高中数学2-1_1曲线与方程习题新人教A版-1

合集下载

2.1曲线方程-人教A版高中数学选修2-1课时练习

2.1曲线方程-人教A版高中数学选修2-1课时练习

高二年级(数学)学科习题卷曲线方程 一、选择题:1.已知命题“曲线C 上的点的坐标是方程f (x ,y )=0的解”是正确的,则下列命题中正确的是( ) A .满足方程f (x ,y )=0的点都在曲线C 上 B .方程f (x ,y )=0是曲线C 的方程 C .方程f (x ,y )=0所表示的曲线不一定是C D .以上说法都正确2.方程(x 2-4)(y 2-4)=0表示的图形是 ( )A .两条直线B .四条直线C .两个点D .四个点3.方程(x 2-4)2+(y 2-4)2=0表示的图形是A .两个点B .四个点C .两条直线D .四条直线4.已知A (-1,0),B (1,0),C 为平面内的一动点,且满足||2||AC BC =,则点C 的轨迹方程为 ( )A .22610x y x +++=B .22610x y x +-+=C .2210103x y x +-+= D .2210103x y x +++=5.方程x +|y -1|=0表示的曲线是 ( )6.已知A (1,0),B (-1,0),动点M 满足|MA |-|MB |=2,则点M 的轨迹方程是( ) A .011()y x =-≤≤ B .0(1)y x =≥ C .1)0(y x =≤- D .0(||1)y x =≥7.已知A (-2,0)、B (2,0),△ABC 的面积为10,则顶点C 的轨迹是( )A .一个点B .两个点C .一条直线D .两条直线二、填空题:8.等腰三角形底边的两个顶点是B (2,1),C (0,-3),则另一顶点A 的轨迹方程是______________. 9.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足:4OP OA ⋅=,则动点P 的轨迹方程为______________.10.已知O 为坐标原点,动点M 在椭圆C :2215x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足5NP NM =,则点P 的轨迹方程为______________.三、解答题:11.已知A 、B 分别是直线y x =和y x =上的两个动点,线段AB 的长为P 是AB 的中点,求动点P 的轨迹C 的方程.12.已知点P (2,2),圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及POM △的面积.13.两个定点(2,2),(0,2)P Q -,长为2的线段AB 在直线y x =上移动,求直线PA ,QB 的交点M 的轨迹方程。

