高考数学专题复习曲线与方程

合集下载

高考一轮复习第8章解析几何第8讲曲线与方程

高考一轮复习第8章解析几何第8讲曲线与方程

第八讲曲线与方程知识梳理·双基自测知识梳理知识点一曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做__曲线__的方程;这条曲线叫做__方程__的曲线.知识点二求动点的轨迹方程的基本步骤重要结论1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.求轨迹问题常用的数学思想(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y的方程及函数关系.(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合.(3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+xy =x 的曲线是一个点和一条直线.( × )(2)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (3)y =kx 与x =1ky 表示同一直线.( × )(4)动点的轨迹方程和动点的轨迹是一样的.( × ) 题组二 走进教材2.(必修2P 37T3)已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( D )A .双曲线B .椭圆C .圆D .抛物线[解析] 由已知|MF|=|MB|,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.3.(选修2-1P 37T1改编)已知A(-2,0),B(1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则点P 的轨迹方程是__x 2+y 2-4x =0(y≠0)__.[解析] 设P(x ,y),∵∠APO =∠BPO , ∴|PA||PB|=|OA||OB|=2, 即|PA|=2|PB|,∴(x +2)2+y 2=4[(x -1)2+y 2],(y≠0)化简整理得P 的轨迹方程为x 2+y 2-4x =0(y≠0). 题组三 走向高考4.(多选题)(2020·山东)已知曲线C :mx 2+ny 2=1.( ACD ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线[解析] A .若m >n >0,则1m <1n ,则根据椭圆定义,知x 21m +y21n =1表示焦点在y 轴上的椭圆,故A 正确;B .若m =n >0,则方程为x 2+y 2=1n ,表示半径为1n的圆,故B 错误;C .若m <0,n >0,则方程为x21m+y21n =1,表示焦点在y 轴的双曲线,故此时渐近线方程为y =±-m n x ,若m >0,n <0,则方程为x 21m +y 21n=1,表示焦点在x 轴的双曲线,故此时渐近线方程为y =±-mnx ,故C 正确;D .当m =0,n >0时,则方程为y =±1n表示两条直线,故D 正确;故选ACD . 5.(2019·北京卷)数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x|y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( C ) A .① B .② C .①②D .①②③[解析] 将x 换成-x 方程不变,所以图形关于y 轴对称, 当x =0时,代入得y 2=1,∴y =±1,即曲线经过(0,1),(0,-1); 当x >0时,方程变为y 2-xy +x 2-1=0,所以Δ=x 2-4(x 2-1)≥0,解得x ∈⎝⎛⎦⎥⎤0,233,所以x 只能取整数1,当x =1时,y 2-y =0, 解得y =0或y =1,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(-1,0),(-1,1), 故曲线一共经过6个整点,故①正确. 当x >0时,由x 2+y 2=1+xy 得x 2+y 2-1=xy≤x 2+y22,(当x =y 时取等),∴x 2+y 2≤2,∴x 2+y 2≤2,即曲线C 上y 轴右边的点到原点的距离不超过2,根据对称性可得:曲线C 上任意一点到原点的距离都不超过2;故②正确.在x 轴上图形面积大于矩形面积=1×2=2,x 轴下方的面积大于等腰直角三角形的面积=12×2×1=1,因此曲线C 所围成的“心形”区域的面积大于2+1=3,故③错误.故选C .考点突破·互动探究考点一 曲线与方程——自主练透例1 (多选题)关于x ,y 的方程x 2m 2+2+y 23m 2-2=1,⎝⎛⎭⎪⎫其中m 2≠23对应的曲线可能是( ABCD ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .圆[解析] 由题,若m 2+2>3m 2-2,解得-2<m <2,3m 2-2>0,解得m <-63或m >63,则当x ∈⎝ ⎛⎭⎪⎫-2,-63∪⎝ ⎛⎭⎪⎫63,2时,曲线是焦点在x 轴上的椭圆,A 正确;若3m 2-2>m 2+2,解得m <-2或m >2,此时曲线是焦点在y 轴上的椭圆,B 正确;若3m 2-2<0,解得-63<m <63,此时曲线是焦点在x 轴上的双曲线,C 正确;当m 2=2时,方程为x 2+y 2=4,所以D 正确.故选ABCD .〔变式训练1〕(多选题)(2021·山东青岛一中期末)已知点F(1,0)为曲线C 的焦点,则曲线C 的方程可能为( AD )A .y 2=4x B .x 2=4yC .x 2cos 2θ+y 2sin 2θ=1⎝ ⎛⎭⎪⎫0<θ<π2 D .x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2 [解析] y 2=4x 的焦点坐标为(1,0);x 2=4y 的焦点坐标为(0,1);当θ=π4时,sin 2θ=cos 2θ=12,x 2cos 2θ+y 2sin 2θ=1表示圆;双曲线x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2的焦点在x 轴上,且c =cos 2θ+sin 2θ=1,其焦点坐标为(1,0),(-1,0),故选AD .考点二 定义法求轨迹方程——自主练透例2 (1)(2021·长春模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( B )A .圆B .椭圆C .双曲线D .抛物线(2)(2021·福州模拟)已知圆M :(x +5)2+y 2=36,定点N(5,0),点P 为圆M 上的动点,点Q 在NP 上,点G 在线段MP 上,且满足NP →=2NQ →,GQ →·NP →=0,则点G 的轨迹方程是( A )A .x 29+y24=1B .x 236+y231=1 C .x 29-y24=1D .x 236-y231=1 (3)(2021·江苏南京二十九中调研)已知两圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2外切,则动圆圆心M 的轨迹方程为( D )A .x 2-y28=1B .x 28-y 2=1C .x 2-y28=1(x≥1)D .x 2-y28=1(x≤-1)[解析] (1)由题意知,|EA|+|EO|=|EB|+|EO|=r(r 为圆的半径)且r >|OA|,故E 的轨迹为以O ,A 为焦点的椭圆,故选B .(2)由NP →=2NQ →,GQ →·NP →=0知GQ 所在直线是线段NP 的垂直平分线,连接GN ,∴|GN|=|GP|,∴|GM|+|GN|=|MP|=6>25,∴点G 的轨迹是以M ,N 为焦点的椭圆,其中2a =6,2c =25,∴b 2=4,∴点G 的轨迹方程为x 29+y24=1,故选A .(3)设动圆M 的半径为r ,则|C 1M|=r +1,|C 2M|=3+r ,∴|C 2M|-|C 1M|=2<6=|C 1C 2|.∴动圆圆心M 的轨迹是以C 1、C 2为焦点的双曲线左支,且c =3,a =1,∴b 2=c 2-a 2=8,∴其轨迹方程为x 2-y28=1(x≤-1).故选D .[引申1]本例(3)中,若动圆M 与圆C 1内切,与圆C 2外切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≤-2)__.[引申2]本例(3)中,若动圆M 与圆C 1外切,与圆C 2内切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≥2)__.[引申3]本例(3)中,若动圆M 与圆C 1、圆C 2都内切,则动圆圆心M 的轨迹方程为__x 2-y28=1(x≥1)__.[引申4]本例3中,若动圆M 与圆C 1、圆C 2中一个内切一个外切,则动圆圆心M 的轨迹方程为__x 24-y25=1__.名师点拨定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.〔变式训练2〕(1)动圆M 经过双曲线x 2-y23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( B )A .y 2=8x B .y 2=-8x C .y 2=4xD .y 2=-4x(2)(多选题)(2021·湖南娄底质检)在水平地面上的不同两点处竖有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点P 的轨迹可能是( AB )A .直线B .圆C .椭圆D .抛物线[解析] (1)双曲线x 2-y23=1的左焦点为F(-2,0),由题意可知点M 的轨迹是以F 为焦点、原点为顶点、对称轴为x 轴的抛物线,故其方程为y 2=-8x .故选B .(2)如图两根电杆AB ,CD ,①当|AB|=|CD|时,∵∠BPA =∠DPC ,∴|PA|=|PC|, ∴P 的轨迹是AC 的中垂线,②当|AB|=λ|CD|(λ≠1,λ>0)时, 由∠BPA =∠DPC 知Rt △ABP ∽Rt △CDP , ∴|AP||CP|=|AB||CD|=λ, 以AC 所在直线为x 轴,线段AC 的中垂线为y 轴建立平面直角坐标系, 记A(-1,0),C(1,0),P(x ,y), 则x +12+y 2x -12+y2=λ,即⎝ ⎛⎭⎪⎫x -λ2+1λ2-12+y 2=⎝ ⎛⎭⎪⎫2λλ2-12, 轨迹为圆,故选AB .考点三 直接法求轨迹方程——师生共研例3 (1)(2021·四川、云南、贵州、西藏四省四校联考)已知圆C 过点A(0,2)且与直线y =-2相切,则圆心C 的轨迹方程为( B )A .x 2=4y B .x 2=8y C .x 2=-4yD .x 2=-8y(2)(2021·山东菏泽模拟)已知动圆过定点A(4,0),且在y 轴上截得的弦MN 的长为8. ①求动圆圆心的轨迹C 的方程;②已知点B(-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.[解析] (1)设圆心C(x ,y), 由题意知x 2+y -22=|y +2|,化简得x 2=8y ,故选B .(2)①设动圆圆心P(x ,y),线段MN 的中点为E , 则|PA|2=|PE|2+42,即(x -4)2+y 2=x 2+16,化简得y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x . ②设直线l 的方程为y =kx +b ,联立⎩⎪⎨⎪⎧y 2=8x ,y =kx +b ,得k 2x 2+2kbx +b 2=8x ,k 2x 2-(8-2kb)x +b 2=0(其中Δ>0), 设P(x 1,kx 1+b),Q(x 2,kx 2+b), 则x 1+x 2=8-2kb k 2,x 1x 2=b 2k 2, 若x 轴是∠PBQ 的角平分线, 则k PB +k QB =kx 1+b x 1+1+kx 2+bx 2+1=kx 1+b x 2+1+kx 2+b x 1+1x 1+1x 2+1=2kx 1x 2+k +b x 1+x 2+2bx 1+1x 2+1=8k +bk2x 1+1x 2+1=0,即k =-b .故直线l 的方程为y =k(x -1),直线l 过定点(1,0).名师点拨直接法求曲线方程的一般步骤(1)建立合适的直角坐标系.(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程.