D)45.若 {a n }是等差数列, 首 a 1> 0,a 2007+ a 2008> 0,a 2007·a 2008< 0, 使前 n 和 S n > 0 建立的最大自然数n 是 ( )(A)4012 (B)4013 (C)4014(D)4015二、填空6.已知等比数列 {a n }中, a 3= 3, a 10= 384, 数列的通a n =________.7.等差数列 {a n }中, a 1 + a 2 + a 3=- 24, a 18+ a 19+ a 20= 78, 此数列前 20和 S 20= ________.n n n2-3n + 1, a n = ________.8.数列 {a }的前 n 和 S ,若 S = n9.等差数列 {a n }中,公差 d ≠ 0,且 a 1,a 3, a 9 成等比数列,a 3 a 6 a 9 = ________.a 4a 7a1010. 数列 {a n }是首 1 的正数数列,且 (n + 1)a n 2 1 -na n 2 + a n + 1a n = 0(n ∈N * ), 它的通 公式a n = ________.三、解答11. 等差数列 {a n }的前 n 和 S n ,且 a 3 + a 7- a 10= 8, a 11- a 4 =4 ,求 S 13. 12.已知数列 {a}中, a=1,点 (a , a* )在函数 f(x)= 2x + 1 的 象上 .n1nn + 1(1)求数列 {a n }的通 公式;(2)求数列 {a }的前 n 和 S ;nn(3) c = S ,求数列 {cn }的前 n 和 T .nnn13.已知数列 {a }的前 n 和 S 足条件S = 3a +2.nnn n (1)求 :数列 {a n }成等比数列; (2)求通 公式 a n .14.某 企业今年初用98 万元 一艘 船,用于捕 ,第一年需各样 用12 万元,从第二年开始包含 修 在内,每年所需 用均比上一年增添 4 万元, 船每年捕 的 收入 50 万元.(1)写出 船前四年每年所需的 用(不包含 用 );(2) 船捕 几年开始盈余(即 收入减去成本及所有 用 正)(3)若当盈余 达到最大 , 船以8 万元 出,那么 船 企业 来的利润是多少万元Ⅱ 拓展15.已知函数 f(x)=1(x<- 2),数列 {a n}足 a1= 1, a n= f(-1)(n∈ N* ).x24a n1(1)求 a n;2 1+ a22+⋯+ a2,能否存在最小正整数m,使随意 n∈ N*有 b m(2) b n= a n n 2 n 1n<25建立若存在,求出 m 的,若不存在,明原因.16.已知 f 是直角坐系平面 xOy 到自己的一个映照,点P 在映照 f 下的象点 Q,作 Q= f(P).P1(x1, y1), P2= f(P1), P3= f(P2),⋯, P n=f(P n-1),⋯ .假如存在一个,使所有的点P n(x n, y n )(n∈ N* )都在个内或上,那么称个点P n (x n,y n )的一个收 .特地,当 P1= f(P1),称点P1映照 f 下的不点 .若点 P(x, y)在映照 f 下的象点 Q(-x+ 1,1y).2(1)求映照 f 下不点的坐;(2)若 P 的坐 (2, 2),求:点*)存在一个半径 2 的收 .P (x , y )(n∈ N1n nn第三章 不等式测试九 不等式的观点与性质Ⅰ 学习目标1.认识平时生活中的不等关系和不等式(组 )的实质背景,掌握用作差的方法比较两个代数式的大小.2.理解不等式的基天性质及其证明 .Ⅱ基础训练题一、选择题1.设 a , b , c ∈ R ,则以下命题为真命题的是( )(A)a > b a - c > b - c (B)a > b ac > bc(C)a > ba 2>b 2(D)a > bac 2> bc 22.若- 1<<< 1,则-的取值范围是 ()(A)(-2, 2)(B)(-2,- 1)(C)(- 1, 0)(D)(- 2, 0) 3.设 a > 2, b >2,则 ab 与 a + b 的大小关系是 ()(A)ab > a + b(B)ab < a + b(C)ab =a +b(D)不可以确立4.使不等式 a > b 和11同时建立的条件是 ()ab(A)a > b > 0 (B)a > 0>b(C)b > a > 0(D)b > 0> a5.设 1< x <10,则以下不等关系正确的选项是()(A)lg 2x > lgx 2> lg(lgx)(B)lg 2x > lg(lgx)> lgx 2 (C)lgx 2> lg 2x > 1g(lgx) (D)lgx 2> lg(lgx)> lg 2x二、填空题6.已知 a < b <0 ,c < 0,在以下空白处填上合适不等号或等号:(1)(a -2)c________(b - 2)c ;(2) c ________ c;(3)b - a________| a| - | b|.a b7.已知 a < 0,- 1< b < 0,那么 a 、 ab 、 ab 2 按从小到大摆列为 ________.8.已知 60< a <84, 28< b < 33,则 a - b 的取值范围是 ________; a的取值范围是 ________.b9.已知 a ,b ,c ∈ R ,给出四个论断:① a > b ;② ac 2> bc 2;③ a b;④ a - c >b - c.以此中一个论断作条件,另一c c个论断作结论,写出你以为正确的两个命题是 ________ ________;________________.(在“”的双侧填 上论断序号 ).a32 与Qb ( a1)( a 2)10.设 a > 0, 0<b < 1,则 P = b的大小关系是 ________.三、解答题11.若 a > b > 0,m > 0,判断 b 与bm的大小关系并加以证明 .aa ma 2b 212.设 a > 0, b >0,且 a ≠ b , p b a , q a b .证明: p > q.注:解题时可参照公式 x 3+y 3= (x + y)(x 2 - xy + y 2).Ⅲ 拓展训练题13.已知 a > 0,且 a ≠ 1,设 M = log a (a 3-a + 1), N =log a (a 2- a + 1).求证: M > N.14.在等比数列 {a n }和等差数列 {b n }中,a 1= b 1> 0,a 3= b 3> 0, a 1≠ a 3,试比较 a 5 和 b 5 的大小 .测试十 均值不等式Ⅰ学习目标1 .认识基本不等式的证明过程 .2 .会用基本不等式解决简单的最大(小 )值问题 .Ⅱ 基础训练题一、选择题1.已知正数 a , b 知足 a + b =1,则 ab()(A)有最小值1(B)有最小值1(C)有最大值1(D)有最大值142 422.若 a > 0, b >0,且 a ≠ b ,则 ()a ba 2b 2(B)aba ba 2b 2(A)ab2222(C)a 2b 2a b(D)a 2b 2aba b ab2 2223.若矩形的面积为 a 2(a > 0),则其周长的最小值为 ()(A)a(B)2a (C)3a(D)4a4.设 a , b ∈ R ,且 2a + b - 2=0,则 4a + 2b 的最小值是 ( )(A) 22(B)4(C) 4 2(D)85.假如正数 a , b , c ,d 知足 (A)ab ≤ c + d ,且等号建即刻 (B)ab ≥ c + d ,且等号建即刻 (C)ab ≤ c +d ,且等号建即刻(D)ab ≥c + d ,且等号建即刻二、填空题a +b = cd = 4,那么 ( )a ,b ,c ,d 的取值独一a ,b ,c ,d 的取值独一 a , b ,c , d 的取值不独一a ,b ,c ,d 的取值不独一6.