2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程

2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程

第二章圆锥曲线与方程2.1 曲线与方程*2.1.1 曲线与方程2.1.2 求曲线的方程基础过关练题组一曲线与方程的概念1.已知曲线C的方程为x3+x+y-1=0,则下列各点中在曲线C上的点是( )A.(0,0)B.(-1,3)C.(1,1)D.(-1,1)2.(2018天津耀华中学高二上学期月考)直线x-y=0与曲线xy=1的交点坐标是( )A.(1,1)B.(-1,-1)C.(1,1),(-1,-1)D.(0,0)3.已知0≤α<2π,点P(cos α,sin α)在曲线(x-2)2+y2=3上,则α的值为( )A.π3 B.5π3C.π3或5π3D.π3或π64.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2√x”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件题组二 方程的曲线5.方程4x 2-y 2+6x-3y=0表示的图形是( ) A.直线2x-y=0 B.直线2x+y+3=0C.直线2x-y=0和直线2x+y+3=0D.直线2x+y=0和直线2x-y+3=06.下列四个选项中,方程与曲线相符合的是( )7.方程|x|+|y|=1表示的曲线所围成图形的面积为 .题组三 求曲线的方程8.设A 为圆(x-1)2+y 2=1上的动点,PA 是圆的切线,且|PA|=1,则点P 的轨迹方程是( )A.(x-1)2+y 2=2B.(x-1)2+y 2=4C.y 2=2xD.y 2=-2x9.在平面直角坐标系中,O 为坐标原点,点A(1,0),B(2,2).若点C 满足OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ ),其中t∈R ,则点C 的轨迹方程为 .10.(2018湖南岳阳一中高二上学期期末)已知M 为直线l:2x-y+3=0上的一动点,A(4,2)为一定点,点P 在直线AM 上运动,且AP ⃗⃗⃗⃗⃗ =3PM ⃗⃗⃗⃗⃗⃗ ,求动点P 的轨迹方程.11.已知△ABC 中,AB=2,AC=√2BC. (1)求点C 的轨迹方程; (2)求△ABC 的面积的最大值.能力提升练一、选择题1.(2018海南海口一中高二上学期月考,★★☆)方程xy 2+x 2y=1所表示的曲线( )A.关于x 轴对称B.关于y 轴对称C.关于原点中心对称D.关于直线y=x 对称 2.(2020鄂东南九校高二期中联考,★★☆)方程(3x-y+1)(y-√1-x 2)=0表示的曲线为( ) A.一条线段和半个圆 B.一条线段和一个圆 C.一条直线和半个圆 D.两条线段3.(2020北京朝阳高三期末,★★☆)笛卡儿、牛顿都研究过方程(x-1)(x-2)(x-3)=xy,关于这个方程的曲线有下列说法:①该曲线关于y 轴对称;②该曲线关于原点对称;③该曲线不经过第三象限;④该曲线上有且只有三个点的横、纵坐标都是整数.其中正确的是( ) A.②③ B.①④ C.③ D.③④4.(2019江西南昌高三开学摸底考试,★★☆)在平面直角坐标系xOy 中,已知M(-1,2),N(1,0),动点P 满足|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN ⃗⃗⃗⃗⃗⃗ |,则动点P 的轨迹方程是( )A.y 2=4xB.x 2=4yC.y 2=-4xD.x 2=-4y5.(★★☆)方程x 2+y 2=1(xy<0)表示的曲线形状是( )6.(2018吉林长春五县期末,★★★)已知定点M(-3,0),N(2,0),若动点P满足|PM|=2|PN|,则点P的轨迹所包围的图形的面积等于( )A.100π9 B.142π9C.10π3D.9π二、填空题7.(2020贵州贵阳高二期末,★★☆)以古希腊数学家阿波罗尼斯命名的阿波罗尼斯圆,是指到两定点的距离之比为常数λ(λ>0,λ≠1)的动点M的轨迹.已知A(-2,0),B(2,0),动点M满足|MA||MB|=√2,此时阿波罗尼斯圆的方程为.8.(2020北京房山高二期末,★★☆)已知曲线W的方程为|y|+x2-5x=0.①请写出曲线W的一条对称轴方程: ;②曲线W上的点的横坐标的取值范围是.三、解答题9.(2019贵州铜仁一中高二入学考试,★★☆)已知动点M到点A(-1,0)与点B(2,0)的距离之比为2∶1,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点P(5,-4)作曲线C的切线,求切线方程.10.(2019上海七宝中学高二期末,★★★)在平面直角坐标系xOy中,曲线Γ:x2+y2=1(y≥0).(1)如图1,点B为曲线Γ上的动点,点A(2,0),求线段AB的中点的轨迹方程;(2)如图2,点B为曲线Γ上的动点,点A(2,0),将△OAB绕点A顺时针旋转90°得到△DAC,求线段OC长度的最大值.答案全解全析 基础过关练1.B 点P(x 0,y 0)在曲线f(x,y)=0上⇔f(x 0,y 0)=0.经验证知点(-1,3)在曲线C 上.2.C 由{x -y =0,xy =1,得{x =1,y =1或{x =-1,y =-1.故选C.3.C 将点P 的坐标代入方程(x-2)2+y 2=3,得(cos α-2)2+sin 2α=3,解得cos α=12.又0≤α<2π,所以α=π3或5π3.4.B 设M(x 0,y 0),由点M 的坐标满足方程y=-2√x ,得y 0=-2√x 0,∴y 02=4x 0,∴点M 在曲线y 2=4x 上.反之不成立,故选B.5.C ∵4x 2-y 2+6x-3y=(2x+y)(2x-y)+3(2x-y)=(2x-y)(2x+y+3)=0, ∴原方程表示直线2x-y=0和2x+y+3=0.6.D 对于A,点(0,-1)满足方程,但不在曲线上,排除A;对于B,点(1,-1)满足方程,但不在曲线上,排除B;对于C,由于曲线上第三象限的点的横、纵坐标均小于0,不满足方程,排除C.故选D.7.