(3)化简整理这个方程,检验并说明所求方程就是曲线的方程.直接法求曲线方程时最关键的就是把几何条件或等量关系“翻译”为代数方程,要注意“翻译”的等价性.(4)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略. 〔变式训练3〕(1)已知两定点A(-2,0),B(1,0),如果动点P 满足|PA|=2|PB|,则动点P 的轨迹是( B ) A .直线 B .圆 C .椭圆D .双曲线(2)(2021·湖南湘潭模拟)在平面直角坐标系xOy 中,已知点Q(1,0),直线l :x =2.若动点P 在直线l 上的射影为R ,且|PR →|=2|PQ →|,设点P 的轨迹为C .①求C 的轨迹方程;②设直线y =x +n 与曲线C 相交于A 、B 两点,试探究曲线C 上是否存在点M ,使得四边形MAOB 为平行四边形,若存在,求出点M 的坐标;若不存在,请说明理由.[解析] (1)设P(x ,y), 则x +22+y 2=2x -12+y 2,化简得x 2+y 2-4x =0,即(x -2)2+y 2=4, 其表示以(2,0)为圆心,4为半径的圆,故选B . (2)①设P(x ,y),由|PR →|=2|PQ →|, 得|2-x|=2·x -12+y 2,平方化简得C 的轨迹方程为x 22+y 2=1.②设A(x 1,y 1),B(x 2,y 2),M(x 3,y 3), 联立⎩⎪⎨⎪⎧y =x +n x 22+y 2=1,得x 2+2(x +n)2-2=0,即3x 2+4nx +2n 2-2=0,所以x 1+x 2=-4n 3,y 1+y 2=x 1+x 2+2n =2n3.假设存在点M 使得四边形MAOB 为平行四边形, 则OM →=OA →+OB →,所以(x 3,y 3)=(x 1,y 1)+(x 2,y 2), 所以x 3=x 1+x 2=-4n 3,y 3=y 1+y 2=2n3.由点M 在曲线C 上得x 232+y 23=1,代入得8n 29+4n29=1,解得n 2=34,n =±32.所以当n =±32时,曲线C 上存在点M 使得四边形MAOB 为平行四边形, 此时点M 的坐标为⎝ ⎛⎭⎪⎫-233,33或者M ⎝ ⎛⎭⎪⎫233,-33,当n≠±32,曲线C 上不存在点M 使得四边形MAOB 为平行四边形. 考点四 代入法(相关点法)求轨迹方程——师生共研例4 (2021·河南新乡模拟)在直角坐标系xOy 中,点M(-2,0),N 是曲线x =14y 2+2上的任意一点,动点C 满足MC →+NC →=0.(1)求点C 的轨迹方程;(2)经过点P(1,0)的动直线l 与点C 的轨迹交于A ,B 两点,在x 轴上是否存在定点D(异于点P),使得∠ADP =∠BDP ?若存在,求出D 的坐标;若不存在,请说明理由.[解析] (1)设C(x ,y),N(x 0,y 0), 则MC →=(x +2,y),NC →=(x -x 0,y -y 0), MC →+NC →=(2x -x 0+2,2y -y 0).又MC →+NC →=0,则⎩⎪⎨⎪⎧2x -x 0+2=0,2y -y 0=0,即⎩⎪⎨⎪⎧x 0=2x +2,y 0=2y.因为点N 为曲线x =14y 2+2上的任意一点,所以x 0=14y 20+2,所以2x +2=14(2y)2+2,整理得y 2=2x ,故点C 的轨迹方程为y 2=2x . (2)设存在点D(t,0),使得∠ADP =∠BDP , 所以k DA +k DB =0.由题易知,直线l 的倾斜角不可能为0°, 故设直线l 的方程为x =my +1,将x =my +1代入y 2=2x ,得y 2-2my -2=0. 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=2m ,y 1y 2=-2. 因为k DA +k DB =y 1x 1-t +y 2x 2-t =y 1my 1+1-t +y 2my 2+1-t =0,所以2my 1y 2+(1-t)(y 1+y 2)=0, 即-4m +2m·(1-t)=0,所以t =-1. 故存在点D(-1,0),使得∠ADP =∠BDP .名师点拨代入法(相关点法)求轨迹方程(1)当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方程: ①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化;③在变化过程中P 和M 满足一定的规律.(2)代入法(相关点法)的基本步骤①设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1);②求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧ x 1=f x ,y ,y 1=g x ,y ;③代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程;④检验:注意检验所求方程是否符合题意.〔变式训练4〕(2021·河北石家庄模拟)已知点Q 在椭圆C :x 216+y 210=1上,点P 满足OQ →=12(OF 1→+OP →)(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为( D )A .圆B .抛物线C .双曲线D .椭圆 [解析] 设P(x ,y),Q(x 0,y 0),椭圆C 的左焦点F 1(-2,0),由题意知⎩⎪⎨⎪⎧ x 0=x -22,y 0=y 2 又x 2016+y 2010=1,∴x -2264+y 240=1,故选D . 考点五,参数法求轨迹方程——师生共研例5 (2021·河北衡水中学调研)已知圆C 1:x 2+y 2=2,圆C 2:x 2+y 2=4,如图,C 1,C 2分别交x 轴正半轴于点E ,A .射线OD 分别交C 1,C 2于点B ,D ,动点P 满足直线BP 与y 轴垂直,直线DP 与x 轴垂直.(1)求动点P 的轨迹C 的方程;(2)过点E 作直线l 交曲线C 与点M ,N ,射线OH ⊥l 于点H ,且交曲线C 于点Q .问:1|MN|+1|OQ|2的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.[分析] 显然点P(x ,y)的变动由∠AOD 的大小α(或k OD )决定,故可通过α(或k OD )建立x ,y 间的关系,即点P 的轨迹方程.[解析] (1)解法一:如图设∠BOE =α,则B(2cos α,2sin α),D(2cos α,2sin α),所以x P =2cos α,y P =2sin α.所以动点P 的轨迹C 的方程为x 24+y 22=1. 解法二:当射线OD 的斜率存在时,设斜率为k ,OD 方程为y =kx ,由⎩⎪⎨⎪⎧ y =kx x 2+y 2=2得y 2P =2k 21+k 2, 同理得x 2P =41+k 2, 所以x 2P +2y 2P=4即有动点P 的轨迹C 的方程为x 24+y 22=1. 当射线OD 的斜率不存在时,点(0,±2)也满足.(2)由(1)可知E 为C 的焦点,设直线l 的方程为x =my +2(斜率不为0时)且设点M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧x =my +2x 2+2y 2=4,得(m 2+2)y 2+22my -2=0, 所以⎩⎪⎨⎪⎧y 1+y 2=-22m m 2+2y 1y 2=-2m 2+2, 所以1|MN|=11+m 2|y 1-y 2|=m 2+24m 2+1, 又射线OQ 方程为y =-mx , 代入椭圆C 的方程得x 2+2(mx)2=4, 即x 2Q =41+2m 2,y 2Q =4m 21+2m 2,1|OQ|2=1+2m 24m 2+1, 所以1|MN|+1|OQ|2=m 2+24m 2+1+1+2m 24m 2+1=34, 又当直线l 的斜率为0时,也符合条件.综上,1|MN|+1|OQ|2为定值,且为34.名师点拨(1)在选择参数时,参数可以具有某种物理或几何意义,如时间、速度、距离、角度、直线的斜率、点的横(纵)坐标等,也可以没有具体的意义,但要特别注意它的取值范围对动点坐标取值范围的影响.(2)参数法求轨迹方程的适用条件动点所满足的条件不易得出或不易转化为等式,也没有明显的相关点,但却较易发现(或经过分析可发现)这个动点的运动与某一个量或某两个变量(角、斜率、比值、截距等)有关.〔变式训练5〕若过点P(1,1)且互相垂直的两条直线l 1,l 2分别与x 轴、y 轴交于A 、B 两点,则AB 中点M 的轨迹方程为__x +y -1=0__.[解析] 当直线l 1的斜率存在时,l 2的斜率也存在,设直线l 1的方程是y -1=k(x -1),则直线l 2的方程是y -1=-1k (x -1),所以直线l 1与x 轴的交点为A ⎝ ⎛⎭⎪⎫1-1k ,0,l 2与y 轴的交点为B ⎝⎛⎭⎪⎫0,1+1k ,设AB 的中点M 的坐标为(x ,y),则有⎩⎪⎨⎪⎧ x =12⎝ ⎛⎭⎪⎫1-1k ,y =12⎝ ⎛⎭⎪⎫1+1k ,两式相加消去k ,得x +y =1⎝ ⎛⎭⎪⎫x ≠12,即x +y -1=0(x≠12),所以AB 中点M 的轨迹方程为x +y -1=0⎝ ⎛⎭⎪⎫x ≠12. 当直线l 1(或l 2)的斜率不存在时,点M 的坐标为⎝ ⎛⎭⎪⎫12,12,此点在直线x +y -1=0上. 综上,AB 中点M 的轨迹方程为x +y -1=0.另解:由题意易知|MP|=|MO|,∴M 的轨迹为线段OP 的中垂线,其方程为y -12=-⎝ ⎛⎭⎪⎫x -12, 即x +y -1=0.名师讲坛·素养提升高考中的轨迹问题例6 (2019·课标Ⅱ)已知点A(-2,0),B(2,0),动点M(x ,y)满足直线AM 与BM 的斜率之积为-12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形;②求△PQG 面积的最大值.[解题思路] (1)由题直译得关系→化简,观察方程形式得结论(2)①设直线PQ :y =kx →与C 的方程联立得P ,Q 两点坐标→得直线QG 的方程→与C 的方程联立得G 的坐标→求PG 的斜率→得结论 ②利用公式求面积→得关于k 的函数→判断单调性求最值→得结论 [解析] (1)由题设得y x +2·y x -2=-12, 化简得x 24+y 22=1(|x|≠2), 所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)①证明:设直线PQ 的斜率为k ,则其方程为y =kx(k >0),由⎩⎪⎨⎪⎧ y =kx ,x 24+y 22=1得x =±21+2k 2. 记u =21+2k 2,则P(u ,uk),Q(-u ,-uk),E(u,0).于是直线QG 的斜率为k 2,方程为y =k 2(x -u). 由⎩⎪⎨⎪⎧ y =k 2x -u x 24+y 22=1, 得(2+k 2)x 2-2uk 2x +k 2u 2-8=0.①设G(x G ,y G ),则-u 和x G 是方程①的解,故x G =u 3k 2+22+k 2,由此得y G =uk 32+k 2.从而直线PG 的斜率为uk 32+k 2-uk u 3k 2+22+k 2-u =-1k . 所以PQ ⊥PG ,即△PQG 是直角三角形.②由①得|PQ|=2u 1+k 2,|PG|=2uk k 2+12+k 2, 所以△PQG 的面积S =12|PQ||PG|= 8k 1+k21+2k 22+k 2=8⎝ ⎛⎭⎪⎫1k +k 1+2⎝ ⎛⎭⎪⎫1k +k 2. 设t =k +1k,则由k >0得t≥2,当且仅当k =1时取等号, 因为S =8t 1+2t2在[2,+∞)单调递减,所以当t =2, 即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. [解题关键] ①利用方程思想得出点P 、Q 的坐标,进而利用换元法及整体代换法简化运算过程是顺利解决本题的关键;②正确利用基本不等式及函数单调性是求解△PQG 面积最值的关键.〔变式训练6〕(2020·新课标Ⅲ)在平面内,A ,B 是两个定点C 是动点,若OC →·BC →=1,则点C 的轨迹为( A )A .圆B .椭圆C .抛物线D .直线[解析] 不妨以AB 所在直线为x 轴,AB 的中点为原点,建立平面直角坐标系,设C(x ,y),A(-c,0),B(c,0),c >0,则AC →=(x +c ,y),BC →=(x -c ,y),由AC →·BC →=1,得(x +c)(x -c)+y·y=1,即x 2+y 2=c 2+1>0,∴点C 的轨迹为圆.故选A .。