若 x > 0,则变量 x9的最小值是 ________;取到最小值时, x = ________.x4x 7.函数 y = (x > 0)的最大值是 ________;取到最大值时, x = ________.x 218.已知 a < 0,则 a16 的最大值是 ________. a 39.函数 f(x)= 2log 2(x + 2)- log 2 x 的最小值是 ________.10 .已知 a , b , c ∈ R , a + b + c =3 ,且 a , b ,c 成等比数列,则 b 的取值范围是 ________. 三、解答题 11 .四个互不相等的正数a ,b ,c ,d 成等比数列,判断a d 和 bc 的大小关系并加以证明 .212 .已知 a > 0,a ≠ 1, t > 0,试比较1log a t 与log at 1的大小 .2 2Ⅲ拓展训练题13.若正数 x , y 知足 x + y = 1,且不等式xy a 恒建立,求 a 的取值范围 .a 14.(1)用函数单一性的定义议论函数f(x)= x +(a > 0)在 (0,+∞ )上的单一性;xa (2)设函数 f(x)= x +(a > 0)在(0, 2]上的最小值为g(a),求 g(a)的分析式 .x测试十一 一元二次不等式及其解法Ⅰ 学习目标1.经过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系 .2.会解简单的一元二次不等式 .Ⅱ基础训练题一、选择题1.不等式 5x + 4>- x 2 的解集是 ()(A){x| x >- 1,或 x <- 4}(B){x| -4< x <- 1 }(C){x| x > 4,或 x < 1 }(D){x|1 < x < 4}2.不等式- x 2 +x - 2>0 的解集是 ()(A){x| x >1 ,或 x <- 2 } (B){x| -2< x < 1} (C)R(D)3.不等式 x 2 >a 2(a <0)的解集为 ()(A){x| x >± a}(B){x| - a < x < a }(C){x| x >- a ,或 x < a }(D){x| x >a ,或 x <- a}4.已知不等式 ax 2+ bx + c > 0 的解集为 { x| 1 2} ,则不等式 cx 2+ bx + a < 0 的解集是 ()x3(A){x| - 3< x < 1 }(B){x| x <- 3,或 x >1 }22 1}(D){x| x <- 2,或 x >1(C){x - 2<x <}335.若函数 y =px 2- px -1(p ∈ R)的图象永久在 x 轴的下方,则 p 的取值范围是 ()(A)(-∞, 0) (B)(-4, 0](C)(-∞,- 4)(D)[- 4, 0)二、填空题6.不等式 x 2 +x - 12< 0 的解集是 ________. 7.不等式3x1 0 的解集是 ________.2 x58.不等式 | x 2- 1| < 1 的解集是 ________.9.不等式 0< x 2- 3x < 4 的解集是 ________.10.已知对于 x 的不等式 x 2- (a +1)x + 1< 0 的解集为非空会合{ x| a < x <1 },则实数 a 的取值范围是 ________.aa三、解答题11.求不等式 x 2- 2ax -3a 2<0(a ∈ R)的解集 .12.k 在什么范围内取值时,方程组 x 2 y 2 2x 03x 4y k 有两组不一样的实数解Ⅲ 拓展训练题13.已知全集 U = R ,会合 A = {x| x 2- x - 6< 0}, B = {x| x 2+ 2x - 8>0}, C = {x| x 2- 4ax + 3a 2< 0}.(1)务实数 a 的取值范围,使C (A ∩ B); (2)务实数 a 的取值范围,使C( U A)∩ ( U B).14.设 a ∈ R ,解对于 x 的不等式 ax 2- 2x + 1< 0.测试十二 不等式的实质应用Ⅰ 学习目标会使用不等式的有关知识解决简单的实质应用问题.Ⅱ基础训练题一、选择题1的定义域是 ()1.函数y4 x2(A){x| - 2< x< 2 }(B){x| -2≤ x≤ 2}(C){x| x> 2,或 x<- 2 }(D){x| x≥2,或 x≤- 2 }2.某村办服饰厂生产某种风衣,月销售量x(件 )与售价 p(元 / 件 )的关系为 p =300- 2x,生产 x 件的成本r= 500+30x(元),为使月赢利许多于 8600 元,则月产量 x 知足 ()(A)55≤ x≤ 60(B)60≤x≤ 65(C)65≤ x≤70(D)70≤x≤ 753.国家为了增强对烟酒生产管理,推行征收附带税政策.现知某种酒每瓶 70元,不征收附带税时,每年大概产销100 万瓶;若政府征收附带税,每销售100 元收税 r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附带税许多于 112万元,那么 r 的取值范围为 ()(A)2≤ r≤ 10(B)8≤ r≤10(C)2≤ r≤ 8(D)0≤ r≤ 84.若对于 x 的不等式 (1+ k2)x≤ k4+ 4 的解集是 M ,则对随意实常数k,总有 ()(A)2∈ M, 0∈ M(B)2M , 0M(C)2∈M,0 M(D)2M,0∈M二、填空题5.已知矩形的周长为36cm,则其面积的最大值为 ________.6.不等式 2x2+ ax+ 2>0 的解集是 R,则实数 a 的取值范围是 ________.7.已知函数 f(x)= x| x- 2| ,则不等式f(x)< 3 的解集为 ________.8.若不等式 | x+1| ≥ kx 对随意 x∈ R 均建立,则 k 的取值范围是 ________.三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车内行驶过程中,因为惯性作用,刹车后还要持续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是剖析事故的一个主要要素,在一个限速为40km/h的弯道上,甲乙两车相向而行,发现状况不对同时刹车,但仍是相撞了,过后现场测得甲车刹车的距离略超出12m ,乙车的刹车距离略超出10m. 已知甲乙两种车型的刹车距离s(km)与车速 x(km/h) 之间分别有以下关系:s 甲=+, s 乙=+.问交通事故的主要责任方是谁Ⅲ拓展训练题11.当 x∈ [- 1, 3]时,不等式- x2+ 2x+ a> 0 恒建立,务实数 a 的取值范围 .12.某大学印一份招生广告,所用纸张(矩形 )的左右两边留有宽为 4cm 的空白,上下留有都为 6cm 的空白,中间排版面积为2400cm2 .怎样选择纸张的尺寸,才能使纸的用量最小测试十三二元一次不等式 (组)与简单的线性规划问题Ⅰ学习目标1.认识二元一次不等式的几何意义,能用平面地区表示二元一次不等式组.2.会从实质情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ基础训练题一、选择题1.已知点 A(2, 0), B(- 1, 3)及直线 l: x-2y=0,那么 ()(A)A, B 都在 l 上方(B)A, B 都在 l 下方(C)A 在 l 上方, B 在 l 下方(D)A 在 l 下方, B 在 l 上方x0,2.在平面直角坐标系中,不等式组y0,所表示的平面地区的面积为()x y2(A)1(B)2(C)3(D)43.三条直线 y= x, y=- x, y=2围成一个三角形地区,表示该地区的不等式组是()y x,y x,y x,y x,(A) y x,(B) y x,(C) y x,(D)y x,y 2.y 2.y 2.y 2.x y 5 0,4.若 x, y 知足拘束条件x y0,则 z= 2x+ 4y 的最小值是 ()x3,(A)- 6(B)- 10(C)5(D)105.