高中数学公式总结-默写版文科
(完整版)文科高中数学公式大全(超全完美)

高中文科数学公式总结一、函数、导数1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.2. 真值表 常四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)3. 充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。
例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤ 5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。
(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
高中文科数学知识点全总结

高中文科数学知识点全总结1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。
(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。
(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。
(4)根与系数的关系:x1+x2=-b/ax1*x2=c/a,备注:韦达定理。
(5)判别式1)b2-4a=0,备注:方程存有成正比的两实根。
2)b2-4ac\ue0,注:方程有一个实根。
3)b2-4ac\uc0,备注:方程存有共轭复数根。
2、三角函数公式(1)两角和公式sin(a+b)=sinacosb+cosasinb;sin(a-b)=sinacosb-sinbcosa;cos(a+b)=cosacosb-sinasinb;cos(a-b)=cosacosb+sinasinb;tan(a+b)=(tana+tanb)/(1-tanatanb);tan(a-b)=(tana-tanb)/(1+tanatanb);ctg(a+b)=(ctgactgb-1)/(ctgb+ctga);ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。
(2)倍角公式tan2a=2tana/(1-tan2a);ctg2a=(ctg2a-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
(3)半角公式sin(a/2)=√((1-cosa)/2);sin(a/2)=-√((1-cosa)/2);cos(a/2)=√((1+cosa)/2);cos(a/2)=-√((1+cosa)/2);tan(a/2)=√((1-cosa)/((1+cosa));tan(a/2)=-√((1-cosa)/((1+cosa));ctg(a/2)=√((1+cosa)/((1-cosa));ctg(a/2)=-√((1+cosa)/((1-cosa))。
(完整版)高中文科数学公式汇总.docx

高中数学公式汇总(文科)一、三角函数、三角变换、解三角形、平面向量 1、同角三角函数的基本关系式2 2 sinsin cos 1,tan = .2、正弦、余弦的诱导公式k的正弦、 余弦,等于 的同名函数, 前面加上把 看成锐角时该函数的符号;k的正弦、余弦,等于 的余名函数,前2面加上把看成锐角时该函数的符号。
3、和角与差角公式sin( ) sin cos cos sin ;cos( ) cos cosmsin sin;tan()tantan.m1 tan tan4 、二倍角公式sin 2sin cos .cos 2cos2sin22cos21 1 2sin2tan22 tan.1 tan2公式变形:2 cos21 cos2 , cos21 cos2 ;2 2sin 21 cos2 , sin 21 cos2;25 、三角函数的周期 函 数y sin( x ) ,x ∈ R 及 函 数ycos( x) , x ∈ R(A, ω , 为常数,且 A ≠ 0,ω > 0) 的 周 期 T 2) , ; 函 数 y tan( x x k, k Z (A, ω, 为常数, 且 A ≠ 0,ω> 0)2的周期 T.6 函数 ysin( x) 的周期、最值、单调区间、图象变换 7、辅助角公式y a sin xb cosxa 2b 2 sin(x )其中 tan ba8、正弦定理a b c2R .sin Asin B sin C9、余弦定理a 2b 2c 2 2bc cos A ;b 2c 2 a 2 2ca cos B ; c 2a2b22ab cosC .10、三角形面积公式S1ab sin C1bc sin A 1ca sin B .2 2211、三角形内角和定理在△ ABC 中,有 A B CC (A B)二、函数、导数1、函数的单调性(1) 设 x 1、 x 2 [ a, b], x 1 x 2 那么f ( x 1 ) f ( x 2 )f ( x)在[ a, b] 上是增函数;f ( x 1 ) f ( x 2 ) 0 f ( x)在[a, b] 上是减函数 . (2) 设函数 y f ( x) 在某个区间内可导,若 f ( x) 0 ,则 f (x) 为增函数;若 f ( x) 0 ,则 f (x) 为减函数 .2 、函数的奇偶性x ,都有 f ( x)f ( x) ,则 f ( x)对于定义域内任意的 是偶函数;对于定义域内任意的 x ,都有 f ( x) f ( x) ,则 f ( x)是奇函数。
高中数学公式大全文科