高三数学复习(理):第8讲 曲线与方程

高三数学复习(理):第8讲 曲线与方程

第8讲 曲线与方程[学生用书P192]1.曲线与方程在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎨⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解,若此方程组无解,则两曲线无交点.3.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程. 常用结论1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)“f(x0,y0)=0”是“点P(x0,y0)在曲线f(x,y)=0上”的充要条件.()(2)方程x2+xy=x的曲线是一个点和一条直线.()(3)动点的轨迹方程和动点的轨迹是一样的.()(4)方程y=x与x=y2表示同一曲线.()(5)y=kx与x=1k y表示同一直线.()答案:(1)√(2)×(3)×(4)×(5)×二、易错纠偏常见误区|K(1)混淆“轨迹”与“轨迹方程”出错;(2)忽视轨迹方程的“完备性”与“纯粹性”.1.(1)平面内与两定点A(2,2),B(0,0)距离的比值为2的点的轨迹是________.(2)设动圆M与y轴相切且与圆C:x2+y2-2x=0相外切,则动圆圆心M的轨迹方程为_________________________________________________.解析:(1)设动点坐标为(x,y),则(x-2)2+(y-2)2x2+y2=2,整理得3x2+3y2+4x+4y-8=0,所以满足条件的点的轨迹是圆.(2)若动圆在y轴右侧,则动圆圆心到定点C(1,0)与到定直线x=-1的距=1,所以其方程为y2=4x(x>0);若动圆在y轴离相等,其轨迹是抛物线,且p2左侧,则圆心轨迹是x轴负半轴,其方程为y=0(x<0).故动圆圆心M的轨迹方程为y2=4x(x>0)或y=0(x<0).答案:(1)圆(2)y2=4x(x>0)或y=0(x<0)2.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是________.解析:由角的平分线性质定理得|P A|=2|PB|,设P(x,y),则(x+2)2+y2=2(x-1)2+y2,整理得(x-2)2+y2=4(y≠0).答案:(x-2)2+y2=4(y≠0)3.已知⊙O的方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,则弦AB的中点P的轨迹方程为________.解析:根据垂径定理知:OP⊥PM,所以P点的轨迹是以OM为直径的圆且在⊙O内的部分.以OM为直径的圆的方程为(x-2)2+y2=4,它与⊙O的交点为(1,±3).结合图形可知所求轨迹方程为(x-2)2+y2=4(0≤x<1).答案:(x-2)2+y2=4(0≤x<1)[学生用书P192]直接法求轨迹方程(师生共研)已知△ABC的三个顶点分别为A(-1,0),B(2,3),C(1,22),定点P (1,1).(1)求△ABC 外接圆的标准方程;(2)若过定点P 的直线与△ABC 的外接圆交于E ,F 两点,求弦EF 中点的轨迹方程.【解】 (1)由题意得AC 的中点坐标为(0,2),AB 的中点坐标为⎝ ⎛⎭⎪⎫12,32,k AC =2,k AB =1,故AC 中垂线的斜率为-22,AB 中垂线的斜率为-1,则AC的中垂线的方程为y -2=-22x ,AB 的中垂线的方程为y -32=-⎝ ⎛⎭⎪⎫x -12.由⎩⎪⎨⎪⎧y -32=-⎝ ⎛⎭⎪⎫x -12,y -2=-22x , 得⎩⎪⎨⎪⎧x =2,y =0.所以△ABC 的外接圆圆心为(2,0),半径r =2+1=3,故△ABC 外接圆的标准方程为(x -2)2+y 2=9.(2)设弦EF 的中点为M (x ,y ),△ABC 外接圆的圆心为N ,则N (2,0), 由MN ⊥MP ,得NM →·PM →=0, 所以(x -2,y )·(x -1,y -1)=0, 整理得x 2+y 2-3x -y +2=0,所以弦EF 中点的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=12.(1)若曲线上的动点满足的条件是一些几何量的等量关系,则可用直接法,其一般步骤是:设点→列式→化简→检验.求动点的轨迹方程时要注意检验,即除去多余的点,补上遗漏的点.(2)若是只求轨迹方程,则把方程求出,把变量的限制条件附加上即可;若是求轨迹,则要说明轨迹是什么图形.已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,若过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解:(1)由|MP |=5|MQ |,得(x -26)2+(y -1)2=5(x -2)2+(y -1)2,化简得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25,轨迹是以(1,1)为圆心,5为半径的圆.(2)当直线l 的斜率不存在时,l :x =-2,此时所截得的线段长度为2×52-32=8,所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 圆心(1,1)到l 的距离d =|3k +2|k 2+1,由题意,得⎝ ⎛⎭⎪⎪⎫|3k +2|k 2+12+42=52,解得k =512, 所以直线l 的方程为512x -y +236=0, 即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.定义法求轨迹方程(师生共研)已知圆C 与两圆x 2+(y +4)2=1,x 2+(y -2)2=1外切,圆C 的圆心轨迹为L ,设L 上的点与点M (x ,y )的距离的最小值为m ,点F (0,1)与点M (x ,y )的距离为n .(1)求圆C 的圆心轨迹L 的方程;(2)求满足条件m =n 的点M 的轨迹Q 的方程.【解】 (1)两圆半径都为1,两圆圆心分别为C 1(0,-4),C 2(0,2),由题意得|CC 1|=|CC 2|,可知圆心C 的轨迹是线段C 1C 2的垂直平分线,C 1C 2的中点为(0,-1),直线C 1C 2的斜率不存在,所以圆C 的圆心轨迹L 的方程为y =-1.(2)因为m =n ,所以M (x ,y )到直线y =-1的距离与到点F (0,1)的距离相等,故点M 的轨迹Q 是以y =-1为准线,点F (0,1)为焦点,顶点在原点的抛物线,而p2=1,即p =2,所以,轨迹Q 的方程是x 2=4y .定义法求轨迹方程(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.1.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________________.解析:设A (x ,y ),由题意可知D ⎝ ⎛⎭⎪⎫x 2,y 2.又因为|CD |=3,所以⎝ ⎛⎭⎪⎫x 2-52+⎝ ⎛⎭⎪⎫y 22=9,即(x -10)2+y 2=36,由于A ,B ,C 三点不共线,所以点A 不能落在x 轴上,即y ≠0,所以点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).答案:(x -10)2+y 2=36(y ≠0)2.如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点).设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝ ⎛⎭⎪⎫|AB |22=3,所以曲线M 的方程为x 24+y 23=1(y ≠0).相关点法(代入法)求轨迹方程(师生共研)如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.【解】 (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px (p >0),解得p =1. (2)由(1)知抛物线E :y 2=2x .设C ⎝ ⎛⎭⎪⎫y 212,y 1,D ⎝ ⎛⎭⎪⎫y 222,y 2,y 1≠0,y 2≠0,切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝ ⎛⎭⎪⎫x -y 212,代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1, 所以l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎪⎨⎪⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎨⎧x =y 1·y 22,y =y 1+y 22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎪⎨⎪⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x 0,代入⎩⎨⎧x =y 1·y 22,y =y 1+y 22,可得M (x ,y )满足⎩⎪⎨⎪⎧x =-8x 0,y =-y 0x 0,可得⎩⎪⎨⎪⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1,考虑到x 0∈[2,22],知x ∈[-4,-22],所以动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].1.如图,已知P 是椭圆x 24+y 2=1上一点,PM ⊥x 轴于点M .若PN →=λNM →. (1)求N 点的轨迹方程;(2)当N 点的轨迹为圆时,求λ的值.解:(1)设点P ,点N 的坐标分别为P (x 1,y 1),N (x ,y ), 则M 的坐标为(x 1,0),且x =x 1, 所以PN →=(x -x 1,y -y 1)=(0,y -y 1), NM →=(x 1-x ,-y )=(0,-y ), 由PN →=λNM →得(0,y -y 1)=λ(0,-y ). 所以y -y 1=-λy ,即y 1=(1+λ)y .因为P (x 1,y 1)在椭圆x 24+y 2=1上, 则x 214+y 21=1,所以x 24+(1+λ)2y 2=1, 故x 24+(1+λ)2y 2=1为所求的N 点的轨迹方程. (2)要使点N 的轨迹为圆,则(1+λ)2=14,解得λ=-12或λ=-32.故当λ=-12或λ=-32时,N 点的轨迹是圆.2.已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝ ⎛⎭⎪⎫33,0的直线l 与曲线E 交于点A ,B ,且MB →=-2MA →.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),因为B (0,2),M ⎝ ⎛⎭⎪⎫33,0,故MB →=⎝ ⎛⎭⎪⎫-33,2,MA →=⎝ ⎛⎭⎪⎫x 0-33,y 0.由于MB →=-2MA →,所以⎝ ⎛⎭⎪⎫-33,2=-2⎝ ⎛⎭⎪⎫x 0-33,y 0.所以x 0=32,y 0=-1,即A ⎝ ⎛⎭⎪⎫32,-1.因为A ,B 都在曲线E 上,所以⎩⎨⎧a ·02+b ·22=1,a ·⎝ ⎛⎭⎪⎫322+b ·(-1)2=1,解得⎩⎨⎧a =1,b =14. 所以曲线E 的方程为x 2+y24=1.[学生用书P407(单独成册)][A 级 基础练]1.方程(x -y )2+(xy -1)2=0表示的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析:选C.(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1.2.(2020·新高考卷Ⅰ改编)已知曲线C :mx 2+ny 2=1.