初几3 平面几何问题的证明

合集下载

初中平面几何解题技巧与证明方法

初中平面几何解题技巧与证明方法

初中平面几何解题技巧与证明方法平面几何是初中数学课程中的一大重点内容,它涉及到图形的性质与关系、解题技巧等方面。

本文将介绍一些初中平面几何解题的技巧,并探讨一些常用的证明方法。

一、解题技巧1. 观察图形性质:在解题过程中,要善于观察图形的性质。

例如,对于平行四边形,我们可以利用对角线相等、同位角互补等性质来解题。

对于等腰三角形,我们可以利用底角相等、等腰三角形的高相等等性质来解题。

因此,在解题之前,仔细观察图形的性质对于解题是非常有帮助的。

2. 利用辅助线:辅助线是解决平面几何问题的常用方法。

通过引入辅助线,可以将原有的几何问题转化为更简单的几何问题。

例如,对于一个矩形,我们可以通过引入一条对角线将它分成两个等腰直角三角形,从而简化问题。

利用辅助线进行解题,可以帮助我们更好地理解图形,找到解题的关键。

3. 运用相似性质:相似是平面几何中一个非常重要的概念。

相似性质可以用来推导出一些未知的长度或角度。

在解题过程中,可以利用相似三角形的比例关系来求解未知量。

此外,相似性质还可以用来证明两个图形全等或相似。

二、证明方法1. 数学归纳法:数学归纳法是一种常用的证明方法,特别适用于证明一些与自然数有关的命题。

在平面几何中,数学归纳法可以用来证明一些与图形次数有关的命题,如证明正多边形的内角和公式。

数学归纳法的基本思想是,先证明命题在某个特定情况下成立,然后假设命题在某个情况下成立,证明它在下一个情况下也成立。

2. 反证法:反证法是证明一些命题的常用方法。

通过假设命题的否定,然后推导出一个矛盾的结论,从而证明了原命题的正确性。

在平面几何中,反证法可以用来证明一些关于垂直、平行关系的命题,如证明垂直平分线与角平分线互相垂直。

3. 作图法:在某些情况下,通过合理的作图可以帮助我们观察并找到证明的思路。

在平面几何中,作图法可以用来证明一些关于线段比例、角平分线等命题。

通过合理的构造和作图,可以帮助我们更好地理解几何问题,并找到证明的依据。

(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

D 几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1 所示,∆ABC 中,∠C = 90︒,AC =BC,AD =DB,AE =CF 。

求证:DE=DF AEC F B图1分析:由∆ABC 是等腰直角三角形可知,∠A =∠B = 45︒,由D 是AB 中点,可考虑连结CD,易得CD =AD ,∠DCF = 45︒。

从而不难发现∆DCF ≅∆DAE证明:连结CDAC =BC∴∠A =∠B∠ACB = 90︒,AD =DB∴CD =BD =AD,∠DCB =∠B =∠AAE =CF,∠A =∠DCB,AD =CD∴∆ADE ≅∆CDF∴DE =DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中EF2 3 1线或高是常用的辅助线。