某电脑用户计划使用不超出500 元的资本购置单价分别为60 元, 70元的单片软件和盒装磁盘.依据需要,软件起码买 3 片,磁盘起码买2 盒,则不一样的选购方式共有()(A)5 种(B)6 种(C)7 种(D)8 种二、填空题6.在平面直角坐标系中,不等式组x0 所表示的平面地区内的点位于第________象限 .y07.若不等式 |2 x+ y+ m| <3表示的平面地区包含原点和点(- 1, 1),则 m 的取值范围是 ________.x1,8.已知点 P(x, y)的坐标知足条件y3,那么 z= x- y 的取值范围是 ________.3 x y30,x1,那么y的取值范围是 ________.9.已知点 P(x, y)的坐标知足条件y2,2 x y2x 0,10.方程 | x| + | y| ≤ 1 所确立的曲线围成关闭图形的面积是________.三、解答题11.画出以下不等式 (组 )表示的平面地区:x1,(1)3x+ 2y+ 6> 0(2)y2,x y 10.12.某实验室需购某种化工原料106kg,此刻市场上该原料有两种包装,一种是每袋35kg,价钱为 140 元;另一种是每袋 24kg,价钱为120 元.在知足需要的前提下,最少需要花销多少元Ⅲ拓展训练题13.商铺现有75 公斤奶糖和120 公斤硬糖,准备混淆在一同装成每袋装 250 克奶糖和750 克硬糖,每袋可盈余元;第二种每袋装500种应装多少袋,使所赢利润最大最大利润是多少1 公斤销售,有两种混淆方法:第一种每袋克奶糖和500 克硬糖,每袋可盈余元.问每一14.甲、乙两个粮库要向A, B 两镇运送大米,已知甲库可调出100 吨,乙库可调出80 吨,而 A 镇需大米70 吨,B 镇需大米110 吨,两个粮库到两镇的行程和运费以下表:行程 (千米 )运费 (元 /吨·千米)甲库乙库甲库乙库A 镇20151212B 镇2520108问: (1)这两个粮库各运往A、 B 两镇多少吨大米,才能使总运费最省此时总运费是多少(2)最不合理的调运方案是什么它给国家造成不应有的损失是多少测试十四不等式全章综合练习Ⅰ基础训练题一、选择题1.设a, b, c∈ R, a> b,则以下不等式中必定正确的选项是()(A)ac2> bc2(B) 11(C)a- c> b-c(D)| a| > | b|a bx y40,2.在平面直角坐标系中,不等式组2x y40, 表示的平面地区的面积是()y2(A) 3(B)3(C)4(D)6 23.某房地产企业要在一块圆形的土地上,设计一个矩形的泊车场.若圆的半径为10m,则这个矩形的面积最大值是()(A)50m 2(B)100m2(C)200m2(D)250m 2x 2x 2,若对 x> 0 恒有 xf(x)+ a> 0建立,则实数 a 的取值范围是 ()4.设函数 f(x)=x2(A)a< 1-2 2(B)a< 2 2 -1(C)a> 2 2 -1(D)a> 1- 225.设 a, b∈ R,且 b(a+ b+ 1)< 0, b(a+ b-1)< 0,则 ()(A)a> 1(B)a<- 1(C)- 1< a< 1(D)| a| > 1二、填空题6.已知 1< a<3, 2< b< 4,那么 2a- b 的取值范围是 ________,a的取值范围是 ________. b7.若不等式 x2- ax- b<0的解集为 {x|2 < x< 3},则 a+ b= ________.+,且 x+4y= 1,则 xy 的最大值为 ________.8.已知 x,y∈ R9.若函数 f(x)=2x22ax a1的定义域为 R,则 a 的取值范围为 ________.10.三个同学对问题“对于x 的不等式 x2+ 25+| x3- 5x2| ≥ ax 在[1,12] 上恒建立,务实数 a 的取值范围”提出各自的解题思路 .甲说:“只须不等式左侧的最小值不小于右侧的最大值.”乙:“把不等式形左含量x 的函数,右含常数,求函数的最.”丙:“把不等式两当作对于x 的函数,作出函数象.”参照上述解思路,你他所的的正确,即 a 的取范是 ________.三、解答11.已知全集 U= R,会合 A= {x| | x-1| <6 }, B= {x| x8> 0}.2x1(1)求 A∩ B;(2)求( U A)∪ B.12.某工厂用两种不一样原料生同一品,若采纳甲种原料,每吨成本1000 元,运500 元,可得品90 千克;若采纳乙种原料,每吨成本1500 元,运400 元,可得品100 千克 .今算每天原料成本不得超6000元,运不得超2000 元,此工厂每天采纳甲、乙两种原料各多少千克,才能使品的日量最大Ⅱ拓展12n12n i ja j两13.已知数集 A= {a a,⋯, a }(1 a< a <⋯< a n 2)拥有性 P随意的 j(1 n) a a与a i数中起码有一个属于 A.(1)分判断数集 {1, 3, 4}与{1, 2, 3, 6}能否拥有性 P,并明原因;1a1a2a na n.(2)明: a = 1,且a11a21a n1测试十五必修 5 模块自我检测题一、选择题1.函数y x2 4 的定义域是()(A)(-2, 2)(B)(-∞,- 2)∪ (2,+∞ )(C)[- 2,2](D)(-∞,- 2]∪ [2,+∞ )2.设 a> b> 0,则以下不等式中必定建立的是()(A)a- b< 0(B)0<a< 1 b(C)ab<a b(D)ab> a+ b 2x1,3.设不等式组y0, 所表示的平面地区是W,则以下各点中,在地区W 内的点是 () x y 0(A) (1,1)(B) (1,1)2323(C) (11)(D) (11) ,3,3 224.设等比数列 {a n} 的前 n 项和为 S n,则以下不等式中必定建立的是()(A)a1+ a3> 0(B)a1a3> 0(C)S1+ S3< 0(D)S1S3< 05.在△ ABC 中,三个内角 A, B, C 的对边分别为 a, b, c,若 A∶ B∶ C= 1∶ 2∶ 3,则 a∶ b∶ c 等于 ()(A)1∶ 3 ∶2(B)1∶ 2∶ 3(C)2∶ 3 ∶1(D)3∶ 2∶ 16.已知等差数列 {a n}的前 20 项和 S20= 340,则 a6+a9+ a11+ a16等于 ()(A)31(B)34(C)68(D)707.已知正数 x、 y 知足 x+ y= 4,则 log x+log y 的最大值是 ()22(A)- 4(B)4(C)- 2(D)28.如图,在限速为 90km/h 的公路 AB 旁有一测速站P,已知点 P 距测速区起点 A 的距离为 0.08 km ,距测速区终点B 的距离为0.05 km,且∠ APB= 60° .现测得某辆汽车从 A 点行驶到 B 点所用的时间为3s,则此车的速度介于 ()(A)60~ 70km/h(B)70~ 80km/h(C)80~ 90km/h(D)90~100km/h二、填空题9.不等式 x(x- 1)< 2 的解集为 ________.10.在△ ABC中,三个内角 A,B, C 成等差数列,则 cos(A+ C)的值为 ________.11.已知 {a }是公差为- 2 的等差数列,其前 5 项的和 S =0 ,那么 a 等于 ________.n5112.在△ ABC中, BC= 1,角 C=120°, cosA=2,则 AB=________.3x0, y013.在平面直角坐标系中,不等式组2x y 4 0 ,所表示的平面地区的面积是________;变量 z=x+ 3y 的最大x y 30值是 ________.2a (1≤i ≤ n ,1≤ j ≤ n , i , j ∈ N)表示位于第 i 行第 j 列的正数 .已14.