答案 2解析 方程表示的图形是边长为√2的正方形(如图所示),其面积为(√2)2=2.8.A 设圆(x-1)2+y 2=1的圆心为C,半径为r,则C(1,0),r=1,依题意得|PC|2=r 2+|PA|2,即|PC|2=2,所以点P 的轨迹是以C 为圆心,√2为半径的圆,因此点P 的轨迹方程是(x-1)2+y 2=2. 9.答案 y=2x-2解析 设点C(x,y),则OC ⃗⃗⃗⃗⃗ =(x,y).因为点A(1,0),B(2,2),所以OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ )=(1+t,2t),所以{x =t +1,y =2t ,消去t,得点C 的轨迹方程为y=2x-2. 10.解析 设M(x 0,y 0),P(x,y), 则AP⃗⃗⃗⃗⃗ =(x-4,y-2),PM ⃗⃗⃗⃗⃗⃗ =(x 0-x,y 0-y), 由题意可得{x -4=3(x 0-x ),y -2=3(y 0-y ),所以{x 0=4x -43,y 0=4y -23.因为点M(x 0,y 0)在直线2x-y+3=0上, 所以2×4x -43-4y -23+3=0,即8x-4y+3=0,所以点P 的轨迹方程为8x-4y+3=0.11.解析 (1)以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,则A(-1,0),B(1,0).设C(x,y),由AC=√2BC,得(x+1)2+y 2=2[(x-1)2+y 2],即(x-3)2+y 2=8,又在△ABC 中,y≠0,所以点C 的轨迹方程为(x-3)2+y 2=8(y≠0).(2)因为AB=2,所以S △ABC =12×2×|y|=|y|.因为(x-3)2+y 2=8(y≠0), 所以0<|y|≤2√2,所以S △ABC ≤2√2,即△ABC 的面积的最大值为2√2.能力提升练一、选择题1.D 设P(x 0,y 0)是曲线xy 2+x 2y=1上的任意一点,则x 0y 02+x 02y 0=1.设点P 关于直线y=x 的对称点为P',则P'(y 0,x 0),因为y 0x 02+y 02x 0=x 0y 02+x 02y 0=1,所以P'在曲线xy 2+x 2y=1上,故该曲线关于直线y=x 对称.2.A 由方程(3x-y+1)(y-√1-x 2)=0得y=√1-x 2(y≥0)或3x-y+1=0,且满足-1≤x≤1,即x 2+y 2=1(y≥0)或3x-y+1=0(-1≤x≤1),∴方程(3x-y+1)(y-√1-x 2)=0表示一条线段和半个圆.3.C 将x=-x 代入得到(x+1)(x+2)(x+3)=xy,方程改变,故该曲线不关于y 轴对称; 将x=-x,y=-y 代入得到(x+1)(x+2)(x+3)=-xy,方程改变,故该曲线不关于原点对称; 当x<0,y<0时,(x-1)(x-2)(x-3)<0,xy>0,显然方程不成立,∴该曲线不经过第三象限;令x=-1,易得y=24,即(-1,24)在曲线上,同理可得(1,0),(2,0),(3,0)也在曲线上,∴该曲线上有且只有三个点的横、纵坐标都是整数是错误的.4.A 设P(x,y),因为M(-1,2),N(1,0),所以PM ⃗⃗⃗⃗⃗⃗ =(-1-x,2-y),ON ⃗⃗⃗⃗⃗⃗ =(1,0),PN ⃗⃗⃗⃗⃗⃗ =(1-x,-y),因为|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN⃗⃗⃗⃗⃗⃗ |,所以|1+x|=√(1-x )2+(-y )2, 整理得y 2=4x.5.C 方程x 2+y 2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部分,故选C. 6.A 设P(x,y),则由|PM|=2|PN|,得(x+3)2+y 2=4[(x-2)2+y 2],化简,得3x 2+3y 2-22x+7=0, 即(x -113)2+y 2=1009,所以所求图形的面积S=100π9.二、填空题7.答案 x 2+y 2-12x+4=0 解析 设M(x,y),因为|MA ||MB |=√2, 所以√(x+2)2+y 2√(x -2)+y 2=√2,整理得x 2+y 2-12x+4=0.8.答案 ①y=0(或x =52) ②[0,5]解析 ①由W 的方程知,若(x,y)是曲线上的点,则(x,-y)也是曲线上的点,因此直线y=0是曲线W的一条对称轴.同理,点(52-x,y)与(52+x,y)也都是曲线上的点,因此直线x=52也是曲线W的一条对称轴.②由|y|+x2-5x=0得|y|=-x2+5x,因为|y|≥0,所以-x2+5x≥0,解得0≤x≤5.三、解答题9.解析(1)设动点M的坐标为(x,y),则|MA|=√(x+1)2+y2,|MB|=√(x-2)2+y2所以√(x+1)2+y2√(x-2)+y2=2,化简得(x-3)2+y2=4.因此,动点M的轨迹方程为(x-3)2+y2=4.(2)当过点P的直线斜率不存在时,直线方程为x-5=0,圆心C(3,0)到直线x-5=0的距离等于2,此时直线x-5=0与曲线C相切; 当过点P的切线斜率存在时,不妨设斜率为k,则切线方程为y+4=k(x-5),即kx-y-5k-4=0,由圆心到切线的距离等于半径,得√k2+1=2,解得k=-34.所以切线方程为3x+4y+1=0.综上所述,切线方程为x-5=0和3x+4y+1=0.10.解析(1)设点B的坐标为(x0,y0),则y0≥0,设线段AB的中点为M(x,y), 因为点B在曲线Γ上,所以x02+y02=1.①因为M为线段AB的中点,所以{x=x0+22,y=y02,则{x0=2x-2,y0=2y,代入①式得(2x-2)2+4y2=1,化简得(x-1)2+y2=14,其中y≥0.则线段AB的中点的轨迹方程为(x-1)2+y2=14(y≥0).(2)如图所示,将△OAB绕点A顺时针旋转90°得到△DAC,易知点D(2,2),结合图形可知,点C在曲线(x-2)2+(y-2)2=1(x≥2)上运动,则问题转化为求原点O到曲线(x-2)2+(y-2)2=1(x≥2)上一点C的距离的最大值,连接OD并延长交曲线(x-2)2+(y-2)2=1(x≥2)于点C',当点C与C'重合时,|OC|取得最大值,且|OC|max=|OD|+1=2√2+1.。