平面几何基本定理的证明与应用

平面几何基本定理的证明与应用

平面几何基本定理的证明与应用平面几何学是研究二维空间内的图形、形状和属性,其中包含了许多基本定理。

这些基本定理是数学中的重要概念,它们的证明和应用帮助我们理解几何学,解决实际问题,并建立更复杂的几何定理。

本文将重点介绍三条平面几何的基本定理:直角三角形的勾股定理、同位角定理以及平行线与角的性质。

一、直角三角形的勾股定理勾股定理是最为人熟知的几何学定理之一,它关于直角三角形的边长之间的关系。

勾股定理表明,在一个直角三角形中,直角边的平方等于两条直角边的平方和。

数学表达方式如下:在直角三角形ABC中,设直角边分别为a、b,斜边为c,则有 a² + b² = c²。

这一定理的证明可以根据几何原理和代数运算,利用形状相似、三角恒等式等方法得到。

例如,可以通过把直角三角形拆分为两个小三角形,利用三角形的面积关系得到证明过程。

勾股定理有广泛的应用,例如可以用于求解直角三角形的边长、判断三角形是否为直角三角形,或者是计算物体的斜边长度等等。

二、同位角定理同位角定理是几何学中关于平行线与角性质的基本定理。

同位角是指两条平行线被一条截线所切所得的对应角。

同位角定理指出,如果两条直线被一条截线所切,那么同位角是相等的。

形式化表达如下:在平行线l₁和l₂被一条截线t所切的情况下,同位角A和B相等,同位角C和D相等。

同位角定理的证明可以使用面积相等、平行线之间的特性等方法进行推导。

通过利用形状的对称性和角度之间的关系,可以得到同位角相等的结论。

同位角定理在几何学中有广泛的应用。

例如,可以用于证明两条直线平行,或者是求解直线与平行线夹角的度数等问题。

三、平行线与角的性质平行线与角的性质是平面几何中重要的定理之一,它建立了平行线与角度之间的联系。

在平面直角坐标系中,如果两条直线互相平行,则它们的斜率相等。

具体地说,设直线l₁的斜率为k₁,直线l₂的斜率为k₂,则有:如果l₁ || l₂,则k₁ = k₂。

单壿初中数学指津平面几何的知识与问题

单壿初中数学指津平面几何的知识与问题

一、概述数学是一门抽象而又具体的学科,而平面几何则是数学中的一个重要分支。

在单壿初中的数学学习中,平面几何的知识一直被视为难点和重点。

通过学习平面几何,学生可以培养数学思维和空间想象能力,从而提高数学解题的能力。

本文将深入探讨单壿初中数学中关于平面几何的知识与问题,旨在帮助学生更好地掌握该部分知识。

二、平面几何的基本概念1. 点、线、面在平面几何中,点是最基本的概念,它没有长度、宽度和高度。

而线是由一系列点按一定顺序连接而成,具有长度但没有宽度。

面则是由一系列线相互连接而成,具有长度和宽度,但没有厚度。

这些基本的几何概念构成了平面几何的基础。

2. 基本图形在平面几何中,常见的基本图形包括:三角形、四边形、多边形、圆等。

学生需要掌握这些基本图形的性质和特点,从而能够在解题中灵活运用。

三、平面几何的相关定理与证明1. 直角三角形的性质直角三角形是平面几何中的重要概念,其中包括毕达哥拉斯定理、勾股定理等。

学生需要通过理论推导和实际应用来掌握直角三角形的相关性质,并能够进行简单的证明。

2. 圆的性质圆是平面几何中的一个重要图形,其性质包括圆心、半径、直径、弧长、扇形等。

学生需要掌握这些性质,并能够灵活运用到具体问题中。

3. 同位角与同旁内角同位角是平面几何中的重要概念,其性质和应用也是单壿初中数学中的难点之一。

学生需要通过大量的练习和实例来掌握同位角的相关性质,并能够运用到各种实际问题中。

四、平面几何的解题技巧1. 图形的简化在解平面几何题目时,可以将复杂的图形进行简化,去除多余的线段和角度,从而更清晰地看出问题的本质。

2. 利用相似三角形在解决一些复杂的几何问题时,可以运用相似三角形的性质,通过比较各边的长度和角的大小,从而快速解决问题。

3. 应用逻辑思维平面几何题目往往需要一定的逻辑思维能力,学生需要通过举一反三的方法,灵活应用逻辑思维,解决具体问题。

五、平面几何与实际生活的通联1. 应用领域平面几何在生活中有着广泛的应用,如建筑设计、地图绘制、工程测量等领域都离不开平面几何的知识。

如何准确写出几何证明过程

如何准确写出几何证明过程

如何准确写出几何证明过程1.语言要规范。

写证明步骤要使用准确的几个语言,如因为和所以用符号“∵∴”,∵OA=OB,所以∠A=∠B等。

2.格式要规范。

比如,∵,∴符号上下要对齐,书写整齐,看起来赏心悦目。

3.步骤要规范。

步骤严谨,思路清晰,上下因果关系明确,条理清晰,步骤完整,不颠三倒四。

4.作辅助线时,几何语言描述要规范。

如,延长AB到点D使AB=BD。

初中几何证明入门教学方法•初中学生初学平面几何,由于研究对象从数变到形,研究对方法也从以运算为主转到以推理为主,再加上新概念大量集中出现,无论是在知识的学习、技能和能力的形成,还是在学习方法和学习习惯等方面,都存在着不适应的情况。