高中数学公式大全文科1.代数运算公式:(1) 二项式公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,(a + b)(a - b) = a^2 - b^2(2) 平方差公式:(a + b)^2 - (a - b)^2 = 4ab(3) 证明等式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(4)等比数列求和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数(5) 二次根式相加:√a + √b = √(a + b + 2√ab)(6)三次方程和四次方程的求根公式2.几何公式:(1) 三角形面积公式:S = 1/2 * a * b * sinC,其中a,b为两边的长度,C为两边夹角的度数(2) 三角形边长关系:a/sinA = b/sinB = c/sinC = 2R,其中R为外接圆半径(3) 三角函数的和与差的公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB,tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)(4) 三角函数的倍角公式:sin2A = 2sinAcosA,cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A,tan2A = (2tanA)/(1 - tan^2A)(5)圆的面积公式:S=πr^2,其中r为半径(6)圆的周长公式:C=2πr,其中r为半径3.概率与统计公式:(1)加法原理:P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A∩B)为事件A与事件B同时发生的概率(2)乘法原理:P(A∩B)=P(A)×P(B,A),其中P(A)为事件A发生的概率,P(B,A)为在事件A发生的条件下事件B发生的概率(3)期望:E(X)=μ=∑(xP(x)),其中X为随机变量,x为随机变量X 的取值,P(x)为X取值为x的概率(4) 方差:Var(X) = σ^2 = E((X - μ)^2),其中E为期望,σ^2为方差,(X - μ)^2为随机变量X与其期望之差的平方以上是高中数学文科相关的一些公式,但由于篇幅有限,可能并未包含所有相关的公式。
高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<−上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>−上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =−,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f −=−,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y −'=−.*二次函数: (1)顶点坐标为24(,)24b ac b a a −−;(2)焦点的坐标为241(,)24b ac b a a−+− 4、几种常见函数的导数 ①'C 0=;②1')(−=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '−=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v −=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa−==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨−<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
高中人教版数学公式大全,文科