高中数学人教A版选修2-1数学:2.1.1《曲线和方程》测试(新人教A版选修2-1).docx

高中数学人教A版选修2-1数学:2.1.1《曲线和方程》测试(新人教A版选修2-1).docx

曲线和方程学习目标:1、了解平面直角坐标中“曲线的方程”和“方程的曲线”含义.2、会判定一个点是否在已知曲线上.一、知识回顾并引题:二、自学课本7573-P 并记下重点,积极思考问题:三、自我检测:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗?2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C 。

中线O AO (为原点)的方程是0=x 吗?为什么?3、已知方程2522=+by ax 的曲线经过点)35,0(A 和点)1,1(B ,求a 、b 的值。

四、提问、答疑,共同解决:五、例题分析:1、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是 ( )A.曲线C 的方程是(,)0f x y =B.方程(,)0f x y =的曲线是CC.坐标不满足方程(,)0f x y =的点都不在曲线C 上D. 坐标满足方程(,)0f x y =的点都在曲线C 上2、已知00(,)P x y 在曲线(,)0f x y =上,P 也在曲线(,)0g x y =上,求证:点P 在曲线(,)(,)0f x y g x y λ+=上(R λ∈)六、课后作业:1、点)2,1(-A ,)3,2(-B ,)10,3(C 是否在方程0122=++-y xy x 的图形上?2、解答下列问题,并说明理由:(1)点12(3,4),(2,3)P P -是否在方程2225x y +=所表示的曲线上;(2)已知方程 2225x y +=表示的曲线F 经过点(2,)A m ,求m 的值。

3、(1)求方程c bx ax y ++=2的曲线经过原点的充要条件是 。

(2)求方程222)()(r b y a x =-+-的曲线经过原点的充要条件 。

4、(1)已知:[0,2)απ∈,点(c o s ,s i n )P αα在曲线22(2)3x y -+=上,则α的值是 ; (2)方程2222(4)(4)0x y -+-=表示的图形是 。

人教版 高中数学【选修 2-1】2.1曲线与方程课后习题

人教版 高中数学【选修 2-1】2.1曲线与方程课后习题

人教版高中数学精品资料【优化设计】高中数学 2.1曲线与方程课后习题新人教A版选修2-1课时演练·促提升A组1.“曲线C上的点的坐标都是方程f(x,y)=0的解”是“方程f(x,y)=0是曲线C的方程”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:“曲线C上的点的坐标都是方程f(x,y)=0的解”时,不一定能得到“方程f(x,y)=0是曲线C的方程”,但反之,如果“方程f(x,y)=0是曲线C的方程”,必能得出“曲线C上的点的坐标都是f(x,y)=0的解”.答案:B2.方程y=3x-2(x≥1)表示的曲线为()A.一条直线B.一条射线C.一条线段D.不能确定解析:方程y=3x-2表示的曲线是一条直线,当x≥1时,它表示一条射线.答案:B3.曲线xy=2与直线y=x的交点是()A.()B.(-,-)C.()或(-,-)D.不存在解析:由解得即交点坐标为()或(-,-).答案:C4.如图所示的曲线方程是()A.|x|-y=0B.x-|y|=0C.-1=0D.-1=0解析:∵(0,0)点在曲线上,∴C,D不正确.∵x≥0,y∈R,∴B正确.答案:B5.一动点C在曲线x2+y2=1上移动时,它和定点B(3,0)连线的中点P的轨迹方程是()A.(x+3)2+y2=4B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.+y2=1解析:设C(x0,y0),P(x,y).依题意有所以因为点C(x0,y0)在曲线x2+y2=1上,所以(2x-3)2+(2y)2=1,即点P的轨迹方程为(2x-3)2+4y2=1.答案:C6.如果方程ax2+by2=4的曲线过点A(0,-2),B,则a=,b=.解析:由已知解得答案:4 17.已知动点M到点A(9,0)的距离是M到点B(1,0)的距离的3倍,则动点M的轨迹方程是.解析:设M(x,y),则|MA|=,|MB|=.由|MA|=3|MB|,得=3,化简得x2+y2=9.答案:x2+y2=98.已知曲线C的方程是y2-xy+2x+k=0.(1)若点(1,-1)在曲线C上,求k的值;(2)当k=0时,判断曲线C是否关于x轴、y轴、原点对称?解:(1)因为点(1,-1)在曲线C上,所以(-1)2-1×(-1)+2×1+k=0,解得k=-4.(2)当k=0时,曲线C的方程为y2-xy+2x=0.以-x代替x,y不变,方程化为y2+xy-2x=0,所以曲线C不关于y轴对称;以-y代替y,x不变,方程化为y2+xy+2x=0,所以曲线C不关于x轴对称;同时以-x代替x,-y代替y,方程化为(-y)2-(-x)(-y)+2(-x)=0,即y2-xy-2x=0,所以曲线C不关于原点对称.9.已知两点A(,0),B(-,0),点P为平面内一动点,过点P作y轴的垂线,垂足为Q,且=2,求动点P的轨迹方程.解:设动点P的坐标为(x,y),则点Q的坐标为(0,y).于是=(-x,0),=(-x,-y),=(--x,-y),=x2-2+y2.由=2,得x2-2+y2=2x2,即y2-x2=2.故动点P的轨迹方程为y2-x2=2.B组1.方程x2+xy=x表示的曲线是()A.一个点B.一条直线C.两条直线D.一个点和一条直线解析:∵x2+xy=x可化为x(x+y-1)=0,即x=0或x+y-1=0,∴原方程表示两条直线.答案:C2.已知A(-1,0),B(2,4),△ABC的面积为10,则动点C的轨迹方程是()A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=0解析:|AB|==5.∵S△ABC=|AB|·h=10,∴h=4,即顶点C到AB所在直线的距离为4,易求AB所在直线的方程为4x-3y+4=0.设点C(x,y),则=h=4,∴4x-3y+4=±20.故选B.答案:B3.方程|x|+|y|=1所表示的曲线C围成的图形的面积为.解析:方程|x|+|y|=1所表示的曲线C围成的图形是正方形ABCD(如图),其边长为.故方程|x|+|y|=1所表示的曲线C围成的图形的面积为2.答案:24.已知Rt△ABC,|AB|=2a(a>0),求直角顶点C的轨迹方程.解法一:以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则有A(-a,0),B(a,0),设顶点C(x,y).由△ABC是直角三角形可知|AB|2=|AC|2+|BC|2,即(2a)2=(x+a)2+y2+(x-a)2+y2,化简得x2+y2=a2.依题意可知,x≠±a.故所求直角顶点C的轨迹方程为x2+y2=a2(x≠±a).解法二:以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则A(-a,0),B(a,0).∵∠ACB=90°,∴点C在以AB为直径的圆上.∵以AB为直径的圆的方程为x2+y2=a2,又∵C与A,B不重合,∴x≠±a.∴顶点C的轨迹方程为x2+y2=a2(x≠±a).5.若直线y=kx+1与曲线mx2+5y2-5m=0(m>0)恒有公共点,求m的取值范围.解:将y=kx+1代入mx2+5y2-5m=0,得(m+5k2)x2+10kx+5(1-m)=0.由题意得,该方程对k∈R总有实数解,∴Δ=20m(m-1+5k2)≥0对k∈R恒成立.∵m>0,∴m≥1-5k2恒成立.∵1-5k2≤1,∴m≥1.故m的取值范围是[1,+∞).6.已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,P是AB的中点.求动点P的轨迹C的方程.解:设P(x,y),A(x1,y1),B(x2,y2).∵P是线段AB的中点,∴∵A,B分别是直线y=x和y=-x上的点,∴y1=x1,y2=-x2,∴又∵|AB|=2,∴(x1-x2)2+(y1-y2)2=12.∴12y2+x2=12.∴动点P的轨迹方程为+y2=1.。