有些地区的初中生提前接触平面几何,更为平面几何入门增添了难度。

因此,引导学生学会几何证明是学习平面几何起始阶段的关键工作,将为进一步学习几何证明打下扎实的基础。

一、使学生初具论证的能力1、翻译能力学习几何,先让学生养成联系图形据理叙述的习惯。

几何语言可分为文字语言和符号语言两类,文字语言主要是术语和关键词,如“直线”、“角”等术语,“都”、“是”等关键词;符号语言是用符号来表示文字意义的,如平行、垂直、角等符号。

几何中的定义、定理、公理都是进行论证的依据,证明中要将这些文字语言结合图形翻译成符号语言。

举例2、识图能力几何证明的正确判断与推理往往是以正确的识图为先到的,学生不仅要学会看规范易懂的图形,还要善于观察复杂图形中的基本图形,会把复杂图形简单化。

3、思维能力几何证明的思维方法是多种多样的,在教学中要努力挖掘和开拓学生的思维能力。

对于初学者,开始要求不能太高,在寻找解题途径时由因索果,也可由果导因,多方位、多角度、多渠道去思考,学会在已知和未知之间架起通向成功的“桥梁”,善于在学习中不断积累、总结和完善,从而不断提高学生的分析问题和解决问题的能力。

二、引导学生学会书写证明过程1、画图几何题一般要画图,图形和题目内容要一致,书写过程中的字母和数字也要与图形一致,这样的图形能帮助学生理解题意,便于论证。

平面几何中几个重要定理的证明

平面几何中几个重要定理的证明

证明:如图,过点C作AB的平行线,交EF于点G.
因为CG // AB,所以 ————(1)
因为CG // AB,所以 ————(2)
由(1)÷(2)可得 ,即得 .
注:添加的辅助线CG是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG)使得命题顺利获证.
4.梅涅劳斯定理的逆定理及其证明
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
,即 ————(2)
由(1)+(2)得

所以AB·CD + BC·AD = AC·BD.
注:巧妙构造三角形,运用三角形之间的相似推得结论.这里的构造具有特点,不容易想到,需要认真分析题目并不断尝试.
三、托勒密定理
5.托勒密定理及其证明
定理:凸四边形ABCD是某圆的内接四边形,则有
AB·CD + BC·AD = AC·BD.
证明:设点M是对角线AC与BD的交点,在线段BD上找一点,使得 DAE = BAM.
因为 ADB= ACB,即 ADE = ACB,所以 ADE∽ ACB,即得
,即 ————(1)
五、欧拉定理
9.欧拉定理及其证明
定理:设ΔABC的重心、外心、垂心分别用字母G、O、H表示.则有G、O、H三点共线(欧拉线),且满足 .
证明(向量法):连BO并延长交圆O于点D。连接CD、AD、HC,设E为边BC的中点,连接OE和OC.则
———①
因为CD⊥BC,AH⊥BC,所以AH // CD.同理CH // DA.
另外,待定系数法在其中扮演了非常重要的角色,需注意掌握其用法.