以下结论正确的个数是( )①若m >n >0,则C 是椭圆,其焦点在y 轴上;②若m =n >0,则C 是圆,其半径为n ;③若mn <0,则C 是双曲线,其渐近线方程为y =± -mn x ;④若m=0,n >0,则C 是两条直线.A .1B .2C .3D .4解析:选C.对于①,因为m >n >0,所以0<1m <1n ,方程mx 2+ny 2=1可变形为x 21m +y 21n =1,所以该方程表示焦点在y 轴上的椭圆,正确;对于②,因为m=n >0,所以方程mx 2+ny 2=1可变形为x 2+y 2=1n ,该方程表示半径为1n 的圆,错误;对于③,因为mn <0,所以该方程表示双曲线,令mx 2+ny 2=0⇒y =± -mn x ,正确;对于④,因为m =0,n >0,所以方程mx 2+ny 2=1变形为ny 2=1⇒y =±1n ,该方程表示两条直线,正确.3.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D.当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 项图象所示,故选D.4.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x解析:选A.设P (x ,y ).因为M (-2,0),N (2,0),所以MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ),由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理得y 2=-8x .故选A.5.动点M 在圆x 2+y 2=25上移动,过点M 作x 轴的垂线段MD ,D 为垂足,则线段MD 中点的轨迹方程是( )A.4x 225+y 225=1 B .x 225+4y 225=1 C.4x 225-y 225=1D.x 225-4y 225=1解析:选B.如图,设线段MD 的中点为P (x ,y ),M (x 0,y 0),D (x 0,0),因为P 是MD 的中点,所以⎩⎪⎨⎪⎧x 0=x ,y 0=2y .又M 在圆x 2+y 2=25上,所以x 20+y 20=25,即x 2+4y 2=25,x 225+4y 225=1,所以线段MD 的中点P 的轨迹方程是x 225+4y 225=1.故选B.6.设D 为椭圆y 25+x 2=1上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD |=|BD |,则点P 的轨迹方程为________.解析:设点P 坐标为(x ,y ).因为D 为椭圆y 25+x 2=1上任意一点,且A ,B 为椭圆的焦点,所以|DA |+|DB |=2 5.又|PD |=|BD |,所以|P A |=|PD |+|DA |=|DA |+|DB |=25,所以x 2+(y +2)2=25,所以x 2+(y +2)2=20,所以点P 的轨迹方程为x 2+(y +2)2=20.答案:x 2+(y +2)2=207.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t ,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t ,得点C 的轨迹方程为y =2x -2.答案:y =2x -28.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.解析:如图,△ABC 与内切圆的切点分别为G ,E ,F .则|AG |=|AE |=8,|BF |=|BG |=2,|CE |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,轨迹方程为x 29-y 216=1(x >3).答案:x 29-y 216=1(x >3)9.如图所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).解:(1)根据题意,知|PA |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点的轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r , 因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4.因此其轨迹方程为y 2=-8x .10.已知动圆P 恒过定点⎝ ⎛⎭⎪⎫14,0,且与直线x =-14相切.(1)求动圆P 圆心的轨迹M 的方程;(2)在正方形ABCD 中,AB 边在直线y =x +4上,另外C ,D 两点在轨迹M 上,求该正方形的面积.解:(1)由题意得动圆P 的圆心到点⎝ ⎛⎭⎪⎫14,0的距离与它到直线x =-14的距离相等,所以圆心P 的轨迹是以⎝ ⎛⎭⎪⎫14,0为焦点,直线x =-14为准线的抛物线,且p =12,所以动圆P 圆心的轨迹M 的方程为y 2=x . (2)由题意设CD 边所在直线方程为y =x +t . 联立⎩⎪⎨⎪⎧y =x +t ,y 2=x ,消去y ,整理得x 2+(2t -1)x +t 2=0.因为直线CD 和抛物线交于两点,所以Δ=(2t -1)2-4t 2=1-4t >0,解得t <14. 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=1-2t ,x 1x 2=t 2. 所以|CD |=2[(x 1+x 2)2-4x 1x 2]=2[(1-2t )2-4t 2]=2(1-4t ).又直线AB 与直线CD 之间的距离为|AD |=|t -4|2,|AD |=|CD |,所以2(1-4t )=|t -4|2,解得t =-2或t =-6,经检验t =-2和t =-6都满足Δ>0. 所以正方形边长|AD |=32或|AD |=52, 所以正方形ABCD 的面积S =18或S =50.[B 级 综合练]11.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)解析:选A.设A (a ,0),B (0,b ),a >0,b >0.由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).12.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1D .x 2=16y解析:选B.因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.13.(2021·四川成都石室中学模拟)已知两定点F 1(-1,0),F 2(1,0)和一动点P ,给出下列结论:①若|PF 1|+|PF 2|=2,则点P 的轨迹是椭圆; ②若|PF 1|-|PF 2|=1,则点P 的轨迹是双曲线; ③若|PF 1||PF 2|=λ(λ>0,且λ≠1),则点P 的轨迹是圆;④若|PF 1|·|PF 2|=a 2(a ≠0),则点P 的轨迹关于原点对称;⑤若直线PF 1与PF 2的斜率之积为m (m ≠0),则点P 的轨迹是椭圆(除长轴两端点).其中正确的是________.(填序号)解析:对于①,由于|PF 1|+|PF 2|=2=|F 1F 2|,所以点P 的轨迹是线段F 1F 2,故①不正确.对于②,由于|PF 1|-|PF 2|=1,故点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,故②不正确.对于③,设P (x ,y ),由题意得(x +1)2+y 2(x -1)2+y 2=λ,整理得(1-λ2)x 2+(1-λ2)y 2+(2+2λ2)x +1-λ2=0.因为λ>0,且λ≠1,所以x 2+y 2+(2+2λ2)1-λ2x +1-λ21-λ2=0,所以点P 的轨迹是圆,故③正确.对于④,设P (x ,y ),则|PF 1|·|PF 2|=(x +1)2+y 2·(x -1)2+y 2=a 2.又点P (x ,y )关于原点的对称点为P ′(-x ,-y ),因为(-x +1)2+(-y )2·(-x -1)2+(-y )2=(x +1)2+y 2·(x -1)2+y 2=a 2,所以点P ′(-x ,-y )也在曲线(x +1)2+y 2·(x -1)2+y 2=a 2上,即点P 的轨迹关于原点对称,故④正确.对于⑤,设P (x ,y ),则k PF 1=y x +1,k PF 2=y x -1,由题意得k PF 1·k PF 2=y x +1·yx -1=y 2x 2-1=m (m ≠0),整理得x 2-y 2m =1,此方程不一定表示椭圆,故⑤不正确. 综上,正确结论的序号是③④. 答案:③④14.如图,已知椭圆C :x 218+y 29=1的短轴端点分别为B 1,B 2,点M 是椭圆C 上的动点,且不与B 1,B 2重合,点N 满足NB 1⊥MB 1,NB 2⊥MB 2.(1)求动点N 的轨迹方程;(2)求四边形MB 2NB 1面积的最大值.解:(1)方法一:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② ①×②得y 2-9=x 20y 20-9x 2.又因为x 2018+y 209=1,所以y 2-9=18⎝ ⎛⎭⎪⎫1-y 209y 20-9x 2=-2x 2,整理得动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法二:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② 联立①②,解得⎩⎪⎨⎪⎧x =y 20-9x 0,y =-y 0.又x 2018+y 209=1,所以x =-x 02,故⎩⎪⎨⎪⎧x 0=-2x ,y 0=-y ,代入x 2018+y 209=1,得y 29+x 292=1. 所以动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法三:设直线MB 1:y =kx -3(k ≠0), 则直线NB 1:y =-1k x -3,①直线MB 1与椭圆C :x 218+y 29=1的交点M 的坐标为⎝ ⎛⎭⎪⎪⎫12k 2k 2+1,6k 2-32k 2+1. 则直线MB 2的斜率为k MB 2=6k 2-32k 2+1-312k 2k 2+1=-12k .所以直线NB 2:y =2kx +3.②由①②得点N 的轨迹方程为y 29+x 292=1(x ≠0).(2)由(1)方法三得直线NB 1:y =-1k x -3,① 直线NB 2:y =2kx +3,②联立①②解得x =-6k2k 2+1,即x N =-6k2k 2+1,故四边形MB 2NB 1的面积S =12|B 1B 2|(|x M |+|x N |)=3×⎝ ⎛⎭⎪⎫12|k |2k 2+1+6|k |2k 2+1=54|k |2k 2+1=542|k |+1|k |≤2722,当且仅当|k |=22时,S 取得最大值2722.[C 级 提升练]15.在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP →=λRQ →(λ>1),求证:NF →=λFQ →.解:(1)依题意知,直线A 1N 1的方程为y =m6(x +6),①直线A 2N 2的方程为y =-n6(x -6),②设M (x ,y )是直线A 1N 1与A 2N 2的交点,①×②得y 2=-mn6(x 2-6),又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q (x 2,y 2),则N (x 1,-y 1),由⎩⎨⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP →=λRQ →,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF →=λFQ →,即证(2-x 1,y 1)=λ(x 2-2,y 2), 只需证2-x 1=λ(x 2-2),只需证x 1-3x 2-3=-x 1-2x 2-2,即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6tt 2+3=0成立,得证.。