如 , n (n ≥ 4)个正数排成 n 行 n 列方 ,符号ij知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若 a 11=1,a 24= 1, a 32= 1 ,2 4q = ________; a ij = ________.三、解答15.已知函数f(x)= x 2+ ax +6.(1)当 a = 5 ,解不等式 f(x)< 0;(2)若不等式 f(x)> 0 的解集R ,求 数a 的取 范 .16.已知 {a n }是等差数列,a 2= 5, a 5= 14.(1)求{a n }的通 公式;n}的前 n n(2) {a 和 S = 155,求 n 的 .17.在△ ABC 中, a , b , c 分 是角 A ,B , C 的 , A , B 是 角, c = 10,且cos Ab4 .cos B a3(1) 明角 C = 90°; (2)求△ ABC 的面 .18.某厂生 甲、乙两种 品,生 两种 品每吨所需要的煤、 以及每吨 品的 以下表所示.若每天配厂的煤至多 56 吨,供 至多 45 千瓦, 厂怎样安排生 ,使得 厂日 最大用煤 (吨)用 (千瓦 )(万元 )甲种 品 7 2 8 乙种 品351119.在△ ABC 中, a , b , c 分 是角 A , B , C 的 ,且 cosA =1.3(1)求 sin 2 B C cos 2 A 的 ;2 (2)若 a =3 ,求 bc 的最大 .20.数列 {a n }的前 n 和是 S n ,a 1= 5,且 a n = S n - 1(n = 2, 3, 4,⋯ ).(1)求数列 {a n }的通 公式;1 1 11 3(2)求 :a 2 a 3 a na 1 5参照答案第一章解三角形测试一正弦定理和余弦定理一、选择题1.B2.C3. B4. D5. B提示:4.由正弦定理,得sinC=3,所以C=60°或C= 120°,2当 C= 60°时,∵ B= 30°,∴ A=90°,△ ABC是直角三角形;当 C= 120°时,∵ B= 30°,∴ A= 30°,△ ABC是等腰三角形 . 5.因为 A∶ B∶ C= 1∶ 2∶3,所以 A= 30°, B=60°, C= 90°,由正弦定理a b c=k,sin A sin B sin C得 a= k· sin30°=1k, b=k·sin60 °=3k, c= k· sin90°= k,22所以 a∶ b∶c= 1∶3∶2.二、填空题6. 2 67. 30°8.等腰三角形9.33710. 5 2 324提示:8.∵ A+ B+C=π,∴- cosA= cos(B+C).∴ 2cosBcosC= 1- cosA= cos(B+ C)+ 1,∴2cosBcosC= cosBcosC- sinBsinC+ 1,∴ cos(B-C)= 1,∴ B- C= 0,即 B = C. 9.利用余弦定理 b2= a2+ c2- 2accosB.2AC BC 5 2 10.由 tan A= 2,得 sin A 5,依据正弦定理,得sin B sin A,得 AC= 4 .三、解答题11.c= 2 3, A= 30°, B= 90° .12.(1)60°; (2)AD=7 .13.如右图,由两点间距离公式,得 OA= (50) 2( 20)229 ,同理得 OB145, AB232 .由余弦定理,得cosA= OA2AB 2OB2 2 ,2OAAB2∴A=45°.14.(1)因为 2cos(A+ B)= 1,所以 A+ B=60°,故 C= 120°.(2)由题意,得 a + b = 2 3 , ab = 2,又 AB 2=c 2= a 2+ b 2 -2abcosC = (a + b)2- 2ab - 2abcosC= 12- 4-4× ( 1)= 10.2所以 AB =10 .△ABC1 1·2·3 = 3(3)S=absi nC =2222测试二 解三角形全章综合练习1.B2.C3.D4.C5.B提示:5.化简 (a + b +c)(b + c - a)= 3bc ,得 b 2+ c 2- a 2=bc ,由余弦定理,得 cosA = b2c 2 a 21,所以∠ A = 60° .2bc 2 因为 sinA = 2sinBcosC , A + B + C =180°,所以 sin(B + C)= 2sinBcosC ,即 sinBcosC + cosBsinC = 2sinBcosC. 所以 sin(B - C)= 0,故 B =C. 故△ ABC 是正三角形 .二、填空题6.30°7. 120° 8. 249.510. 355三、解答题11.(1)由余弦定理,得c = 13 ;(2)由正弦定理,得 sinB =239.1312.(1)由 a · b = | a| ·| b| · cos 〈 a , b 〉,得〈 a , b 〉= 60°;(2)由向量减法几何意义,知 | a| ,| b| , | a - b| 能够构成三角形,所以 | a - b| 2=| a| 2+ | b| 2- 2| a| · | b| ·cos 〈a , b 〉= 7,故 | a - b| = 7 .13.(1)如右图,由两点间距离公式,得OA(50) 2 (2 0)229 ,同理得 OB145 , AB232 .由余弦定理,得OA 2 AB 2 OB 22 cos A 2OAAB,2所以 A = 45° .故 BD = AB × sinA = 2 29 .△OAB1·OA · BD = 1· 29 ·2 29 =29. (2)S=2214.由正弦定理a b csin A sin B2R ,sin C得 asin A, b sin B, c sin C .2R2R 2R 因为 sin 2A + sin 2B > sin 2C , 所以 ( a)2( b ) 2( c) 2 , 2R2R2R即 a 2+ b 2> c 2.所以 cosC = a 2 b 2 c 22ab> 0,由 C ∈ (0,π ),得角 C 为锐角 .15.(1)设 t 小时后甲、乙分别抵达P 、 Q 点,如图,则 | AP| = 4t ,| BQ| =4t ,因为 | OA| = 3,所以 t = h 时, P 与 O 重合 .4故当 t ∈ [0,]时,4| PQ| 2= (3- 4t)2+ (1+ 4t)2 -2× (3- 4t)×(1+ 4t)× cos60°;当 t >h 时, | PQ| 2= (4t -3)2+ (1+ 4t)2- 2× (4t - 3)× (1+4t )× cos120° .4故得| PQ|=48 224 t7(t ≥ 0).t(2)当 t =241h 时,两人距离近来,近来距离为 2km.2 48 416.(1)由正弦定理abcsin A sin B2 R ,sin C得 a =2RsinA , b = 2RsinB , c = 2RsinC. 所以等式cos Bb 可化为 cos B2 Rsin B,cos C2a ccosC2 2R sin A 2R sin C即 cos B sin B, cosC 2 sin A sin C2sinAcosB +sinCcosB =- cosC · sinB ,故 2sinAcosB =- cosCsinB -sinCcosB =- sin(B + C),因为 A + B + C =π,所以 sinA =sin(B + C), 故 cosB =- 1,2所以 B = 120°.(2)由余弦定理,得 b 2= 13= a 2+ c 2- 2ac × cos120°,即 a 2+ c 2 + ac = 13又 a +c = 4,。

最新高中数学必修五试卷(含答案)

最新高中数学必修五试卷(含答案)