空间几何的证明方法

空间几何的证明方法空间几何是研究点、线、面和立体等几何图形之间的相互关系和性质的数学学科。

证明是数学学科中重要的思维方法之一,通过证明可以推理出几何问题的解决方案。

本文将介绍一些常用的空间几何的证明方法,帮助读者更好地理解几何问题。

一、直线的垂直性证明方法在空间几何中,直线的垂直性是一个基本的概念。

直线A和直线B 互相垂直的证明方法可以采用以下步骤:1. 通过测量或给出直线A和直线B的斜率,判断直线A和直线B 是否互相垂直。

2. 在给出直线A和直线B的坐标系中,通过计算两条直线之间的夹角,以判断直线A和直线B是否互相垂直。

3. 如果直线A和直线B的斜率或夹角满足一定条件(如斜率的乘积等于-1),则可以推论直线A和直线B互相垂直。

二、平面的平行性证明方法在空间几何中,平面的平行性是一个重要的性质。

平面A和平面B 互相平行的证明方法可以采用以下步骤:1. 给出两个平面的方程,通过比较两个平面的法向量,判断平面A 和平面B是否互相平行。

2. 给出两个平面的法向量和一个共面点,通过计算两个法向量的向量积,以判断平面A和平面B是否互相平行。

3. 如果两个平面的法向量相等或平行,并且一个共面点在另一个平面上,则可以推论平面A和平面B互相平行。

三、立体的相似性证明方法在空间几何中,立体的相似性是用来描述两个立体形状相似程度的性质。

立体A和立体B相似的证明方法可以采用以下步骤:1. 给出立体A和立体B的形状特征,通过比较两个立体的边长、面积和体积,判断立体A和立体B是否相似。

2. 给出立体A和立体B的顶点坐标,通过计算两个立体的相对位置和形状变换,以判断立体A和立体B是否相似。

3. 如果两个立体的形状特征满足一定条件(如边长之比相等等),则可以推论立体A和立体B相似。

四、圆锥的相似性证明方法在空间几何中,圆锥的相似性是描述两个圆锥形状相似程度的性质。

圆锥A和圆锥B相似的证明方法可以采用以下步骤:1. 给出圆锥A和圆锥B的形状特征,通过比较两个圆锥的高度、底面半径和斜高,判断圆锥A和圆锥B是否相似。

浅谈平面几何中的几种证法

浅谈平面几何中的几种证法平面几何,又称“计算机几何”,是数学中重要的一个分支,其中包括圆弧、圆、多边形、面积和体积等计算方法。

在几何中,证明一种定理是比较困难的。

其中,证明定理的方法称为“证法”,是一种证明定理的工具,其中的一些通用的证法可以经常被广泛地应用于几何上,这些证法有:反证法、归纳法、替代法、变换法、数学归纳法以及数学证明法。

反证法是一种几何证法,其中,推论结论之前,先假设它是错误的,然后根据假设来推出相反的结论,如果得到的结论和原来的结论相矛盾的话,那么这个定理就被证明了。

归纳法是另一种平面几何证法,其中,一般需要把具体的实例推广为抽象的定理。

一般来说,原命题作为归纳的基础,我们需要先从有限的实例中推出共同的规律,然后根据这个规律来推出一般的定理,而归纳法就是以这个方法来证明定理。

替代法是另一种平面几何证法,指的是通过替换图形来改变图形的性质,然后用原来的性质来证明新的性质,比如把一个正方形替换成一个正方体,就可以用正方形的性质来证明正方体的性质。

变换法是另一种几何证法,它是一种通过坐标变换,从而得到定理的另一种方法。

在实践中,它首先把一个图形进行坐标变换,然后把变换后的图形进行拉伸、旋转或翻转,最后根据这个新图形的性质来证明原图形的性质。

数学归纳法是一种结合数学方法和归纳法得到定理的方法,一般是从假定某一类实例中推出一般性的定理,然后根据有限的原假设来推出一般的定理,而这一类实例的数量是有限的,因此有时需要用一些数学方法来证明一般性定理。

而数学证明法则是通过推导形式,来推出一般性定理的证明方法,一般需要用一些数学语言作为工具,比如数学归纳法、数学逻辑、代数、集合论等,以实现一般性定理的证明。

以上这些常用的几何证法,都是用来证明某个定理的,它们的共同点在于,要么用归纳的方法,推出一般性定理;要么用变换的方法,把某个定理改成另一种形式;要么用反证法,推出反面的结论;要么用数学证明法,推出更抽象的定理,这样,在平面几何中可以使用这些证法来证明定理,从而使几何计算更加方便、有效。

初二平面几何知识点

初二平面几何知识点一、关键信息1、平行线的性质与判定性质:两直线平行,同位角相等;内错角相等;同旁内角互补。

判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

2、三角形的相关知识三角形的内角和为 180 度。

三角形的外角等于不相邻的两个内角之和。

三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边。

3、全等三角形全等三角形的性质:全等三角形的对应边相等,对应角相等。

全等三角形的判定:SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角边)、HL(直角三角形斜边直角边)。

4、等腰三角形性质:等腰三角形两腰相等;两底角相等;顶角平分线、底边上的中线、底边上的高相互重合(三线合一)。

判定:有两边相等的三角形是等腰三角形;有两个角相等的三角形是等腰三角形。

5、等边三角形性质:三边相等,三个内角都等于 60 度。

判定:三边相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是 60 度的等腰三角形是等边三角形。

6、直角三角形性质:直角三角形两直角边的平方和等于斜边的平方(勾股定理)。

判定:如果三角形的三边长 a、b、c 满足 a²+ b²= c²,那么这个三角形是直角三角形。

二、知识点详细阐述11 平行线的性质与判定111 平行线的性质平行线是指在同一平面内,永不相交的两条直线。

当两条直线平行时,会产生一系列特殊的角度关系。

例如,若直线 a 平行于直线 b,被第三条直线 c 所截,那么同位角相等,即∠1 =∠2;内错角相等,即∠3 =∠4;同旁内角互补,即∠5 +∠6 = 180°。