习题第29讲 曲线与方程--高考数学习题和答案

习题第29讲 曲线与方程--高考数学习题和答案

专题九 解析几何第二十九讲 曲线与方程2019年1.(2019北京理8)数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图)。

给出下列三个结论:① 曲线恰好经过6个整点(即横、纵坐标均为整数的点);② 曲线③ 曲线所围城的“心形”区域的面积小于3.其中,所有正确结论的序号是(A )① (B )② (C )①② (D )①②③2.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方, 若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.3.(2019江苏17)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a −+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.4.(2019全国III 理21(1))已知曲线C :y =22x ,D 为直线y =12−上的动点,过D 作C的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.5.(2019北京理18)已知抛物线2:2C x py =−经过点(2,-1). (I) 求抛物线C 的方程及其准线方程; (II)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B ,求证:以AB 为直径的圆经过y 轴上的两上定点.6.(2019全国II 理21)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.7. (2019浙江21)如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S .(1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标. 8.(2019天津理18)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.2010-2018年解答题1.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 2.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =−上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2016年山东)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>,抛物线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.4.(2016年天津)设椭圆13222=+y ax (a >的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠∠≤,求直线l 的斜率的取值范围.5.(2016年全国II)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||tAM AN =时,求AMN ∆的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.6.(2015湖北)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y −=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.7.(2015江苏)如图,在平面直角坐标系xoy 中,已知椭圆()222210x y a b a b+=>>的离心,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于,A B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点,P C ,若2PC AB =,求直线AB 的方程.8.(2015四川)如图,椭圆E :2222+1(0)x y a b a b =>>,过点(0,1)P 的动直线l 与椭圆相交于,A B 两点,当直线l 平行与x 轴时,直线l 被椭圆E 截得的线段长为(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.9.(2015北京)已知椭圆C :()222210x y a b a b +=>>,点()01P ,和点 ()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.10.(2015浙江)已知椭圆2212x y +=上两个不同的点,A B 关于直线12y mx =+对称.(Ⅰ)求实数m 的取值范围;(Ⅱ)求AOB ∆面积的最大值(O 为坐标原点).11.(2014广东)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为,, (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P的轨迹方程.12.(2014辽宁)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b−=过点P .(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.13.(2013四川)已知椭圆C :)0(12222>>=+b a by a x 的两个焦点分别为1(10)F −,,210F (,),且椭圆C 经过点),3134(P . (Ⅰ)求椭圆C 的离心率(Ⅱ)设过点),(20A 的直线l 与椭圆C 交于M ,N 两点,点Q 是MN 上的点,且 222112ANAMAQ+=,求点Q 的轨迹方程.14.(2012湖南)在直角坐标系xoy 中,曲线1C 的点均在2C :22(5)9x y −+=外,且对1C 上任意一点M ,M 到直线2x =−的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设00(,)P x y (3y ≠±)为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点A ,B 和C ,D.证明:当P 在直线4x =−上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.15.(2011天津)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=− ,求点M 的轨迹方程.16.(2009广东)已知曲线2:C y x =与直线:20l x y −+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合. (1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a −+−++=与D 有公共点,试求a 的最小值.。

高考总复习二轮数学精品课件 专题6 解析几何 第2讲 圆锥曲线的定义、方程与性质

高考总复习二轮数学精品课件 专题6 解析几何 第2讲 圆锥曲线的定义、方程与性质
(1)已知双曲线 C: 2 − =1(a>0)的离心率为 2,左、右焦点分别为 F1,F2,点 A
3
a
在双曲线 C 上,若△AF1F2 的周长为 10,则△AF1F2 的面积为(
)
A. 15
B.2 15
C.15
D.30
(2)已知|z+ 5i|+|z- 5i|=6,则复数 z 在复平面内所对应的点 P(x,y)的轨迹方程


是椭圆的右焦点,若 AF⊥BF,则 a=
答案 3+ 3
.
解析 设椭圆C的左焦点为F1,如图,连接AF1,BF1,因为|OA|=|OB|,|OF1|=|OF|,
所以四边形AF1BF为平行四边形.
又 AF⊥BF,所以四边形 AF1BF
π
为矩形,所以∠F1AF= ,则
2
|OF1|=|OF|=|OA|=2 3.

.
(3)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x
Hale Waihona Puke 轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程

答案 (1)A
.
2
(2)
9
2
+ =1
4
3
(3)x=2
解析 (1)由题意得

e=
所以双曲线方程为
=
2
1 + 2
=
3
1 + 2=2,所以 a2=1.
2
即 x±2y=0,故 B 正确;
2 5
5
e1·
e2= 5 × 2 =1,所以 C1 与 C2 的离心率互为倒数,故 C

2023高考数学一轮复习专题03 曲线的公切线方程(解析版)

2023高考数学一轮复习专题03 曲线的公切线方程(解析版)