人教A版高中数学选修2-1课时练习-曲线与方程

人教A版高中数学选修2-1课时练习-曲线与方程

课时练习(六) 曲线与方程(建议用时:60分钟)一、选择题1.“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是“曲线C 的方程是f (x ,y )=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [“曲线C 的方程是f (x ,y )=0”包括“曲线C 上的点的坐标都是方程f (x ,y )=0的解”和“以方程f (x ,y )=0的解为坐标的点都在曲线C 上”两个方面,所以“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是“曲线C 的方程是f (x ,y )=0”的必要不充分条件,故选B .]2.如图所示,方程y =|x |x2表示的曲线是( )A B C DB[因为y =|x |x 2=⎩⎪⎨⎪⎧1x,x >0,-1x ,x <0,所以函数值恒为正,且在(-∞,0)上单调递增,在(0,+∞)上单调递减.故选B .]3.到坐标原点的距离是到x 轴距离2倍的点的轨迹方程是( ) A .y =±3x B .y =33x C .x 2-3y 2=1D .x 2-3y 2=0D [设点的坐标为(x ,y ),则x 2+y 2=2|y |,整理得x 2-3y 2=0.]4.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点M 的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1C [设M (x ,y ),则P (2x,2y +1). ∵P 在曲线2x 2-y =0上, ∴2×(2x )2-(2y +1)=0, 即8x 2-2y -1=0, 即2y =8x 2-1,故选C .]5.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .y 2=2xB .(x -1)2+y 2=4C .y 2=-2xD .(x -1)2+y 2=2D [如图,设P (x ,y ),圆心为M (1,0).连接MA ,则MA ⊥P A ,且|MA |=1,又∵|P A |=1, ∴|PM |=|MA |2+|P A |2 =2. 即|PM |2=2, ∴(x -1)2+y 2=2.] 二、填空题6.方程(x -1)2+y -2=0表示的是________. 点(1,2) [由题意知,⎩⎨⎧ x -1=0,y -2=0,即⎩⎨⎧x =1,y =2.所以方程(x -1)2+y -2=0表示点(1,2).]7.设命题甲:点P 的坐标适合方程f (x ,y )=0,命题乙:点P 在曲线C 上,命题丙:点Q 坐标不适合f (x ,y )=0,命题丁:点Q 不在曲线C 上,已知甲是乙的必要条件,但不是充分条件,那么丙是丁的________条件.充分不必要 [由甲是乙的必要不充分条件知,曲线C 是方程f (x ,y )=0的曲线的一部分,则丙⇒丁,但丁丙,因此丙是丁的充分不必要条件.]8.已知定点F (1,0),动点P 在y 轴上运动,点M 在x 轴上,且PM →·PF →=0,延长MP 到点N ,使得|PM →|=|PN →|,则点N 的轨迹方程是________.y 2=4x [由于|PM →|=|PN →|,则P 为MN 的中点.设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,由PM →·PF →=0,得⎝ ⎛⎭⎪⎫-x ,-y 2·⎝ ⎛⎭⎪⎫1,-y 2=0,所以(-x )·1+⎝ ⎛⎭⎪⎫-y 2·⎝ ⎛⎭⎪⎫-y 2=0,则y 2=4x ,即点N 的轨迹方程是y 2=4x .]三、解答题9.已知方程x 2+4x -1=y .(1)判断点P (-1,-4),Q (-3,2)是否在此方程表示的曲线上; (2)若点M ⎝ ⎛⎭⎪⎫m 2,m -1在此方程表示的曲线上,求实数m 的值;(3)求该方程表示的曲线与曲线y =2x +7的交点的坐标.[解] (1)因为(-1)2+4×(-1)-1=-4,(-3)2+4×(-3)-1≠2,所以点P 坐标适合方程,点Q 坐标不适合方程,即点P 在曲线上,点Q 不在曲线上.(2)因为点M ⎝ ⎛⎭⎪⎫m 2,m -1在此方程表示的曲线上,所以⎝ ⎛⎭⎪⎫m 22+4×m 2-1=m -1,即m 2+4m =0,解得m =0或m =-4.(3)联立⎩⎨⎧x 2+4x -1=y ,y =2x +7,消去y ,得x 2+4x -1=2x +7,即x 2+2x -8=0,解得x 1=2,x 2=-4,于是y 1=11,y 2=-1,故两曲线的交点坐标为(2,11)和(-4,-1).10.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.[解] 法一:设弦的中点为P (x ,y ), 则另一端点为(2x,2y )在圆(x -1)2+y 2=1上,故(2x -1)2+4y 2=1, 即⎝ ⎛⎭⎪⎫x -122+y 2=14(0<x ≤1). 法二:如图所示,设所作弦的中点为P (x ,y ),连接CP ,则CP ⊥OP ,|OC |=1,OC 的中点M ⎝ ⎛⎭⎪⎫12,0,所以动点P 的轨迹是以点M 为圆心,以OC 为直径的圆, 故轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14.又因为点P 不能与点O 重合,所以0<x ≤1. 故所作弦的中点的轨迹方程为 ⎝ ⎛⎭⎪⎫x -122+y 2=14(0<x ≤1).1.方程x (x 2+y 2-1)=0和x 2+(x 2+y 2-1)2=0所表示的图形是( ) A .前后两者都是一条直线和一个圆 B .前后两者都是两个点C .前者是一条直线和一个圆,后者是两个点D .前者是两点,后者是一条直线和一个圆C [x (x 2+y 2-1)=0⇔x =0或x 2+y 2=1,表示直线x =0和圆x 2+y 2=1.x 2+(x 2+y 2-1)2=0⇔⎩⎨⎧ x =0x 2+y 2-1=0⇔⎩⎨⎧x =0y =±1,表示点(0,1),(0,-1).]2.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是( )A .32x 2+3y 2=1(x >0,y >0)B .32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)A [设A (a,0),B (0,b ),a >0,b >0.由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a ,b 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).]3.已知定长为6的线段,其端点A 、B 分别在x 轴、y 轴上移动,线段AB 的中点为M ,则点M 的轨迹方程为________.x 2+y 2=9 [作出图象如图所示,根据直角三角形的性质可知 |OM |=12|AB |=3.所以M 的轨迹是以原点O 为圆心,以3为半径的圆, 故点M 的轨迹方程为x 2+y 2=9.]4.一动点到y 轴距离比到点(2,0)的距离小2,则此动点的轨迹方程为________. y 2=8x (x ≥0)或y =0(x <0) [设动点P (x ,y ),则由条件,得(x -2)2+y 2=|x |+2,两边同时平方,得y 2=4x +4|x |,当x ≥0时,y 2=8x ;当x <0时,y =0,所以动点的轨迹方程为y 2=8x (x ≥0)或y =0(x <0).]5.过点P (2,4)作两条互相垂直的直线l 1、l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.[解]法一:如图,设点M的坐标为(x,y),∵M为线段AB的中点,∴A点的坐标为(2x,0),B点的坐标为(0,2y).∵l1⊥l2,且l1,l2过点P(2,4),∴P A⊥PB,即k P A·k PB=-1,而k P A=4-02-2x=21-x(x≠1),k PB=4-2y2-0=2-y1,∴21-x·2-y1=-1(x≠1),整理得x+2y-5=0(x≠1).∵当x=1时,A,B的坐标分别为(2,0),(0,4),∴线段AB的中点坐标是(1,2),它满足方程x+2y-5=0.综上所述,点M的轨迹方程是x+2y-5=0.法二:设点M的坐标为(x,y),则A,B两点的坐标分别是(2x,0),(0,2y),连接PM(如图).∵l1⊥l2,∴2|PM|=|AB|.而|PM|=(x-2)2+(y-4)2,|AB|=(2x)2+(2y)2,∴2(x-2)2+(y-4)2=4x2+4y2,化简得x+2y-5=0,即为所求的点M的轨迹方程.。

