高中数学-曲线与方程

合集下载

人教版【高中数学】选修2-1第二章曲线与方程的概念讲义

人教版【高中数学】选修2-1第二章曲线与方程的概念讲义

案例(二)——精析精练课堂合作探究重点难点突破知识点一曲线方程概念的理解1.在建立了平面直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应关系,现在要求我们进一步研究平面内的曲线与含有两个变量的方程之间的关系.平面内的曲线可以理解为平面内符合某种条件的点的集合(或轨迹)也就是说:(1)曲线上的每一个点都要符合某种条件;(2)每个符合条件的点都要在曲线上既然平面内的点与作为它的坐标的有序实数对之间建立了对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的横坐标与纵坐标应满足怎样的约束条件的问题,含两个变量x、y的方程F(x,y)=0就标志着横坐标x与纵坐标y之间所受的约束.2.在曲线的方程的定义中,曲线上的点与方程的解之间的关系(1)和(2)缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的从集合的角度来看,设A是曲线C上的所有点组成的点集,B是所有以方程F(x,y)=0的实数解为坐标的点组成的点集,则由关系(1)可知A⊆B,由关系(2)可知BCA;同时具有这两个关系,就有A=B.3.从充要条件的角度理解,即“某点在曲线上”与“点的坐标满足曲线的方程”之间是互为充要条件的.知识点二圆系方程1.曲线系:同时具有某一特征的一组曲线叫做一个曲线系;它们的共同方程叫做这个曲线系的曲线系方程2.圆系方程:(1)过两已知圆交点的圆系方程:两相交圆C:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0.则过其交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).(2)过直线与圆交点的圆系方程:直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0相交,则过其交点的圆系方程为:x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0. 典型例题分析题型1曲线的方程与方程的曲线 【例1】判断下列命题是否正确:①设点A(2,0)、B(0,2),则线段AB 的方程是x+y-2=0; ②到原点的距离等于5的动点的轨迹是y=x -25; ③到两坐标轴距离相等的点的轨迹方程是x 2-y 2=0. 解析 根据曲线与方程的定义,逐条检验“两性”答案 命题①中方程x+y-2=0表示一条直线,坐标满足该方程的点如(-1,3)等不在线段AB 上,故命题①错误;命题②中到原点距离等于5的动点的轨迹方程为x 2+y 2=52,方程y=x -25表示的曲线是圆x 2+y 2=25除去x 轴下半部分的曲线,故命题②错误命题③中到两坐标轴距离相等的点的轨迹方程为y=±x,满足x 2-y 2=0,反过来坐标满足方程x 2-y=0的点到两坐标轴的距离相等,故命题③正确规律总结 判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上【变式训练1】下列命题是否正确?若不正确,说明原因 (1)过点A(2,0)平行于y 轴的直线l 的方程是|x|=2; (2)到两坐标轴距离相等的点的轨迹方程是y=x答案(1)错误,因为以方程|x|=2的解为坐标的点,不都在直线l 上,直线l 只是方程|x|=2所表示的图形的一部分(2) 错误,因为到两坐标轴距离相等的点的轨迹有两条直线y=x 和y=-x,故y=x 不是所求的轨迹方程题型2曲线的交点【例2】求通过直线2x+y+4=0及圆x 2+y 2+2x-4y+1=0的交点,并且面积最小的圆的方程 解析 利用圆系公式可求出变圆的半径,参变量取适当值时可使变圆半径最小答案 设圆的方程是(x 2+y 2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2+(y+24-λ)=4161652+-λλ.设该圆半径为R,由圆面积公式S=πR 2,得R 2=4161652+-λλ取最小值的面积为最小.而R 2=45(λ-58)2+54,所以当λ=58时,圆面积最小.此时圆的方程是5x 2+5y 2+26x-12y+37=0.规律总结 最值问题要先列出目标函数,再利用合适的方法求最值【变式训练2】已知直线x+y+b=0与曲线x 2-1+y=0有公共点,则b 的取值范围是 .答案 联立两曲线方程,消去y 得x 2-x-(1+b)=0.由题意得△≥0,即1+4(1+b)≥0,解得b ≥-45规律 方法 总结1.判断方程是否是曲线方程,要从两方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上2.判断方程表示什么曲线,要对方程适当变形,变形过程一定要注意与原方程的等价 性,否则变形的方程表示的曲线就不是原方程的曲线,另外,变形的方法还有配方法、因式分 解法等3.在求轨迹方程时经常遇到已知一动点的轨迹方程,求另一动点的轨迹方程的问题, 而解决这类问题的解法称为代入法(或相关点法),而此法的关键是如何来表示出相关的点定时 巩固 检测基础训练1.如果命题“坐标满足方程f(x,y)=0的点都在曲线C 上”是不正确的,那么下列命题中正确的是 ( ) A.坐标满足f(x,y)=0的点都不在曲线C 上 B.