专题03曲线的公切线方程【方法总结】解决此类问题通常有两种方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.注意:求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,直线与抛物线相切可用判别式法.【例题选讲】[例1](1)(2020·全国Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12答案D解析易知直线l 的斜率存在,设直线l 的方程y =kx +b ,则|b |k 2+1=55①.设直线l 与曲线y =x 的切点坐标为kx 0+b③,由②③可得b =12x 0,将b ,所以k =b =12,故直线l 的方程y =12x +12.(2)已知f (x )=e x (e 为自然对数的底数直线l 的方程为.答案y =e x 或y =x +1解析设l ,∴f ′(x 1)=1e x,∴切点为(x 1,1e x)y =1e x·x -11e xx +1e x,①,同理设l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2),切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2)①与②相同,∴111122121e e , e e ln 1,x x x x x x x x -⎧=⇒=⎪⎨⎪-+=+⎩③④把③代入④有-11e x x +1e x =-x 1+1,即(1-x 1)(1e x-1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.(3)曲线C 1:y =ln x +x 与曲线C 2:y =x 2有________条公切线.答案1解析由y =ln x +x 得y ′=1x+1,设点(x 1,ln x 1+x 1)是曲线C 1上任一点,∴曲线C 1在点(x 1,ln x 1+x 1)处的切线方程为y -(ln x 1ln x 1-1.同理可得曲线C 2在点(x 2,x 22)题意知两切线重合,1=2x 2,x 1-1=-x 22,消去x 22x +4ln x -3(x >0),则f ′(x )=-2x 3-2x 2+4x =4x 2-2x -2x 3=当x ∈(1,+∞)时,f ′(x )>0,∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=0,∴f (x )只有一个零点.即方程①只有一个解,故曲线C 1与C 2只有1条公切线.(4)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =.答案8解析方法一因为y =x +ln x ,所以y ′=1+1x,y ′|x =1=2.所以曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.因为y =2x -1与曲线y =ax 2+(a +2)x +1相切,所以a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由=2x -1,=ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.方法二同方法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).因为y ′=2ax +(a +2),所以0|x x y ==2ax 0+(a +2).由ax0+(a +2)=2,20+(a +2)x 0+1=2x 0-1,0=-12,=8.(5)(2016·课标全国Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =e x 的切线,则b =________.答案0或1解析设直线y =kx +b 与曲线y =ln x +2的切点为(x 1,y 1),与曲线y =e x 的切点为(x 2,y 2),y =ln x +2的导数为y ′=1x ,y =e x 的导数为y ′=e x ,可得k =e x 2=1x 1.又由k =y 2-y 1x 2-x 1=e x 2-ln x 1-2x 2-x 1,消去x 2,可得(1+ln x 1)·(x 1-1)=0,则x 1=1e 或x 1=1,则直线y =kx +b 与曲线y =ln x +2(1,2),与曲线y =e x 的切点为(1,e)或(0,1),所以k =e -11-1e=e 或k =1-20-1=1,则切线方程为y =e x 或y =x +1,可得b =0或1.a4ln x0有解,令φ(x)=1x2+2x+1+4ln x(x>0),φ′(x)=-2x3-2x2+4x=4x-2x-2x3=2(2x+1)(x-1)x3,当x∈(0,1)时,φ′(x)<0,当x∈(1,+∞)时,φ′(x)>0,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=4,又x→+∞时,φ(x)→+∞,故φ(x)的值域为[4,+∞),所以4a≥4,即a≥1,故实数a的取值范围是[1,+∞).【对点训练】1.若直线l与曲线y=e x及y=-14x2都相切,则直线l的方程为________.1.答案y=x+1解析设直线l与曲线y=e x的切点为(x0,0x e),直线l与曲线y=-14x2的切点为1y=e x在点(x0,0x e)处的切线的斜率为y′|x=x0=0x e,y=-x24在点1y′|x=x1x=x1=-x12,则直线l的方程可表示为y=0x e x-x0e0x e+0x e或y=-12x1x+14x21=-x12,x0+=x214,所以0x e=1-x0,解得x0=0,所以直线l的方程为y=x+1.2.已知函数f(x)=x2的图象在x=1处的切线与函数g(x)=e xa的图象相切,则实数a等于()A.e B.e e2C.e2D.e e 2.答案B解析由f(x)=x2,得f′(x)=2x,则f′(1)=2,又f(1)=1,所以函数f(x)=x2的图象在x=1处的切线方程为y-1=2(x-1),即y=2x-1.设y=2x-1与函数g(x)=e xa的图象相切于点(x 0,y 0),由g ′(x )=e x a ,可得00000e 2,e 21,x x g x a g x x a ⎧()==⎪⎪⎨⎪()===-⎪⎩′解得x 0=32,a =321e 2=e e 2.3.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为()A .14B .12C .1D .43.答案A解析由题意可知f ′(x )=12x -12,g ′(x )=a x ,由f ′(14)=g ′(14),得12×(14)-12=a14,可得a =14,经检验,a =14满足题意.4.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于()A .1B .2C .3D .3或-14.答案D解析设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x=1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切,故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3.5.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.5.答案1-ln 2解析y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x+1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2).=1x 2+1,1+1=ln(x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln2.6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m =________.6.答案-2解析∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,∴m =-2.7.已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为()A .2B .5C .1D .07.答案C解析根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0,由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a ,由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又g (1)=-1,即公共点的坐标为(1,-1),将点(1,-1)代入f (x )=-2x 2+m ,可得m =1.8.若直线y =kx +b 是曲线y =e xe2的切线,也是曲线y =e x -1的切线,则k +b 等于()A .-ln 22B .1-ln 22C .ln 2-12D .ln 228.答案D解析设直线y =kx +b 与曲线y =e x e 2相切于点P (x 1,y 1),y ′=e x e2=e x -2,k 1=12e x -;直线y =kx +b 与曲线y =e x -1相切于点Q (x 2,y 2),y ′=e x ,k 2=2e x ,∴l 1:y =1112221e e e x x x x x ---+-,l 2:y =2222e e 1e x x x x x +--,12112222212e e e e e e 1x xx x x x x x ⎧=⎪⎨=⎪⎩---,∴---,∴x 2=-ln 2,∴k +b =2222e e 1e x x x x +--=12+12-1-(-ln 2)×12=ln 22.9.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)在点P 处的切线垂直,则P 的坐标为________.9.答案(1,1)解析y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (m ,n ),y =1x(x>0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).10.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为.10.答案-e34-解析由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),又∵g ′(x )=-1x ,ln x 0-14=ax 0,①=-1x 0,②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e 34-.11.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)=()A .-1B .-2C .1D .211.答案B 解析已知曲线y =e x 在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1),即y =1111e e e x x xx x -+,曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由=1x 2,-1x 1=-1+ln x 2,得x 2=11e x ,111e e x x x -=-1+ln x 2=-1+1ln 1e x =-1-x 1,则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.12.曲线C 1:y =x 2与曲线C 2:y =a e x (a >0)存在公切线,则a 的取值范围是________.12.答案,4e 2解析设公切线在y =x 2上的切点为(x 1,x 21),在y =a e x(a >0)上的切点为(x 2,2e x a ).函数y =x 2,y =a e x (a >0)的导数分别为y ′=2x ,y ′=a e x ,则公切线的斜率为2x 1=222112e e x x x a a x x =--,整理得a =2241e x x ()-.由a >0可知,x 2>1,令f (x )=4x -1e x,x ∈(1,+∞),则f ′(x )=4e x2-x e x 2=8-4xe x,f ′(x )>0⇒1<x <2;f ′(x )<0⇒x >2,∴f (x )在区间(1,2)上单调递增,在区间(2,+∞)上单调递减,f (x )max =f (2)=4e 2;当x →+∞时,f (x )→0,即0<f (x )≤4e2,∴a ,4e 2.13.若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.13.解析易知点O (0,0)在曲线y =x 3-3x 2+2x 上.(1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x =2x ,=x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,①,又k =y 0x 0=x 20-3x 0+2,②,联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x =-14x ,=x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.14.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.14.解析(1)由已知得f ′(x )=3ax 2+6x -6a ,∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6,∴切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1.当x 0=-1时,切线方程为y =9;当x 0=1时,切线方程为y =12x +9.由(1)知f (x )=-2x 3+3x 2+12x -11,①由f ′(x )=0得-6x 2+6x +12=0,解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18;在x =2处,y =f (x )的切线方程为y =9,∴y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x -10;∴y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