高中数学 2.1.1曲线与方程课时作业 新人教A版选修21

高中数学 2.1.1曲线与方程课时作业 新人教A版选修21

高中数学 2.1.1曲线与方程课时作业新人教A版选修21(30分钟50分)一、选择题(每小题3分,共18分)1.f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选 C.由曲线与方程的概念可知,若点P(x0,y0)在曲线f(x,y)=0上,则必有f(x0,y0)=0;又当f(x0,y0)=0时,点P(x0,y0)也一定在方程f(x,y)=0对应的曲线上,故选C.2.下面四组方程表示同一条曲线的一组是( )A.y2=x与y=B.y=lgx2与y=2lgxC.=1与lg(y+1)=lg(x-2)D.x2+y2=1与|y|=【解析】选D.主要考虑x,y的取值范围,A中y2=x中y∈R,而y=中y≥0,B中y=lgx2中x≠0,而y=2lgx中x>0;C中=1中y∈R,x≠2,而lg(y+1)=lg(x-2)中y>-1,x>2,故只有D正确.3.(2014·石家庄高二检测)方程x2+y2=1(xy<0)的曲线形状是( )【解析】选C.方程x2+y2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部分.4.(2014·安阳高二检测)曲线y=和y=-x+公共点的个数为( )A.3B.2C.1D.0【解析】选C.由得-x+=,两边平方并整理得(x-1)2=0,所以x=,这时y=,故公共点只有一个.【误区警示】解题中易忽略y=中x的取值范围,而写成x2+y2=1,从而解出两组解而导致出错.5.如果曲线C上点的坐标满足方程F(x,y)=0,则有( )A.方程F(x,y)=0表示的曲线是CB.曲线C的方程是F(x,y)=0C.点集{P|P∈C}⊆{(x,y)|F(x,y)=0}D.点集{P|P∈C}{(x,y)|F(x,y)=0}【解析】选C.A,B错,因为以方程F(x,y)=0的解为坐标的点不一定在曲线C上,若以方程F(x,y)=0的解为坐标的点都在曲线C上,则点集{P|P∈C}={(x,y)|F(x,y)=0},故D错,选C.6.(2014·青岛高二检测)方程(x-y)2+(xy-1)2=0表示的是( )A.两条直线B.一条直线和一双曲线C.两个点D.圆【解析】选C.由题意,所以x=1,y=1或x=-1,y=-1,所以方程(x-y)2+(xy-1)2=0表示的是两个点(1,1)或(-1,-1).二、填空题(每小题4分,共12分)7.(2014·天津高二检测)点P(2,-3)在曲线x2-ay2=1上,则a= .【解析】将(2,-3)代入x2-ay2=1,得a=.答案:【变式训练】已知点A(a,2)既是曲线y=mx2上的点,也是直线x-y=0上的一点,则m= .【解析】因为点A(a,2)在直线x-y=0上,得a=2,即A(2,2).又点A在曲线y=mx2上,所以2=m·22,得m=.答案:8.(2014·重庆高二检测)如果直线l:x+y-b=0与曲线C:y=有公共点,那么b的取值范围是.【解题指南】本题考查曲线的交点问题,可以先作出曲线y=的图象,利用数形结合解题.【解析】曲线C:y=表示以原点为圆心,以1为半径的单位圆的上半部分(包括(±1,0)),如图,当l 与l1重合时,b=-1,当l与l2重合时,b=,所以直线l与曲线C有公共点时,-1≤b≤.答案:[-1,]9.方程y=所表示的曲线是.【解析】原方程可化为:y=|x-2|=所以方程表示的是射线x-y-2=0(x≥2)及x+y-2=0(x<2).答案:两条射线【误区警示】本题易忽视方程自身的条件对y的约束,即y≥0,而将方程变形为(x+y-2)(x-y-2)=0,从而得出方程表示的曲线是两条直线.三、解答题(每小题10分,共20分)10.方程=表示的曲线是什么图形?【解析】原方程可化为即所以它表示的图形是两条线段y=-x(-1≤x≤0)和y=x(0≤x≤1).如图:11.曲线x2+(y-1)2=4与直线y=k(x-2)+4有两个不同的交点,求k的范围,若有一个交点、无交点呢?【解析】由得(1+k2)x2+2k(3-2k)x+(3-2k)2-4=0,Δ=4k2(3-2k)2-4(1+k2)[(3-2k)2-4]=48k-20.所以Δ>0,即k>时,直线与曲线有两个不同的交点;Δ=0,即k=时,直线与曲线有一个交点;Δ<0,即k<时,直线与曲线没有交点.【拓展延伸】曲线与直线交点个数的判别方法曲线与直线交点的个数就是曲线方程与直线方程联立方程组解的组数,而方程组解的组数可利用根的判别式进行判断.本题是判断直线和圆的交点问题,用的是代数法.也可用几何法,即通过圆心到直线的距离与半径的关系求出k的范围.有些题目,在判断交点个数时,也可用数形结合法.(30分钟50分)一、选择题(每小题4分,共16分)1.已知曲线ax2+by2=2经过点A(0,2)和B(1,1),则a,b的值分别为( )A.,B.,C.-,D.,-【解析】选B.因为点A(0,2)和B(1,1)都在曲线ax2+by2=2上,所以解得2.(2014·临沂高二检测)方程+=1表示的图形是( )A.一条直线B.两条平行线段C.一个正方形D.一个正方形(除去四个顶点)【解析】选D.由方程可知,方程表示的图形关于坐标轴和原点对称,且x≠0,y≠0,当x>0,y>0时,方程可化为x+y=1,表示第一象限内的一条线段(去掉两端点),因此原方程表示的图形是一个正方形(除去四个顶点).3.已知圆C:(x-2)2+(y+1)2=4及直线l:x+2y-2=0,则点M(4,-1) ( )A.不在圆C上,但在直线l上B.在圆C上,但不在直线l上C.既在圆C上,也在直线l上D.既不在圆C上,也不在直线l上【解析】选C.将点M(4,-1)的坐标分别代入圆C及直线l的方程,均满足.4.(2014·成都高二检测)已知方程y=a|x|和y=x+a(a>0)所确定的两条曲线有两个交点,则a的取值范围是( )A.a>1B.0<a<1C.0<a<1或a>1D.a∈【解题指南】分别作出y=a|x|和y=x+a所表示的曲线.再根据图象求a的取值范围.【解析】选A.因为a>0,所以方程y=a|x|和y=x+a(a>0)的图象大致如图,要使方程y=a|x|和y=x+a(a>0)所确定的两条曲线有两个交点,则要求y=a|x|在y轴右侧的斜率足够大,所以a>1.【变式训练】如图所示,定圆半径为a,圆心为(b,c),则直线ax+by+c=0与直线x-y+1=0的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选C.由所以因为a+b<0,a-c>0,b+c<0,所以x<0,y<0,所以交点在第三象限,选C.