必修五阶段测试四(本册综合测试)时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分) 1.不等式3x -12-x≥1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x ≤2B.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x <2C.⎩⎨⎧⎭⎬⎫x ⎪⎪x >2或x ≤34 D .{x |x <2} 2.(2017·存瑞中学质检)△ABC 中,a =1,B =45°,S △ABC =2,则△ABC 外接圆的直径为( ) A .4 3 B .5 C .5 2 D .6 2 3.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解为( )A .x >5a 或x <-aB .x >-a 或x <5aC .-a <x <5aD .5a <x <-a 4.若a >0,b >0,且lg(a +b )=-1,则1a +1b 的最小值是( )A.52B .10C .40D .80 5.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为( ) A .8 B .7 C .6 D .5 6.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB.1a 2>1b 2C.a c 2+1>bc 2+1D .a |c |>b |c | 7.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( ) A .12 B .8 C .6 D .4 8.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤8,2y -x ≤4,x ≥0,y ≥0,且z =5y -x 的最大值为a ,最小值为b ,则a —b 的值是( )A .48B .30C .24D .169.设{a n }是等比数列,公比q =2,S n 为{a n }的前n 项和,记T n =17S n -S 2na n +1(n ∈N *),设Tn 0为数列{T n }的最大项,则n 0=( )A .2B .3C .4D .5 10.设全集U =R ,A ={x |2(x -1)2<2},B ={x |log 12(x 2+x +1)>-log 2(x 2+2)},则图中阴影部分表示的集合为( )A .{x |1≤x <2}B .{x |x ≥1}C .{x |0<x ≤1}D .{x |x ≤1} 11.在等比数列{a n }中,已知a 2=1,则其前三项的和S 3的取值范围是( ) A .(-∞,-1] B .(-∞,0]∪[1,+∞) C .[3,+∞) D .(-∞,-1]∪[3,+∞)12.(2017·山西朔州期末)在数列{a n }中,a 1=1,a n +1=a n +n +1,设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S n <m对一切正整数n 恒成立,则实数m 的取值范围为( )A .(3,+∞)B .[3,+∞)C .(2,+∞)D .[2,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.(2017·福建莆田二十四中期末)已知数列{a n }为等比数列,前n 项的和为S n ,且a 5=4S 4+3,a 6=4S 5+3,则此数列的公比q =________.14.(2017·唐山一中期末)若x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.15.如右图,已知两座灯塔A 和B 与海洋观察站C 的距离都等于3a km ,灯塔A 在观察站C 的北偏东20°.灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为________.16.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.三、解答题(本大题共6小题,共70分)17.(10分)(2017·山西太原期末)若关于x 的不等式ax 2+3x -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <1. (1)求a 的值;(2)求不等式ax 2-3x +a 2+1>0的解集.18.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.19.(12分)(2017·辽宁沈阳二中月考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =13.(1)求sin 2B +C2+cos2A 的值;(2)若a =3,求bc 的最大值.20.(12分)(2017·长春十一高中期末)设数列{a n }的各项都是正数,且对于n ∈N *,都有a 31+a 32+a 33+…+a 3n =S 2n ,其中S n 为数列{a n }的前n 项和.(1)求a 2;(2)求数列{a n }的通项公式.21.(12分)已知点(x ,y )是区域⎩⎪⎨⎪⎧x +2y ≤2n ,x ≥0,y ≥0(n ∈N +)内的点,目标函数z =x +y ,z 的最大值记作z n .若数列{a n }的前n 项和为S n ,a 1=1,且点(S n ,a n )在直线z n =x +y 上.(1)证明:数列{a n -2}为等比数列; (2)求数列{S n }的前n 项和T n .22.(12分)某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f (n )表示前n 年的纯利润总和(f (n )=前n 年的总收入-前n 年的总支出-投资额).(1)该厂从第几年起开始盈利?(2)若干年后,投资商为开发新项目,对该厂有两种处理方法:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?答案与解析1.B 由3x -12-x ≥1,可得3x -12-x -1≥0,所以3x -1-(2-x )2-x ≥0,即4x -32-x ≥0,所以⎩⎪⎨⎪⎧(4x -3)(x -2)≤0,x -2≠0,解得34≤x <2.故选B.2.C ∵S △ABC =12ac sin B =2,∴12×1×22c =2,∴c =42, ∴b 2=c 2+a 2-2ac cos B =32+1-2×1×42×22=25, ∴b =5,∴外接圆的直径为b sin B =522=52,故选C. 3.B (x +a )(x -5a )>0. ∵a <0, ∴-a >5a . ∴x >-a 或x <5a ,故选B.4.C 若lg(a +b )=-1,则a +b =110,∴1a +1b =10⎝⎛⎭⎫1a +1b (a +b )=10⎝⎛⎭⎫2+b a +ab ≥10(2+2)=40. 当a =b =120时,“=”成立,故选C.5.A ∵a 1=1,a 3=5,∴公差d =5-12=2,∴a n =1+2(n -1)=2n -1,S k +2-S k =a k +2+a k +1=2(k +2)-1+2(k +1)-1=4k +4=36,∴k =8,故选A. 6.C ∵a >b ,1c 2+1>0,∴a c 2+1>bc 2+1,故选C.7.B 由等差数列的性质知,a 3+a 6+a 10+a 13=4a 8=32, ∴a 8=8.又a m =8,∴m =8.8.C如图所示,当直线z =5y -x 经过A 点时z 最大,即a =16,经过C 点时z 最小,即b =-8,∴a -b =24,故选C.9.A S n =a 1(2n -1)2-1=a 1(2n-1),S 2n =a 1(22n -1)2-1=a 1(22n -1),a n +1=a 1·2n ,∴T n =17S n -S 2n a n +1=17a 1(2n -1)-a 1(22n -1)a 1·2n =17-⎝⎛⎭⎫2n +162n ≤17-8=9,当且仅当n =2时取等号,∴数列{T n }的最大项为T 2,则n 0=2,故选A.10.A 由2(x -1)2<2,得(x -1)2<1.