高考数学总复习考点知识专题讲解17 狭义曲线系与广义曲线系方程

高考数学总复习考点知识专题讲解17 狭义曲线系与广义曲线系方程

高考数学总复习考点知识专题讲解 专题17 狭义曲线系与广义曲线系方程知识点一圆锥曲线与两相交直线构成的圆系方程(四点共圆问题)圆锥曲线上的四点共圆问题:圆锥曲线221(,)0f x y Ax By Dx Ey F =++++=上存在四点P 、Q 、M 、N,且PQ 与MN 相交于点T ,若满足TQ TP TN TM ⋅=⋅,则P 、Q 、M 、N 四点共圆(如图).根据初中的相交弦定理(左图)或切割线定理(右图)即可证明,当然也有同学觉得需要更严谨的证明,不妨利用相似来证明.下面我们来理解四点共圆的曲线系方程形式,由于是221(,)0f x y Ax By Dx Ey F =++++=上四点形成的圆,不妨设0:11=+-m y x k l MN ,0:22=+-m y x k l PQ ,而⋅+-=)(),(112m y x k y x f0)(22=+-m y x k 表示满足直线MN 和直线PQ 上的任意点方程,0),(),(21=+y x f y x f λ表示过圆锥曲线和两直线构成的弱化二次曲线交点的一系列曲线方程,而这一系列曲线中,有一个满足圆的方程),(111223=++++=F y E x D y x y x f ,即()()2211220Ax By Dx Ey F k x y m k x y m l +++++-+-+=,或者221122()()Ax By Dx Ey F k x y m k x y m l +++++-+-+22111()x y D x E y F m =++++.由于没有xy 的项,必有120k k --=.即PQ 与MN 斜率互为相反数.定理:圆锥曲线的内接四边形PQMN 出现四点共圆时,一定有任何一组对边对应所在的直线倾斜角互补.其方程可以写成22(Ax By Dx Ey F kx l +++++12)()0y m kx y m -+--+=,此时2A k B l l -=+,方程表示一个圆.推论:若圆锥曲线221()f x y Ax By Dx Ey ,=+++0F +=上存在四点P 、Q 、M 、N ,斜率互为相反数,且PQ 是MN 中垂线,则1MN k =±; 证明四点共圆的步骤:1.设出曲线系方程,解出l ;2.根据222440R D E F =+->证明四点一定共圆.【例1】(2021•新课标1卷)在平面直角坐标系xOy 中,已知点1(0)F ,20)F ,点M 满足12||||2MF MF -=.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【例2】(2005•湖北)设A 、B 是椭圆223x y λ+=上的两点,点(13)N ,是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (1)确定λ的取值范围,并求直线AB 的方程;(2)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.【例3】(2011•全国卷)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交于A ,B 两点,点P 满足0OA OB OP =++. (1)证明:点P 在C 上;(2)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.知识点二狭义曲线系之以坐标定曲线模型构造:123()()()f x y f x y f x y λμ+=,,,如图,A 、B 分别为椭圆22221(0)x y a b a b+=>>的左右顶点,M 、N 为椭圆上任意两点,MN 与x 轴交于点Q ,AM 与BN 交于点P ,我们可以理解为A ,M ,B ,N 四点确定椭圆(双曲线和抛物线也一致),那么四点之间连线有6条,我们选取两条交点在椭圆内的直线乘积式构造弱化二次曲线1()0f x y =,,再选取两条交点在椭圆外的直线乘积式构造另一条弱化的二次曲线2()0f x y =,,可以理解为两条弱化的二次曲线形成了这个椭圆22322()10x y f x y a b=+-=,,即123()()()f x y f x y f x y λμ+=,,,注意:这里最终结果会指向一个极点极线性质2P Q x x a =,故在设计:0AB l y =,:0MN l x ky m --=,1()()0f x y y x ky m =⋅--=,,1:0AM l x k y a -+=,2:0BN l x k y a --= 212()()()0f x y x k y a x k y a =-+⋅--=,,从而得出:221222()()()(1)x y y x ky m x k y a x k y a a bλμ⋅--+-+⋅--=+-;记住:曲线系只需要对比系数,确定参数,无需展开求出λ和μ,k ,1k ,2k 均是斜率倒数,不是斜率.【例4】(2020•新课标Ⅰ卷)已知A ,B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G为E 的上顶点,8AG GB =.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【例5】(2023•江苏月考)在平面直角坐标系xOy 中,椭圆2222:1(0)bC x y a b a +=>>的离心率是12,焦点到 相应准线的距离是3. (1)求a ,b 的值;(2)已知A 、B 是椭圆C 上关于原点对称的两点,A 在x 轴的上方,(10)F ,,连接AF 、BF 并分别延长交椭圆C 于D 、E 两点,证明:直线DE 过定点.【例6】(2011•四川)如图,椭圆有两顶点)01(,-A 、)01(,B ,过其焦点)10(,F 的直线l 与椭圆交于D C ,两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q .当点P 异于B A ,两点时,求证:OQ OP ⋅为定值.【例7】(2022全国甲卷)已知抛物线2:2(0)C y px p =>焦点为F ,点(,0)D p 过焦点F 做直线l 交抛物线于,M N 两点,当MD x ⊥轴时,||3MF =. (1)求抛物线方程(2)若直线,MD ND 与抛物线的另一个交点分别为,A B .若直线,MN AB 的倾斜角为,αβ,当αβ-最大时,求AB 的方程【例8】已知椭圆)0(12222>>=+b a by a x 过点)22(,,离心率为22.(1)求椭圆的方程;(2)过点)10(,P 做椭圆的两条弦AB ,CD (A ,C 分别位于第一、二象限),若BC ,AD 与直线1=y 分别交于M ,N ,求证:PN PM =.【例9】已知椭圆2222:1(0)x y C a b a b +=>>的离心率为23,半焦距为(0)c c >,且1a c -=,经过椭圆的左焦点1F 斜率为11(0)k k ≠的直线与椭圆交于A 、B 两点,O 为坐标原点. (1)求椭圆C 的标准方程;(2)设(10)R ,,延长AR ,BR 分别与椭圆交于C 、D 两点,直线CD 的斜率为2k ,求12k k 的值及直线CD 所经过的定点坐标.知识点三广义曲线系之以斜率定曲线回到那个话题,就是曲线系是不需要解方程的,只需要对比方程的系数,为什么呢?只要满足同解同根,满足方程同构,这样构造的方程就是以这些根为基准的一系列曲线方程,通过系数锁定,找出他们共同的关系,体现了方程中的动中求静,从而实现定点定值的锁定。

曲线方程与轨迹问题专题复习讲义-2024届高考数学一轮复习专题讲义 (学生版)

曲线方程与轨迹问题专题复习讲义-2024届高考数学一轮复习专题讲义 (学生版)

目录曲线与轨迹问题 (2)【课前诊断】 (2)【知识点一:求曲线方程】 (4)【典型例题】 (4)考点一:定义法 (4)考点二:直接法 (5)考点三:相关点法 (6)考点四:参数法 (7)【小试牛刀】 (8)【巩固练习——基础篇】 (9)【巩固练习——提高篇】 (9)曲线与轨迹问题【课前诊断】成绩(满分10): 完成情况: 优/中/差1. 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定2. 圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( )A .相离B .相切C .相交D .以上都有可能3. 直线10xky与圆221x y 的位置关系是( )A .相交B .相离C .相交或相切D .相切4. 设m >0,则直线)10l xy m与圆22:O x y m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切5. 直线l 与圆22240(3)x y x y a a 相交于A ,B 两点,若弦AB 的中点为(2,3)C ,则直线l 的方程为( )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .x +y -3=06. 与圆22:420C x y x 相切,且在,x y 轴上的截距相等的直线共有( )A .1条B .2条C .3条D .4条7. 过原点O 作圆2268200x y x y 的两条切线,设切点分别为P ,Q ,则线段PQ的长为________.8.已知两圆分别为圆C 1:x 2+y 2=81和圆C 2:x 2+y 2-6x -8y +9=0,这两圆的位置关系是( )A .相离B .相交C .内切D .外切9.两圆222x y r ,222(3)(1)x y r 外切,则正实数r 的值是( )D .510.圆22616480x y x y 与圆2248440x y x y 的公切线条数为( )A .4条B .3条C .2条D .1条11.圆22460x y x y 和圆2260x y x 交于A ,B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0【知识点一:求曲线方程】一、求曲线方程的常用方法:(1)定义法;(2)直接法;(3)相关点法;(4)参数法;【典型例题】考点一: 定义法例1. 已知ABC Rt ∆中,C ∠为直角,且),0,1(),0,1(B A -求满足条件的C 的轨迹方程。

(高考数学复习讲练21)曲线方程、圆的方程

(高考数学复习讲练21)曲线方程、圆的方程

个性化教学辅导教案学科:数学 任课教师:叶雷 授课时间:2011 年 月 日(星期 ) : ~ : 姓名 年级性别教学课题 曲线与方程、圆的方程教学 目标 重点 难点 课前检查作业完成情况:优□ 良□ 中□ 差□ 建议_______________________________第 次课第 讲 曲线与方程、圆的方程知识点一:曲线与方程在直角坐标系中,当曲线C 和方程F(x ,y )=0满足如下关系时:①曲线C 上点的坐标都是方程F(x ,y)=0的解;②以方程F(x ,y )=0的解为坐标的点都在曲线C 上,则称曲线C 为方程F(x ,y )=0表示的曲线;方程F(x ,y )=0是曲线C 表示的方程.注:⑴如果曲线C 的方程是F (x ,y )=0,那么点P 0(x 0 ,y 0)在曲线C 上的充要条件是F (x 0 ,y 0)=0;⑵解析几何研究的内容就是给定曲线C ,如何求出它所对应的方程,并根据方程的理论研究曲线的几何性质。

其特征是以数解形, 坐标法是几何问题代数化的重要方法; ⑶求曲线方程的步骤:建、设、现(限)、代、化.【例1】 点),(62t t M 适合方程3x y =是点M 在曲线3x y =上的 ( )(A)充分条件 (B)必要条件 (C)充要条件 (D)什么条件也不是【例2】 曲线C 1:x y x =+22与C 2:y xy =2的交点数是( ) (A)1个 (B) 2个 (C)3个 (D)4个【例3】 已知定点)0,1(-A ,)0,1(B ,点M 与A 、B 两点所在直线的斜率之积等于4-,则点M 的轨迹方程 是 。