二、填空题(每小题5分,共10分)5.(2014·济宁高二检测)曲线y=|x-2|-2的图象与x轴所围成的三角形的面积是.【解析】当x-2<0时,原方程可化为y=-x;当x-2≥0时,原方程可化为y=x-4.故原方程表示两条共顶点的射线,易得顶点为B(2,-2),与x轴的交点为O(0,0),A(4,0),所以曲线y=|x-2|-2与x轴围成的三角形面积为S△AOB= |OA|·|y B|=4.答案:46.(2014·石家庄高二检测)曲线y=-与曲线y+|ax|=0(a∈R)的交点个数为.【解析】由得-|ax|=-,即a2x2=1-x2,所以(a2+1)x2=1,解得x=和x=-,代入y=-|ax|,得y=-,所以它们有2个交点.答案:2【一题多解】由y=-,得x2+y2=1(y≤0)表示半圆如图:由y+|ax|=0,得y=-|a||x|,表示过原点的两条射线,如图.所以由图象可知,它们有两个交点.答案:2三、解答题(每小题12分,共24分)7.已知点P(x0,y0)是曲线f(x,y)=0和曲线g(x,y)=0的交点,求证:点P在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【证明】因为P是曲线f(x,y)=0和曲线g(x,y)=0的交点,所以P在曲线f(x,y)=0上,即f(x0,y0)=0,P在曲线g(x,y)=0上,即g(x0,y0)=0,所以f(x0,y0)+λg(x0,y0)=0+λ0=0,故点P在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【拓展延伸】证明曲线与方程关系的技巧解答本类问题的关键是正确理解并运用曲线的方程与方程的曲线的概念,明确两条原则,即若点的坐标适合方程,则该点必在方程的曲线上;若点在曲线上,则该点的坐标必适合曲线的方程.另外,要证明方程是曲线的方程,根据定义需完成两步:①曲线上任意一点的坐标都是方程的解;②以方程的解为坐标的点都在曲线上.二者缺一不可.8.当曲线y=1+与直线y=k(x-2)+4有两个相异交点时,求实数k的取值范围.【解析】曲线y=1+是以(0,1)为圆心,2为半径的半圆,如图.直线y=k(x-2)+4是过定点(2,4)的直线.设切线PC的斜率为k0,切线PC的方程为y=k0(x-2)+4.圆心(0,1)到直线PC的距离等于半径2,即=2,所以k0=,直线PA的斜率k1=,所以实数k的取值范围是<k≤.。

【红对勾】高中数学 2-1-1 曲线与方程课时作业 新人教A版选修2-1(1)

【红对勾】高中数学 2-1-1 曲线与方程课时作业 新人教A版选修2-1(1)

课时作业8 曲线与方程时刻:45分钟 分值:100分一、选择题(每题6分,共36分)1.方程(x -2)2+(y +2)2=0表示的图形是( )A .圆B .两条直线C .一个点D .两个点解析:由已知得⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧ x=2,y =-2.因此方程表示点(2,-2).答案:C2.已知直线l :x +y -3=0和曲线C :(x -3)2+(y -2)2=2,那么点M(2,1)知足()A .在直线l 上,但不在曲线C 上B .既在直线l 上,也在曲线C 上C .既不在直线l 上,也不在曲线C 上D .不在直线l 上,但在曲线C 上解析:把M 的坐标代入直线方程和曲线方程验证即可.答案:B3.方程1-|x|=1-y 表示的曲线是( )A .两条线段B .两条直线C .两条射线D .一条射线和一条线段解析:由已知得1-|x|=1-y,1-y≥0,因此y =|x|(y≤1).答案:A4.以(5,0)和(0,5)为端点的线段的方程是( )A .x +y =5B .x +y =5(x≥0)C .x +y =5(y≥0)D .x +y =5(0≤x≤5)答案:D5.方程|x|+|y|=1表示的曲线是图中的( )解析:分x≥0,y≥0;x≥0,y≤0;x≤0,y≥0;x≤0,y≤0四种情形去绝对值号,即可作出判定. 答案:D6.假设曲线y =x 2-x +2与直线y =x +m 有两个交点,那么( )A .m ∈RB .m ∈(-∞,1)C .m =1D .m ∈(1,+∞)解析:联立y =x 2-x +2与y =x +m 得x 2-2x +2-m =0.由Δ=4-4(2-m )>0,得m >1.答案:D二、填空题(每题8分,共24分)7.假设P (2,-3)在曲线x 2-ay 2=1上,那么a 的值为________.解析:由22-a (-3)2=1,得a =13. 答案:138.方程x 2-y 2=0表示的图形是________.解析:由x 2-y 2=0得y =±x ,因此方程x 2-y 2=0表示的图形是两条直线.答案:两条直线9.曲线y =|x |-1与x 轴围成的图形的面积是________.解析:在y =|x |-1中令x =0得y =-1,令y =0得x =±1,因此曲线y =|x |-1与x 轴围成的图形的面积为12×2×1=1. 答案:1三、解答题(共40分)10.(10分)已知方程x 2+(y -1)2=10.(1)判定P (1,-2),Q (2,3)两点是不是在此方程表示的曲线上; (2)假设点M ⎝ ⎛⎭⎪⎫m 2,-m 在此方程表示的曲线上,求m 的值. 解:(1)因为12+(-2-1)2=10,而(2)2+(3-1)2≠10.因此点P (1,-2)在方程表示的曲线上,点Q (2,3)不在方程表示的曲线上.(2)因为点M (m 2,-m )在方程x 2+(y -1)2=10表示的曲线上,因此⎝ ⎛⎭⎪⎫m 22+(-m -1)2=10,解得m =2或m =-185. 11.(15分)求曲线x 2-xy -y 2-3x +4y -4=0与x 轴的交点坐标. 解:在方程x 2-xy -y 2-3x +4y -4=0中,令y =0,得x 2-3x -4=0,x =4或x =-1. ∴曲线与x 轴的交点为(4,0)和(-1,0).12.(15分)求证:对任意m∈R,曲线mx -y -m +1=0和曲线(x -2)2+y 2=4恒有交点. 证明:联立方程⎩⎪⎨⎪⎧mx -y -m +1=0 ①x -22+y 2=4 ②由①得y =mx -m +1.代入②得,(x -2)2+[mx -(m -1)]2=4,∴(m 2+1)x 2-[2m (m -1)+4]x +(m -1)2=0, Δ=4(m 2-m +2)2-4(m 2+1)(m -1)2=4(3m 2-2m +3)=4[3(m -13)2+83]>0,对任意m ∈R 成立,因此两曲线对任意m ∈R 恒有交点.。