解得0<x <2. ∴A ={x |0<x <2}.由log 12(x 2+x +1)>-log 2(x 2+2),得log 2(x 2+x +1)<log 2(x 2+2). 则⎩⎪⎨⎪⎧x 2+x +1>0,x 2+2>0,x 2+x +1<x 2+2.解得x <1.∴B ={x |x <1}.∴∁U B ={x |x ≥1}. ∴阴影部分表示的集合为 (∁U B )∩A ={x |1≤x <2}.11.D 设数列{a n }的公比为q ,则a 2=a 1q =1,∴q =1a 1,∴S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=a 1+1+1a 1,当a 1>0时,S 3≥1+2a 1·1a 1=3,当且仅当a 1=1时,取等号;当a 1<0时,S 3≤1-2=-1,当且仅当a 1=-1时,取等号.故S 3的取值范围是(-∞,-1]∪[3,+∞). 12.D a 1=1,a n +1-a n =n +1,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(n -1+1)+(n -2+1)+…+(1+1)+1 =n +(n -1)+(n -2)+…+2+1=n (n +1)2,当n =1时,也满足上式, ∴a n =n (n +1)2,1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, ∴S n =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2⎝⎛⎭⎫1-1n +1.∵S n <m 对一切正整数n 恒成立,∴m ≥2,故选D. 13.5解析:由题可得a 5-a 6=4S 4-4S 5=-4a 5, ∴a 6=5a 5,∴q =5. 14.4解析:∵x +2y +2xy =8, 又2xy ≤⎝⎛⎭⎫x +2y 22, ∴x +2y +⎝⎛⎭⎫x +2y 22≥8,∴14(x +2y )2+x +2y -8≥0, ∴x +2y ≥4,当且仅当x =2y =2时,等号成立. ∴x +2y 的最小值为4. 15.3a km解析:由题意知,∠ACB =120°,∴AB 2=3a 2+3a 2-23a ×3a cos120°=9a 2, ∴AB =3a km. 16. 3解析:由正弦定理及(2+b )(sin A -sin B )=(c -b )sin C ,得(2+b )(a -b )=(c -b )c ,又a =2, ∴b 2+c 2-a 2=bc .由余弦定理得 cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =60°.又22=b 2+c 2-2bc cos60°=b 2+c 2-bc ≥2bc -bc , ∴bc ≤4.当且仅当b =c 时取等号. ∴S △ABC =12bc sin A ≤12×4×32= 3.17.解:(1)依题意,可知方程ax 2+3x -1=0的两个实数根为12和1,∴12+1=-3a 且12×1=-1a 解得a =-2, ∴a 的值为-2,(2)由(1)可知,不等式为-2x 2-3x +5>0,即2x 2+3x -5<0, ∵方程2x 2+3x -5=0的两根为x 1=1,x 2=-52,∴不等式ax 2-3x +a 2+1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-52<x <1. 18.解:(1)由BA →·BC →=2得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2. 因a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223,由正弦定理,得sin C =c b sin B =23×223=429.因a =b >c ,所以C 是锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.19.解:(1)在△ABC 中,∵cos A =13,∴sin 2B +C 2+cos2A =12[1-cos(B +C )]+2cos 2A -1=12(1+cos A )+2cos 2A -1=-19.(2)由余弦定理知a 2=b 2+c 2-2bc cos A ,∴3=b 2+c 2-23bc ≥2bc -23bc =43bc ,∴bc ≤94,当且仅当b =c =32时,等号成立,∴bc 的最大值为94.20.解:(1)在已知式中,当n =1时,a 31=a 21,∵a 1>0,∴a 1=1, 当n ≥2时,a 31+a 32+a 33+…+a 3n =S 2n ,① a 31+a 32+a 33+…+a 3n -1=S 2n -1,②①-②得a 3n =a n (2a 1+2a 2+…+2a n -1+a n ).∵a n >0,∴a 2n =2a 1+2a 2+…+2a n -1+a n ,即a 2n =2S n -a n ,∴a 22=2(1+a 2)-a 2,解得a 2=-1或a 2=2, ∵a n >0,∴a 2=2.(2)由(1)知a 2n =2S n -a n (n ∈N *),③当n ≥2时,a 2n -1=2S n -1-a n -1,④③-④得a 2n -a 2n -1=2(S n -S n -1)-a n +a n -1=2a n -a n +a n -1=a n +a n -1.∵a n +a n -1>0,∴a n -a n -1=1,∴数列{a n }是等差数列,首项为1,公差为1,可得a n =n .21.解:(1)证明:由已知当直线过点(2n,0)时,目标函数取得最大值,故z n =2n .∴方程为x +y =2n .∵(S n ,a n )在直线z n =x +y 上,∴S n +a n =2n .① ∴S n -1+a n -1=2(n -1),n ≥2.②由①-②得,2a n -a n -1=2,n ≥2.∴a n -1=2a n -2,n ≥2.又∵a n -2a n -1-2=a n -22a n -2-2=a n -22(a n -2)=12,n ≥2,a 1-2=-1,∴数列{a n -2}是以-1为首项,12为公比的等比数列.(2)由(1)得a n -2=-⎝⎛⎭⎫12n -1,∴a n=2-⎝⎛⎭⎫12n -1. ∵S n +a n =2n ,∴S n =2n -a n =2n -2+⎝⎛⎭⎫12n -1.∴T n =⎣⎡⎦⎤0+⎝⎛⎭⎫120+⎣⎡⎦⎤2+⎝⎛⎭⎫12+…+⎣⎡⎦⎤2n -2+⎝⎛⎭⎫12n -1 =[0+2+…+(2n -2)]+⎝⎛⎭⎫120+⎝⎛⎭⎫12+…+⎝⎛⎭⎫12n -1=n (2n -2)2+1-⎝⎛⎭⎫12n 1-12=n 2-n +2-⎝⎛⎭⎫12n -1. 22.解:由题意知f (n )=50n -⎣⎡⎦⎤12n +n (n -1)2×4-72=-2n 2+40n -72.(1)由f (n )>0,即-2n 2+40n -72>0,解得2<n <18.由n ∈N +知,该厂从第3年起开始盈利. (2)方案①:年平均纯利润f (n )n =40-2⎝⎛⎭⎫n +36n ,∵n +36n ≥2n ×36n=12,当且仅当n =6时取等号,∴f (n )n≤40-2×12=16.因此方案①共获利16×6+48=144(万元),此时n =6.方案②:f (n )=-2(n -10)2+128.从而方案②共获利128+16=144(万元).比较两种方案,获利都是144万元,但由于第一方案只需6年,而第②种方案需要10年,因此,选择第①种方案更合算.。