112 平行线的判定判定两条直线是否平行,可以通过角度关系来判断。

若同位角相等,即∠1 =∠2,则直线 a 平行于直线 b;若内错角相等,即∠3 =∠4,则直线 a 平行于直线 b;若同旁内角互补,即∠5 +∠6 = 180°,则直线 a 平行于直线 b。

人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案)【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点.求证:PA PC PB为定值.【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变C.等分DB⌒ D.随C 点的移动而移动【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值.P AB CDAPB【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.(图1)(图2)【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值.【能力训练】1.如图,点A ,B 是双曲线xy 3上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则BOACE HG D A=+21S S _______.(第1题图) (第3题图) (第4题图)2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A.30°B.40°C.50°D.60°5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP .连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( ) A .在平分AB 的某直线上移动 B.在垂直AB 的某直线上移动 C.在弧AMB 上移动 D.保持固定不移动(第5题图) (第6题图) 6.如图,A ,B 是函数xky =图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A.3 B.6 C.9 D.127.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.A ABCDEFAB'(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转.旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.⑥⑤④③②①P(B )A PB9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.(第9题图) (第10题图)(第11题图)10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证: (1)2222DK CK BK AK +++是定值; (2)2222DA CD BC AB +++是定值.11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2.已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).P D CB A A折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D + )A. ∠1+∠2=900°-2α B. ∠1+∠2=1080°-2α C. ∠1+∠2=720°-α D. ∠1+∠2=360°-21α(第3题图) (第4题图)4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则弧MTN ( )A.在0°到30°变化B.在30°到60°变化C.保持30°不变D.保持60°不变5.如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8.若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A.5B.6C.7D.8(第5题图) 12GF EDCHBAB6.如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F .试证明:FC (AC +EC )为定值.7.如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M .设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N .证明线段AK 和BN 的乘积与M 点的选择无关.(第7题图) (第8题图)8.如图,设H 是等腰三角形ABC 两条高的交点,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.9.如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程.NKMB AC HCBA(第9题图) (第10题图) 10.已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变. 参考答案例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 .DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN =DN =12 x ,229CE x =- , 2214DN x = .∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM =CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP =163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OFPF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •P A +PC •AB ,而AB =BC =AC ,∴P A =PB +PC ,从而P A 2+ PB 2+ PC 2= (PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×()23=6.故P A 2+PB 2+PC 2为定值.A 级 1.4提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273 提示:1+3+5=9是等边三角形的高. 3.r 2提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =A A x y k ==6,∴S OEBF =OE •OF =x B •y B k ==6. 7.⑴略⑵当点P在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP •2a ,DP •a =BP •a +AP •2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a +2a ),从而21AP BPCP DP+=-+为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设F A 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD =2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD =6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1 ⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN=3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PMEC PC=,即()2112x x EC--=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )=()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989)⑵若四边形PQCA 为平行四边形,由于QC ∥P A ,故只要QC =P A 185. ⑶即可,而P A =18-4t ,CQ =t ,故18-4t =t ,得t =设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =P A +AF =P A +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6.5,∴t +2=244414255=.∴t = 4145-2. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224.由于224≈15,又0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,当t =4145-2时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP ⊥AB ,OP =12(EM +G N )= 12(AH +BH )=12AB .∴无论点C 在AB 同一侧的位置如何,E G 中点P 的位置不变.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас
例1
试证: 如果圆O1 , 圆O 2 , 圆O3 具有相等的
半径R,并通过同一点M外,还两两相交于A, B, C,则ABC的外接圆半径也等于R。
例1
试证: 如果圆O1 , 圆O 2 , 圆O3 具有相等的
半径R,并通过同一点M外,还两两相交于A, B, C,则ABC的外接圆半径也等于R。
例1
试证: 如果圆O1 , 圆O 2 , 圆O3 具有相等的
半径R,并通过同一点M外,还两两相交于A, B, C,则ABC的外接圆半径也等于R。
第五章 平面几何问题的证明
一、证题的一般思路
综合法 直接式 分析法 试悟式思路 归谬法 间接式反证法 穷举法 同一法 顿悟式思路
例1
试证: 如果圆O1 , 圆O 2 , 圆O3 具有相等的
半径R,并通过同一点M外,还两两相交于A, B, C,则ABC的外接圆半径也等于R。
相关文档
最新文档