人教A版高中数学选修2-1第二章 圆锥曲线与方程-圆锥曲线基本题型总结习题

人教A版高中数学选修2-1第二章 圆锥曲线与方程-圆锥曲线基本题型总结习题

圆锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段【注:2a>|F1 F2|是椭圆,2a=|F1 F2|是线段】A.x 225+y 29=1 (y ≠0) B.y 225+x 29=1 (y ≠0) C.x 216+y 216=1 (y ≠0) D.y 216+x 29=1 (y ≠0) 【注:检验去点】3.已知A (0,-5)、B (0,5),|P A |-|PB |=2a ,当a =3或5时,P 点的轨迹为( ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】4.已知两定点F 1(-3,0),F 2(3,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是( ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】5.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.x 216-y 29=1(x ≤-4)B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4)D.x 29-y 216=1(x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :(x +2)2+y 2=36上一动点,点A 坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.(2)涉及圆的相切问题中的圆锥曲线:8.已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过B 且与圆A 内切,求圆心P 的轨迹方程. 已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为( ) A.x 24-y 212=1 (x >0)B.x 24-y 212=1 (x <0) C.x 24-y 212=1D.y 24-x 212=1 【注:由题目判断是双曲线的一支还是两支】 9.若动圆P 过点N (-2,0),且与另一圆M :(x -2)2+y 2=8相外切,求动圆P 的圆心的轨迹方程. 【注:双曲线的一支,注意与上题区分】10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.11.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( ) A.椭圆 B.双曲线 C.双曲线的一支 D.抛物线12.已知动圆M 经过点A (3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程. 【注:同上题做比较,说法不一样,本质相同】13.已知点A (3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12.(M 的横坐标非负) (1)求点M 的轨迹方程; 【注:体现抛物线定义的灵活应用】(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】(3)其他问题中的圆锥曲线:14.已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】2.15.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C . 双曲线D .抛物线【注:体现抛物线定义的灵活应用】2.涉及到曲线上的点到焦点距离的问题:16.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22 B.12 C.2-12 D.3417.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A .32B .16C .8D .418.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m19.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________.20.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形21.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.【注:椭圆上的点到焦点的距离,最小是a -c ,最大是a+c 】22.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________.【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c -a 】23.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点). 【注:O 是两焦点的中点,注意中位线的体现】24.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF u u u u r ·2PF u u u u r =0,则|1PF u u u u r +2PF u u u u r |等于( ) A .3 B .6 C .1 D .225.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A.172B.3C. 5D.92【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】26.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.55【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】27.设点A 为抛物线y2=4x 上一点,点B(1,0),且|AB|=1,则A 的横坐标的值为( )A .-2B .0C .-2或0D .-2或2 【注:抛物线的焦半径,即定义的应用】3.焦点三角形问题:椭圆的焦点三角形周长2c 2a 2C PF PF C 21F PF 21+∆=++= 椭圆的焦点三角形面积:推导过程:2tan sin cos 121sin 21cos 1 -)cos (12 (1)-(2)(2)2a (1)COS 2-2 1 b 2b PFPF S 2bPFPF 4c 4a PFPF PF PF 4c PF PF PF PF 2221F PF 22122212212212221θθθθθθθ=+==+==+⎪⎩⎪⎨⎧=+=+∆得双曲线的焦点三角形面积:2tanbS 2F PF 21θ=∆28.设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【注:小题中可以直接套用公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.1曲线与方程一、选择题1.【题文】已知直线:30l x y +-=和曲线()()22:232C x y -+-=,则点()2,1M 满足( )A .在直线上,但不在曲线C 上B .既在直线上,也在曲线C 上C .既不在直线上,也不在曲线C 上D .不在直线上,但在曲线C 上2.【题文】方程1x y +=表示的曲线是图中的 ( )3.【题文】已知点()0,0O ,(1,2)A -,动点P 满足3PA PO =,则点P 的轨迹方程是( )A .22882450x y x y ++--=B .22882450x y x y +---=C .22882450x y x y +++-=D .22882450x y x y +-+-=4.【题文】“曲线C 上的点的坐标都是方程(),0f x y =的解”是“曲线C 的方程是(),0f x y =”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.【题文】方程1x -=表示的曲线是( )A .一条直线B .两条直线C .一个圆D .两个半圆6.【题文】如果曲线C 上的点满足方程(),0F x y =,则下列说法正确的是( )A .曲线C 的方程是(),0F x y =B .方程(),0F x y =表示的曲线是CC .坐标满足方程(),0F x y =的点在曲线C 上D .坐标不满足方程(),0F x y =的点不在曲线C 上7.【题文】已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于 ( )A .B .4πC .8πD .9π8.【题文】平面上有三点()()2,,0,,,2y A y B C x y ⎛⎫- ⎪⎝⎭,若AB BC ⊥,则动点C 的轨迹方程是( )A .28y x =B .28y x =-C .24y x =D .24y x =-二、填空题9.【题文】已知02πα≤<,点()cos ,sin P αα在曲线()2223x y -+=上,则α的值为________.10.【题文】等腰△ABC 中,AB AC =,已知点()()3,2,0,1,A B -则点C 的轨迹方程为________.11.【题文】已知直线:2430l x y ++=,P 为上的动点,O 为坐标原点,点Q 分线段OP 为1:2两部分,则点Q 的轨迹方程为__________.三、解答题12.【题文】设过点(),P x y 的直线分别与轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =,且1OQ AB ⋅=.求P 点的轨迹方程.13.【题文】如图所示,已知()3,0A -,,B C 两点分别在y 轴和轴上运动,点P 为BC 延长线上一点,并且满足AB BP ⊥,12BC CP =,试求动点P 的轨迹方程.14.【题文】已知坐标平面上一点(),M x y 与两个定点()126,1M ,()22,1M ,且125MM MM =.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,过点()2,3P -的直线被C 所截得的线段长度为,求直线的方程.2.1.1曲线与方程参考答案与解析1.【答案】A【解析】把M 的坐标代入直线方程和曲线方程验证即可.考点:点与曲线的位置关系.【题型】选择题【难度】较易2.【答案】D【解析】分0x ≥,0y ≥;0x ≥,0y ≤;0x ≤,0y ≥;0x ≤,0y ≤四种情形去绝对值号,即可作出判断,其图形为条线段1,1x y x y +=±-=±围成的图形,故选D. 考点:由方程求曲线的图形.【题型】选择题【难度】一般3.【答案】A【解析】设P 点的坐标为(),x y ,整理得22882450x y x y ++--=.考点:求平面轨迹方程.【题型】选择题【难度】一般4.【答案】B【解析】“曲线C 的方程是(),0f x y =”包括“曲线C 上的点的坐标都是方程(),0f x y =的解”和“以方程(),0f x y =的解为坐标的点都在曲线C 上”两个方面,所以“曲线C 上的点的坐标都是方程(),0f x y =的解”是“曲线C 的方程是(),0f x y =”的其中一个条件,所以后者能推出前者,前者推不出后者,是必要不充分条件.考点:曲线的方程和方程的曲线的概念辨析和充分条件、必要条件的判断.【题型】选择题【难度】一般5.【答案】D 【解析】由题意,得1x ≥,即1x ≥或1x ≤-,方程两边平方整理得()()22111x y -+-=, 当1x ≥时,是以()1,1为圆心,以为半径的右半圆;当1x ≤-时,是以()1,1-为圆心,以为半径的左半圆.综上,方程表示的曲线是以()1,1为圆心,以为半径的右半圆与以()1,1-为圆心, 以为半径的左半圆合起来的图形,故选D .考点:由方程求曲线的图形.【题型】选择题【难度】一般6.【答案】D【解析】曲线C 的方程是(),0F x y =需满足以下两个条件:①曲线C 上的点都满足方程(),0F x y =;②满足方程(),0F x y =的点都在曲线C 上.所以A ,B ,C 都不完全正确.因为曲线C 上的点都满足方程(),0F x y =,所以若点坐标不满足方程(),0F x y =,则该点也不会在曲线C 上,D 正确,故选D.考点:曲线的方程和方程的曲线的概念辨析.【题型】选择题【难度】一般7.【答案】B【解析】设(),P x y ,由2PA PB =得,=,整理得2240x x y -+=,即()2224x y -+=.所以点P 的轨迹是以()2,0为圆心,以为半径的圆,故4πS =.考点:求平面轨迹方程.【题型】选择题【难度】一般8.【答案】A【解析】∵()()2,,0,,,2y A y B C x y ⎛⎫- ⎪⎝⎭,2,,,22y y AB BC x ⎛⎫⎛⎫∴=-= ⎪ ⎪⎝⎭⎝⎭, ∵AB BC ⊥,∴0AB BC ⋅=,∴2204y x -=,即28.y x = 考点:求平面轨迹方程.【题型】选择题【难度】一般9.【答案】3π或53π 【解析】由()22cos 2sin 3αα-+=,得1cos 2α=. 又因为02πα≤<,所以π3α=或5π3α=. 考点:点与曲线的位置关系.【题型】填空题【难度】较易10.【答案】226450x y x y +-+-=(除去点()0,1和()6,5-)【解析】设点C 的坐标为(),x y ,因为AB AC =,所以=,整理得226450x y x y +-+-=.因为,,A B C 三点不共线,所以要除去与,A B 确定的直线10x y +-=的交点()0,1,()6,5-. 考点:求平面轨迹方程.【题型】填空题【难度】一般11.【答案】2410x y ++=【解析】设点Q 的坐标为(),x y ,点P 的坐标为()11,x y . ∵Q 分线段OP 为1:2,∴12OQ QP =,即()()111,,2x y x x y y =--, ∴()()1111,22x x x y y y =-=-,即113,3.x x y y =⎧⎨=⎩ ∵点P 在直线上,∴112430x y +=+.把13x x =,13y y =代入上式并化简,得 2410x y ++=.考点:求平面轨迹方程.【题型】填空题【难度】一般12.【答案】()223310,02x y x y +=>> 【解析】设(),0A a ,()0,B b ,则(),BP x y b =-,(),PA a x y =--,又2BP PA =, ∴22x a x =-,2y b y -=-,解得32a x =,3b y =,∴()0,3B y ,3,02A x ⎛⎫ ⎪⎝⎭, ∴3,32AB x y ⎛⎫=- ⎪⎝⎭, ∵Q 与P 关于y 轴对称,∴(),Q x y -,∴(),OQ x y =-.由1OQ AB ⋅=得()223310,02x y x y +=>>.考点:求平面曲线的轨迹方程.【题型】解答题【难度】一般13.【答案】24y x =【解析】设(),P x y ,()0,B y ',(),0C x ',则(),BC x y ''=-,(),CP x x y '=-, 由12BC CP =,得()()1,,2x y x x y '''-=-, 即3xx '=,2yy '=-,∴0,2y B ⎛⎫- ⎪⎝⎭,,03x C ⎛⎫⎪⎝⎭.又()3,0A -,∴33,,,22y y AB BP x ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭.由AB BP ⊥,得0AB BP ⋅=,∴23304x y -=,得24y x =,此即为动点P 的轨迹方程.考点:求平面曲线的轨迹方程.【题型】解答题【难度】一般14.【答案】(1)()()221125x y -+-=,轨迹是以()1,1为圆心,以为半径的圆 (2)2x =-或512460x y -+=【解析】(1)由125MM MM =5=,化简,得2222230x y x y +---=,所以点M 的轨迹方程是()()221125x y -+-=.轨迹是以()1,1为圆心,以为半径的圆.(2)当直线的斜率不存在时,:2l x =-,此时所截得的线段的长为8=, 所以:2l x =-符合题意.当直线的斜率存在时,设的方程为()32y k x -=+,即230kx y k -++=,圆心到的距离d =,由题意,得22245+=, 解得512k =. 所以直线的方程为5230126x y -+=,即512460x y -+=. 综上,直线的方程为2x =-或512460x y -+=.考点:求平面曲线的轨迹方程.【题型】解答题【难度】一般。

相关文档
最新文档