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前高中数学必修五综合考试卷第I卷(选择题)一、单选题1.数列0,23,45,67⋯的一个通项公式是()A.a n=n−1n+1(n∈N∗)B.a n=n−12n+1(n∈N∗)C.a n=2(n−1)2n−1(n∈N∗)D.a n=2n2n+1(n∈N∗)2.不等式x−12−x≥0的解集是()A.[1,2]B.(−∞,1]∪[2,+∞)C.[1,2)D.(−∞,1]∪(2,+∞)3.若变量x,y满足{x+y≥0x−y+1≥00≤x≤1,则x−3y的最小值是()A.−5B.−3C.1D.44.在实数等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( ) A.8B.-8C.±8D.以上都不对5.己知数列{a n}为正项等比数列,且a1a3+2a3a5+a5a7=4,则a2+a6=()A.1B.2C.3D.46.数列11111,2,3,4,24816前n项的和为()A.2122nn n++B.21122nn n+-++C.2122nn n+-+D.21122nn n+--+7.若ΔABC的三边长a,b,c成公差为2的等差数列,最大角的正弦值为√32,则这个三角形的面积为()A.154B.15√34C.21√34D.35√348.在△ABC中,已知a=2,b=√2,A=450,则B等于( )A.30°B.60°C.30°或150°D.60°或120°9.下列命题中正确的是( )A.a>b⇒ac2>bc2B.a>b⇒a2>b2 C.a>b⇒a3>b3D.a2>b2⇒a>b 10.满足条件a=4,b=3√2,A=45∘,的的个数是( )A.1个B.2个C.无数个D.不存在11.已知函数f(x)=ax2−c满足:−4≤f(1)≤−1,−1≤f(2)≤5.则f(3)应满足()A.−7≤f(3)≤26B.−4≤f(3)≤15C.−1≤f(3)≤20D.−283≤f(3)≤35312.已知数列{a n}是公差为2的等差数列,且a1,a2,a5成等比数列,则a2为()A.-2B.-3C.2D.313.等差数列{a n}的前10项和S10=15,则a4+a7等于()A.3 B.6 C.9 D.1014.等差数列{a n},{b n}的前n项和分别为S n,T n,若S nT n =2n3n+1,则a3b3的值为()A.35B.47C.58D.1219第II卷(非选择题)二、填空题15.已知{a n}为等差数列,且a7-2a4=-1,a3=0,则公差d=16.在△ABC中,A=60∘,b=1,面积为√3,则边长c=_________.17.已知ΔABC中,c=√3,a=1,acosB=bcosA,则ΔABC面积为_________.18.若数列{a n}的前n项和S n=23a n+13,则{a n}的通项公式____________19.直线x−4y+9=0下方的平面区域用不等式表示为________________.20.函数y=x+4x−1(x>1)的最小值是_____________.21.已知x,y∈R+,且4x+y=1,则1x +1y的最小值是______.三、解答题22.解一元二次不等式(1)−x2−2x+3>0(2)x2−3x+5>023.△ABC的角A、B、C的对边分别是a=5、b=6、c=7。

(1)求BC边上的中线AD的长;(2)求△ABC的面积。

24.在ΔABC中,角A,B,C所对的边分别为a,b,c,且b2+c2=bc+a2. (1)求A的大小.(2)若a=√3,求b+c的最大值.25.数列{a n}的前n项和S n=33n-n2.(1)求数列{a n}的通项公式;(2) 求证:{a n}是等差数列.26.已知公差不为零的等差数列{a n}中,S2=16,且a1,a4,a5成等比数列.(1)求数列{a n}的通项公式;(2)求数列{|a n|}的前n项和T n.27.已知数列{a n}是公差不为0的等差数列,a4=3,a2,a3,a5成等比数列.(1)求a n;(2)设b n=n⋅2a n,数列{b n}的前n项和为T n,求T n.28.某化工厂生产甲、乙两种肥料,生产1车皮甲种肥料能获得利润10000元,需要的主要原料是磷酸盐4吨,硝酸盐8吨;生产1车皮乙种肥料能获得利润5000元,需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存有磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种肥料.问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?29.已知正项数列{a n }的前n 项和为S n ,且a 1=1,a n+12=S n +1+S n .(1)求{a n }的通项公式;(2)设b n =a 2n−1⋅2a n ,求数列{b n }的前n 项和T n .参考答案1.C【解析】【分析】观察数列分子为以0为首项,2为公差的等差数列,分母是以1为首项,2为公差的等差数列,故可得数列的通项公式.【详解】观察数列分子为以0为首项,2为公差的等差数列,分母是以1为首项,2为公差的等差数列,故可得数列的通项公式a n=2(n−1)2n−1(n∈Z*).故选:C.【点睛】本题考查了数列的概念及简单表示法,考查了数列的通项公式的求法,是基础题.2.C【解析】【分析】根据分式不等式的意义可转化为整式不等式(x−1)(2−x)≥0且2−x≠0,即可求解.【详解】原不等式等价于(x−1)(2−x)≥0且2−x≠0,解得1≤x<2,所以原不等式的解集是[1,2).【点睛】本题主要考查了分式不等式的解法,属于中档题.3.A【解析】【分析】画出可行域,令目标函数z=x−3y,即y=13x−13z,做出直线y=13x,平移该直线当直线过可行域且在y轴上截距最大时,即过点A(1,2)时,z有最小值.【详解】可行域为如图所示的四边形OBAC及其内部,令目标函数z=x−3y,即y=13x−13z,过A(1,2)点时,所在直线在y轴上的截距−1z取最大值,此时取得最小值,且3.【点睛】本题主要考查了简单的线性规划,数形结合的思想方法,属于中档题.4.A【解析】【分析】利用根与系数的关系、等比数列的性质即可得出.【详解】等比数列{a n}中,a2,a6是方程x2﹣34x+64=0的两根,∴a2+a6=34>,a2•a6=64=a42,又偶数项的符号相同,∴a4>0.则a4=8.故选:A.【点睛】本题考查了等比数列的性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.5.B【解析】∵数列{a n}为等比数列,且a1a3+2a3a5+a5a7=4∴a22+2a2a6+a62=4,即(a2+a6)2=4,又a n>0,∴a2+a6=2.选B.6.B【解析】()()()11111111112212311248222212n n n nn n n n S n ⎛⎫-⎪++⎛⎫⎝⎭=+++++++++=+=+- ⎪⎝⎭- ,故选B. 7.B 【解析】试题分析:根据题意设三角形的三边最大角为,,则由三角形两边之和大于第三边知即,由余弦定理得,即,计算得出:.三角形的三边分别为该三角形的面积为:所以选项是正确的.考点:等差数列,余弦定理,三角形面积. 【思路点晴】本题给出三角形中三条边成公差为的等差数列,利用等差中项巧设三边这样只引入了一个变量,根据三角形中大边对大角,则最大角为边所对的角,根据,得到,从而得到三边分别为8.A 【解析】 【分析】由正弦定理a sinA =b sinB 知sinB =12,所以得B =300或1500,根据三角形边角关系可得B =300。