高中人教版数学公式大全,文科一、几何公式:1、直角三角形的面积:S=1/2ab;2、球的表面积和体积:S=4πr2;V=4/3πr3;3、圆的周长和面积:C=2πr;S=πr2;4、正n边形顶点角:A=360/n;5、正n边形内角总和:A =(n-2)*180°;6、三棱锥体、四棱锥体的表面积和体积:S=a2+πah;V=1/3ah2;7、四面体、六面体的表面积和体积:S=a2√3;V=a3/6√2。
二、勾股定理:1、勾股定理:a2+b2=c2。
2、数学归纳法:利用原理归纳出许多命题,保证在一般情况下同样成立。
三、系数法:1、第一型:ax+by=c;2、第二型:ax2+bx+c=0;3、第三型:ax3+bx2+cx+d=0。
四、分式:1、分式加减法:分子分母分别相加、减。
2、分式乘法:分子分母各自乘以另一分式的分子分母,最后约分即可。
3、分式除法:分子乘以另一分式的分母,分母乘以另一分式的分子,最后约分即可。
五、二次函数:1、一元二次函数的基本性质:y = ax2+bx+c ;2、最高点位置:x=-b/2a;3、函数图像的性质:a>0,函数图像沿y轴双单减;a<0,函数图像沿y轴双单增;4、“乘根”公式:y=(√ax2+bx+c)/2+d;5、方程组:x+y=a,x2+xy+y2=b。
六、三角函数:1、正弦定理:a:b:c=sinA:sinB:sinC;2、余弦定理:a2=b2+c2-2bc cos A。
3、正弦函数y=A sin(ωt+φ) ;4、余弦函数:y=A cos(ωt+φ)。
七、矩形体:1、矩形面积:S=ab;2、棱形面积:S=边长×其高;3、梯形面积:S=1/2(a+b)h;4、矩形、梯形体积:V=abh;5、棱形体积:V=边长×其面积。
高中文科数学公式大全(完整完全精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方式是:解方程()0f x '=得0x .当()00f x '=时:① 若是在0x 周围的左侧()0f x '>,右边()0f x '<,那么()0f x 是极大值; ② 若是在0x 周围的左侧()0f x '<,右边()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.八、根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.九、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_____________;. _____________;.
11、图像变化
(1) f ( x) f ( x a) : ___________________________________;
(2) f ( x) f ( x) a : ___________________________________;
6、直线的斜率为 k=_________=____________. 7 、 直 线 方 程 的 几 种 形 式 : 点 斜 式 : _______________________ , 斜 截 式 : _______________________ 截距式: __________________ , 一般式: _______________________.
④ 常考题型( 1)
m n p q _____________________
( 3) 两个非零向量垂直的充要条件 a/ b __________ _____ __________ _____
五、
数列
④ 若点 P1( x1 , y1 ), P2 ( x2 , y2 ), P( x, y) ,点 P 分有向线段 P1 P2 成定比λ,则: λ =___________; x =_____________, y =________________. 若 A(x1, y1 ), B( x2 , y2 ), C (x3, y3 ) ,则△ ABC的重心 G的坐标是 ____________________.
10、导数:
(1) C
__________;(2)
'
( xn )
(4) (cos x) _____________; (5) (ln x)
(7) (e x ) _____________;(8) (a x )
____________;(3) (sin x) _____________;(6) (log a x )
_____________________
作用:这是证明一个数列是等差数列或等比数列的方法
通
公项
式 公 an __________ ___ ______________
式
an __________ ___ __________ ____
前
n sn __________ ___ __________ _____
1、坐标运算:设 a x1, y1 , b x2 , y2 ,则 a b __________ ___ 设 A、 B 两点的坐标分别为( x1, y1),( x2,y2),则 AB _______________ .
2.实数与向量的积的运算律 :
a _________,
a _________ a b _________
设 a x, y ,则λ a
3.平面向量的数量积:
x, y _________ .
定义: a b __________ _______ ____________________ _ ,
2
0 a _______ ; a _______ ; | a | _______
4. 重要定理、公式 :
( 1) 平面向量的基本定理
(2) 若 f (x a) f (x a) ,则 _______________; 若 f (x) f (x a) ,则 _______________;
(3) 若 f (x a)
1 , 则 _______________; 若 ( x) ,则 _______________;
偶函数: ______________________________________; 其图像 _______________________;
大于
不大于
至少有 n 个
至多有( n 1)个
(3) 若函数 y f ( x) 是奇函数,且在 x 0 处有定义,则 _____________;
(4) 多项式函数 P (x) an x n an 1x n 1
_____________;
_____________; log a M log a N
_____________; log an M m
三、
三角函数
1、 若点 P( x, y) ,点 P 到原点的距离记为 r ,则 sin =_____, cos =_____ ,tan =____。
2、 同角三角函数的关系中, 平方关系是: __________________ ;倒数关系是: __________________ ;相除关系是: __________________.
3、 诱导公式可用十个字概括为: ______________________________________; 例如计算:
4、 函 数 y A sin( x ) B(其中 A 0, 0)的 最 大 值 是 _________ , 最 小 值 是
_________,周期是 _________ ,其图象的对称轴是直线 _________。 5、 三角函数的单调区间:
原结论
反设词
原结论
反设词
是
不是
至少有一个
一个也没有
二、
函数
1、 二 次 函 数 y ax 2 bx c 的 图 象 的 对 称 轴 方 程 是 ______________ , 顶 点 坐 标 是
___________ 。用待定系数法求二次函数的解析式时,解析式的设法有
3 种形式,即
____________________ ,____________________ 和 ____________________ .
5、定义域:
6、相同函数: _________________________,_____________________; 7、函数图象:
(1) 指数函数: (2) 对数函数: (3) 幂函数:
(4)三角函数
(4) ao _____________; a log a N _____________; log a ______ 0 ; log a______ 1 .
如果 e1 和 e2 是同一平面内的两个不共线向量 , 那么对该平面内的任一向量 a , 有且
③ 直角坐标平面内的两点间距离公式: AB ________________________.
只有一对实数 1, 2 , 使 a ______________
( 2) 两个向量平行的充要条件
a// b _______________ _______________
项
sn _____________
和
① ________________________ (等差中项)
________________________ (等比中项)
② 性
m n p q _____________________
质③
_____________________________ 成等差数列
(3) f ( x) f (| x |) : ___________________________________;
(4) f ( x) | f ( x) | :___________________________________;
8、对称性与周期性:
(1) 若 f (a x) f (a x) ,则 _______________; 若 f (a x) f (b x) ,则 _______________;
y sin x 的 递 增 区 间 是 ____________________ (k Z ) , 递 减 区 间 是 _________-
___________ (k Z ) ;
y cosx 的 递 增 区 间 是 ____________________ (k Z ) , 递 减 区 间 是 ____________________ (k Z ) ,
8、 点 P(x0 , y0) 到直线 l: Ax By C 0 的距离: _______________________
等差数列
等比数列
10、两平行直线 l1: Ax By C1 0, l2: Ax By C 2 0 距离 _______________________
定
义
_____________________
2、 f ( x) ax2 bx c 0 恒成立的充要条件是 _________________;
f ( x) ax 2 bx c 0 恒成立的充要条件是 _____________________;
f ( x) ax 2 bx c 0 恒成立的充要条件是 _________________;
f ( x) ax 2 bx c 0 恒成立的充要条件是 _________________;
3、单调性 单调增:① _________________________________________; ② ___________________________; 单调减:① _________________________________________; ② ___________________________; 4、奇偶性 (1) 前提: (2) 奇函数: ______________________________________; 其图像 _______________________;
a0 的奇偶性:
对所有 x ,成立
存在某 x ,不成立
p或q
p且 q
多项式函数 P(x) 是奇函数 ______________________________________;. 多项式函数 P(x) 是偶函数 ______________________________________;.
5、充要条件 ( 1)充分条件: ____________________ ( 2)必要条件: ____________________ ( 3)充要条件: ____________________.