【例4】 已知圆422=+y x 和两点A (0,4),B (4,0)当点P 在圆上运动时,求ABC ∆的重心的轨迹方程.【例5】 如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆1O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =.试建立适当的坐标系,并求动点P 的轨迹方程.知识点二:圆的方程确定圆的方程需要有三个互相独立的条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲 曲线与方程一、选择题1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆B .椭圆C .双曲线D .抛物线解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D2. 动点P (x ,y )满足5x -12y -22=|3x +4y -11|,则点P 的轨迹是 ( ). A .椭圆 B .双曲线 C .抛物线D .直线解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |=x -12y -22,点P 到直线l 的距离d =|3x +4y -11|5.由已知得|PF |d=1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直线.选D. 答案 D3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 225=1 B.4x 221+4y 225=1 C.4x 225-4y 221=1D.4x 225+4y 221=1解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴a =52,c =1,则b 2=a 2-c 2=214, ∴椭圆的标准方程为4x 225+4y 221=1.答案 D4.在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫- a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是( )A.16x 2a 2-16y 215a 2=1(y ≠0)B.16y 2a 2-16x 23a 2=1(x ≠0)C.16x 2a 2-16y 215a 2=1(y ≠0)的左支D.16x 2a 2-16y 23a2=1(y ≠0)的右支解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值).∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a4,焦距为|BC |=a . ∴虚半轴长为⎝ ⎛⎭⎪⎫a 22-⎝ ⎛⎭⎪⎫a 42=34a ,由双曲线标准方程得动点A 的轨迹方程为16x 2a 2-16y 23a 2=1(y ≠0)的右支.答案:D5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =37.动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16B .14C .12D .10解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为AB 的三等分点时,可得结果为6(如图1所示).可以猜想本题碰撞的结果应为2×7=14(如图2所示).故选B.答案 B6.在平行四边形ABCD 中,∠BAD =60°,AD =2AB ,若P 是平面ABCD 内一点,且满足:xAB →+yAD →+PA →=0(x ,y ∈R ).则当点P 在以A 为圆心,33|BD →|为半径的圆上时,实数x ,y 应满足关系式为 ( ). A .4x 2+y 2+2xy =1 B .4x 2+y 2-2xy =1 C .x 2+4y 2-2xy =1D .x 2+4y 2+2xy =1解析 如图,以A 为原点建立平面直角坐标系,设AD =2.据题意,得AB =1,∠ABD =90°,BD = 3.∴B 、D 的坐标分别为(1,0)、(1,3),∴AB →=(1,0),AD →=(1,3).设点P 的坐标为(m ,n ),即AP →=(m ,n ),则由xAB →+yAD →+PA →=0,得:AP →=xAB →+yAD →,∴⎩⎨⎧m =x +y ,n =3y .据题意,m 2+n 2=1,∴x 2+4y 2+2xy =1. 答案 D 二、填空题7.在△ABC 中,A 为动点,B 、C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________.解析 由正弦定理,得|AB |2R -|AC |2R =12×|BC |2R,∴|AB |-|AC |=12|BC |,且为双曲线右支.答案16x 2a 2-16y 23a2=1(x >0且y ≠0) 8. 如图,点F (a,0)(a >0),点P 在y 轴上运动,M 在x 轴上运动,N 为动点,且PM →·PF →=0,PM →+PN →=0,则点N 的轨迹方程为________. 解析 由题意,知PM ⊥PF 且P 为线段MN 的中点,连接FN ,延长FP 至点Q 使P 恰为QF 之中点;连接QM ,QN ,则四边形FNQM 为菱形,且点Q 恒在直线l :x =-a 上,故点N 的轨迹是以点F 为焦点,直线l 为准线的抛物线,其方程为:y 2=4ax . 答案 y 2=4ax9.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为邻边,作平行四边形MONP ,则点P 的轨迹方程为________.解析 设P (x ,y ),圆上的动点N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42,又因为平行四边形的对角线互相平分,所以有:⎩⎪⎨⎪⎧x 2=x 0-32y 2=y 0+42可得⎩⎨⎧x 0=x +3,y 0=y -4,又因为N (x 0,y 0)在圆上,所以N 点坐标应满足圆的方程.即有(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.答案 (x +3)2+(y -4)2=4⎝ ⎛ 除去两点⎝ ⎛⎭⎪⎫-95,125⎭⎪⎫和⎝ ⎛⎭⎪⎫-215,28510. P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF1→+PF 2→,则动点Q 的轨迹方程是________.解析 由OQ →=PF 1→+PF 2→,又PF 1→+PF 2→=PM →=2 PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=-12(x ,y )=-x 2,-y 2,即P 点坐标为-x 2,-y 2.又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b2=1.答案 x 24a 2+y 24b 2=1三、解答题11.设椭圆方程为x 2+y 24=1,过点M (0,1)的直线l 交椭圆于A ,B 两点,O 为坐标原点,点P 满足OP →=12(OA →+OB →),点N 的坐标为⎝ ⎛⎭⎪⎫12,12,当直线l 绕点M 旋转时,求:(1)动点P 的轨迹方程; (2)|NP →|的最大值,最小值.解 (1)直线l 过定点M (0,1),当其斜率存在时设为k ,则l 的方程为y =kx +1.设A (x 1,y 1),B (x 2,y 2),由题意知,A 、B 的坐标满足方程组⎩⎨⎧y =kx +1,x 2+y24=1.消去y 得(4+k 2)x 2+2kx -3=0. 则Δ=4k 2+12(4+k 2)>0. ∴x 1+x 2=-2k 4+k 2,x 1x 2=-34+k 2. P (x ,y )是AB 的中点, 则由⎩⎪⎨⎪⎧x =12x 1+x 2-k4+k 2,y =12y 1+y 212kx 1+1+kx 2+144+k 2;消去k 得4x 2+y 2-y =0.当斜率k 不存在时,AB 的中点是坐标原点,也满足这个方程,故P 点的轨迹方程为4x 2+y 2-y =0.(2)由(1)知4x 2+⎝ ⎛⎭⎪⎫y -122=14,∴-14≤x ≤14而|NP |2=⎝⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=⎝ ⎛⎭⎪⎫x -122+1-16x 24=-3⎝⎛⎭⎪⎫x +162+712,∴当x =-16时,|NP →|取得最大值216,当x =14时,|NP →|取得最小值14.12.在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >0,b >0)经过点A ⎝ ⎛⎭⎪⎫62,2,且点F (0,-1)为其一个焦点.(1)求椭圆E 的方程;(2)设随圆E 与y 轴的两个交点为A 1,A 2,不在y 轴上的动点P 在直线y =b 2上运动,直线PA 1,PA 2分别与椭圆E 交于点M ,N ,证明:直线MN 通过一个定点,且△FMN 的周长为定值.解(1)根据题意可得⎩⎨⎧32a 2+2b 2=1,b 2-a 2=1,可解得⎩⎨⎧a =3,b =2,∴椭圆E 的方程为x 23+y 24=1.(2)由(1)知A 1(0,2),A 2(0,-2),P (x 0,4)为直线y =4上一点(x 0≠0),M (x 1,y 1),N (x 2,y 2),直线PA 1方程为y =2x 0x +2,直线PA 2方程为y =6x 0x -2,点M (x 1,y 1),A 1(0,2)的坐标满足方程组⎩⎪⎨⎪⎧x 23+y 24=1,y =2x 0x +2,可得⎩⎪⎨⎪⎧x 1=-6x3+x 20,y 1=2x 20-63+x 20.点N (x 2,y 2),A 2(0,-2)的坐标满足方程组⎩⎪⎨⎪⎧x 23+y 24=1,y =6x 0x -2,可得⎩⎪⎨⎪⎧x 2=18x27+x 20,y 2=-2x 20+5427+x 20.由于椭圆关于y 轴对称,当动点P 在直线y =4上运动时,直线MN 通过的定点必在y 轴上,当x 0=1时,直线MN 的方程为y +1=43⎝⎛⎭⎪⎫x +32,令x =0,得y =1可猜测定点的坐标为(0,1),并记这个定点为B .则直线BM 的斜率k BM =y 1-1x 1=2x 20-63+x 20-1-6x 03+x 20=9-x 206x 0,直线BN 的斜率k BN =y 2-1x 2=-2x 20+5427+x 20-118x 027+x 20=9-x 206x 0,∴k BM =k BN ,即M ,B ,N 三点共线,故直线MN 通过一个定点B (0,1),又∵F (0,-1),B (0,1)是椭圆E 的焦点,∴△FMN 周长为|FM |+|MB |+|BN |+|NF |=4b =8,为定值. 13.已知向量a =(x ,3y ),b =(1,0),且(a +3b )⊥(a -3b ). (1)求点Q (x ,y )的轨迹C 的方程;(2)设曲线C 与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围.解 (1)由题意得a +3b =(x +3,3y ),a -3b =(x -3,3y ), ∵(a +3b )⊥(a -3b ),∴(a +3b )·(a -3b )=0, 即(x +3)(x -3)+3y ·3y =0.化简得x 23+y 2=1,∴Q 点的轨迹C 的方程为x 23+y 2=1.(2)由⎩⎨⎧y =kx +m ,x23+y 2=1得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1.①(i)当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,则x P =x M +x N2=-3mk 3k 2+1,从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk ,又|AM |=|AN |,∴AP ⊥MN .则-m +3k 2+13mk =-1k ,即2m =3k 2+1,②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12, 故所求的m 的取值范围是⎝ ⎛⎭⎪⎫12,2.(ii)当k =0时,|AM |=|AN |, ∴AP ⊥MN ,m 2<3k 2+1,解得-1<m <1. 综上,当k ≠0时,m 的取值范围是⎝ ⎛⎭⎪⎫12,2,当k =0时,m 的取值范围是(-1,1).14.在平面直角坐标系中,已知向量a =(x ,y -2),b =(kx ,y +2)(k ∈R),a ⊥b ,动点M (x ,y )的轨迹为T .(1)求轨迹T 的方程,并说明该方程表示的曲线的形状;(2)当k =12时,已知点B (0,-2),是否存在直线l :y =x +m ,使点B 关于直线l 的对称点落在轨迹T 上?若存在,求出直线l 的方程,若不存在,请说明理由. 解 (1)∵a ⊥b ,∴a ·b =(x ,y -2)·(kx ,y +2)=0,得kx2+y2-2=0,即kx2+y2=2,当k=0时,方程表示两条与x轴平行的直线;当k=1时,方程表示以原点为圆心,以2为半径的圆;当k>0且k≠1时,方程表示椭圆;当k<0时,方程表示焦点在y轴上的双曲线.(2)当k=12时,动点M的轨迹T的方程为x24+y22=1,设满足条件的直线l存在,点B关于直线l的对称点为B′(x0,y0),则由轴对称的性质可得:y+2x0=-1,y-22=x2+m,解得:x=-2-m,y0=m,∵点B′(x0,y0)在轨迹T上,∴2-m24+m22=1,整理得3m2+22m-2=0,解得m=23或m=-2,∴直线l的方程为y=x+23或y=x-2,经检验y=x+23和y=x-2都符合题意,∴满足条件的直线l存在,其方程为y=x+23或y=x- 2.。

相关文档
最新文档