【详解】由正弦定理asinA=b sinB得,2sin π4=√2sinB ,所以sinB =12B =300或1500,又因为在三角形中,a >b ,所以有A >B ,故B =300,答案选A 。

【点睛】本题主要考查正弦定理在解三角形中的应用,较简单基础。

9.C 【解析】试题分析:对于选项A,根据不等式的性质,只有c>0时,能成立,故错误选项B 中,当a=0,b=-1,时,此时a>b ,但是不满足平方后的a 2>b 2,成立,故错误。

选项D 中,因为当a 2>b 2时,比如a=-2,b=0,的不满足a>b ,故错误,排除法只有选C. 考点:本试题主要考查了不等式的性质的运用。

点评:解决该试题的关键是注意可乘性的运用。

只有同时乘以正数不等号方向不变。

10.B 【解析】解:因为满足条件a =4,b =3√2,A =45∘,利用余弦定理可知得到关于c 的一元二次方程,即cosA =b 2+c 2−a 22bc∴c 2+2−6c =0,可知有两个不等的正根,因此有两解,选B11.C 【解析】 【分析】列出不等式组,作出其可行域,利用线性规划求出f (3)的最值即可. 【详解】:∵﹣4≤f (1)≤﹣1,﹣1≤f (2)≤5, ∴{−4≤a −c ≤−1−1≤4a −c ≤5 , 作出可行域如图所示:令z=f (3)=9a ﹣c ,则c=9a ﹣z ,由可行域可知当直线c=9a ﹣z 经过点A 时,截距最大,z 取得最小值, 当直线c=9a ﹣z 经过点B 时,截距最小,z 取得最大值. 联立方程组{a −c =−14a −c =−1可得A (0,1),∴z 的最小值为9×0﹣1=﹣1, 联立方程组{4a −c =5a −c =−4,得B (3,7),∴z 的最大值为9×3﹣7=20. ∴﹣1≤f (3)≤20. 故选:C . 【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得. 12.D 【解析】 【分析】由等差数列知,a 1=a 2−d,a 5=a 2+3d ,又三数成等比数列,所以a 22=(a 2−d)(a 2+3d),求解即可.【详解】因为a1=a2−d,a5=a2+3d,又a1,a2,a5成等比数列,所以a22=(a2−d)(a2+3d),解得a2=3,故选D.【点睛】本题主要考查了等差数列通项公式及等比中项,属于中档题.13.A【解析】【分析】由题意结合等差数列前n项和公式和等差数列的性质整理计算即可求得最终结果.【详解】由题意可得:S10=a1+a102×10=5(a1+a10)=15,则a1+a10=3,由等差数列的性质可得:a4+a7=a1+a10=3.本题选择A选项.【点睛】本题主要考查等差数列的性质,等差数列前n项和公式及其应用等知识,意在考查学生的转化能力和计算求解能力.14.C【解析】【分析】根据等差数列的求和公式进行变形可得a3b3=S5T5,结合条件代入n=5后可得所求的值.【详解】由等差数列的求和公式可得a3b3=2a32b3=a1+a5b1+b5=52(a1+a5)52(b1+b5)=S5T5=2×53×5+1=58,故选C.【点睛】本题考查等差数列的求和公式和项的下标和的性质,解题时要注意等差数列的项与和之间的联系,关键是等差数列中项的下标和性质的灵活运用,考查变化和应用能力.15.B【解析】【分析】利用等差数列的通项公式,结合已知条件列出关于a 1,d 的方程组,求解即可. 【详解】设等差数列{a n }的首项为a 1,公差为d ,由等差数列的通项公式以及已知条件得{a 1+6d −2(a 1+3d)=−1a 1+2d =0 ,即{a 1=1a 1+2d =0,解得d=-12, 故选:B . 【点睛】本题考查了等差数列的通项公式,熟记公式是解题的关键,同时注意方程思想的应用. 16.4 【解析】 【分析】由已知利用三角形面积公式可求c 【详解】∵A =60∘,b =1,面积为√3=12bc sin A =12×1×c ×√32, ∴解得:c =4, 【点睛】在解三角形面积时有三个公式可选择,但是题上已知角A ,所以我们需抓取S=12bc sin A17.√34 【解析】 【分析】由已知及正弦定理可得sin (A ﹣B )=0,结合A ,B 的范围,可求﹣π<A ﹣B <π,进而求得A ﹣B=0,可得a=b=1,利用余弦定理可求cosA ,同角三角函数基本关系式可求sinA ,根据三角形面积公式即可计算得解. 【详解】∵acosB=bcosA ,∴由正弦定理可得:sinAcosB=sinBcosA ,可得:sin (A ﹣B )=0, ∵0<A <π,0<B <π,可得:﹣π<A ﹣B <π, ∴A ﹣B=0,可得:a=b=1, ∴cosA=b 2+c 2−a 22bc =2×1×√3=√32,可得:sinA=12,∴S △ABC =12bcsinA=12×1×√3×12=√34. 故答案为:√34. 【点睛】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题. 18.a n = (−2)n−1 【解析】 【分析】把n =1的式子代入已知中得到数列的首项,再由n ≥2时,a n =S n −S n−1,推得a n a n−1=−2,得到数列{a n }表示首项为a 1=1,公比为q =−2的等比数列,即可求解. 【详解】由题意,当n =1时,a 1=S 1=23a 1+13,解得a 1=1,当n ≥2时,a n =S n −S n−1=23a n +13−23a n−1−13=23a n −23a n−1,即a n =−2a n−1,所以a nan−1=−2,所以数列{a n }表示首项为a 1=1,公比为q =−2的等比数列, 所以数列{a n }的通项公式为a n =(−2)n−1. 【点睛】本题主要考查了等比数列的通项公式,及数列a n 与S n 的关系的应用,其中熟记数列的a n 与S n 的关系式,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题. 19.x −4y +9>0 【解析】【分析】作出直线x −4y +9=0,判断O 所在的平面区域,即可得到结论. 【详解】点(0,0)在直线x −4y +9=0的下方,应使不等式成立,所以直线x −4y +9=0下方的平面区域用不等式表示为x −4y +9>0. 故答案为:x −4y +9>0 【点睛】本题主要考查二元一次不等式表示平面区域,先判断原点对应的不等式是解决本题的关键,比较基础. 20.5 【解析】 【分析】先对函数的解析式变形,再利用基本不等式求最小值. 【详解】由题得y =x −1+4x−1+1≥2√(x −1)⋅4x−1+1=5.(当且仅当{x >1x −1=4x−1即x=2时取等)故答案为:5 【点睛】(1)本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 使用基本不等式求最值时,要注意观察收集题目中的数学信息(正数、定值等),然后变形,配凑出基本不等式的条件.本题解题的关键是变形y =x −1+4x−1+1. 21.9 【解析】 【分析】直接将代数式4x+y 与1x +1y 相乘,利用基本不等式可求出1x +1y 的最小值. 【详解】由基本不等式可得1x +1y =(4x +y )(1x +1y )=4x y+y x +5≥2√4x y ⋅yx +5=9.,当且仅当{4xy=yx4x+y=1⇒{x=16y=13,等号成立,因此1x+1y的最小值为9,故答案为:9.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.22.(1)(-3,1);(2)R.【解析】【分析】(1)利用因式分解即可(2)利用判别式即可得到答案【详解】(1)由−x2−2x+3>0,得x2+2x−3<0,解得−3<x<1。

相关文档
最新文档