曲线C 上的点的坐标不都满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C 上,有些不在曲线C 上D.至少有一个不在曲线C 上的点,其坐标满足f(x,y)=0 【答案】D(点拨:由简易逻辑推理可得)2.已知圆C 的方程f(x,y)=0,点A(x 0,y 0)在圆外,点B(x ´,y ´)在圆上,则f(x,y)-f(x 0,y 0)+f(x ´,y ´)=0表示的曲线是 ( ) A.就是圆C B.过A 点且与圆C 相交的圆 C.可能不是圆 D.过A 点与圆C 同心的圆 【答案】D(点拨:由点B(x ´,y ´)在圆上, ∴f(x ´,y ´)=0,即方程为f(x,y)-f(x 0,y 0)=0, ∴方程过点A(x 0,y 0) 又f(x 0,y 0)为常数,∴f(x,y)-f(x 0,y 0)=0仍为圆的方程.)3.已知A(1,0),B(-1,0),动点M 满足|MA|-|MB|=2,则点M 的轨迹方程是 ( ) A.y=0(-1≤y ≤1) B.y=0(x ≥1) C.y=0(x ≤-1) D.y=0(|x|≥1) 【答案】C(点拨:由|MA|-|MB|=2可设M(x,y),则()()222211y x y x ++-+-=2整理得:y=0,又|MA|-|MB|>0,∴x ≤-1.)4.点P(2,-3)在曲线x 2-ay 2=1上,则a= . 【答案】31(点拔:将点代入方程中即可.) 5.已知两定点A(-1,0),B(2,0),动点P 满足21=PB PA,则P 点的轨迹方程是 . 【答案】x 2+4x+y 2=0(点披:将|PA|与|PB|用距离公式表示出整理即可,)6.过点P(2,4)作两条互相垂直的直线1l 、2l ,1l ,交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.【答案】如下图,设M 点的坐标为(x ,y),则A(2x,0),B(0,2y)∵1l ⊥2l ,2l P(2,4),∴PA ⊥PB,k PA ·k PB =-1,而k PA =x x -=-12224(x ≠1),k PB =2042--y =2-y, ∴x-12·(2-y)=-1,整理得x+2y-5=0(x ≠1). ∵当x=1时,A(2.0),B(0,4∴AB 的中点M(1,2)也满足方程x+2y-5=0,综上所述,点M 的轨迹方程为x+2y-5=07.线段AB 的长度为10.它的两个端点分别在x 轴,y 轴上滑动,则AB 的中点P 的轨迹是什么? 【答案】解法一:由题意可知AB 的中点P 恒满足到原点(0,0)的题离为5,所以点P 的轨迹为以原点为圆心,以5为半径的圆.解法二:设P 点的坐标为(x,y),由中点坐标公式知A(2x ,0),B(0,2y),因为|AB|=10,所以2244y x +=10,即x 2+y 2=25,所以点P 的轨为以原点为圆心,以5为半径的圆能力提升8.如图所示的曲线方程是 ( )A.|x|-y=0B.x-|y|=0C.y x =0D.yx -1=0【答案】B(点拔:A 中y ≥0与图形不符,C 、D 中都不满足y= 0,而图形过原点,所以排除C 、D,只有B 符合题意.) 9.(1)方程(x+y-1)1-x =0表示什么曲线?(2)方程2x 2+y 2-4x+2y+3=0表示什么曲线? 【答案】(1)由方程(x+y-1)1-x =0可得⎩⎨⎧=-+≥-010,1y x x 或⎩⎨⎧=-≥-.01,01x x 即x+y-1=0(x ≥1)或x=1,表示直线x=1和射线x+y-1=0(x ≥1).(2)方程左边配方得2(x-1)2+(y+1)2=0,∵2(x-1)2≥0,(y+1)2≥0,∴⎪⎩⎪⎨⎧=+=-,0)1(,0)1(222y x 得⎩⎨⎧-==,1,1y x∴方程表示的图形是点A(1,-1).10.求经过两圆C 1:x 2+y 2+6x-16=0,C 2:x 2+y 2-4x-5=0的交点,且过点(2,1)的圆的方程. 【答案】 设圆的方为x 2+y 2+6x-16+λ(x 2+y 2-4x-5)=0又因为圆过点(2,1),代入方程得λ=81,所以所求圆的方程为x 2+y 2+6x-16+81(x 2+y 2-4x-5)=0.即9x 2+9y 2+44x-133=0.(点拨:过相交的两个圆C 1:x 2+y 2+D 1x+E 1y+F 1=0,C 2:x 2+y 2+D 2x+E 2y+F 2=0的交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1).11.设A(-c,0),B(c,0)(c>0)为两定点,动点P 到点A 的距离与到点B 的距离的比为定值a(a>0),试求点P 的轨迹方程,并探求点P 的轨迹 【答案】设动点P 的坐标是(x ,y),由PBPA =a(a>0)得2222)()(yc x y c x +-++=a,简得(1-a 2)x 2+2c(1+a 2)x+c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x+c 2+y 2=0,整理得22211⎪⎪⎭⎫ ⎝⎛-+-c a a x +y 2=2212⎪⎭⎫ ⎝⎛-a ac ;当a=1时,化简得x=0,所以当a ≠1时,P 点的轨迹是以⎪⎪⎭⎫ ⎝⎛-+0,1122c a a 为圆心,122-a ac为半径的圆:当a=1时,P 点的轨迹是y 轴.。

高中数学《曲线与方程》公开课优秀教学设计

高中数学《曲线与方程》公开课优秀教学设计

《曲线与方程》是高中数学的核 心内容之一,对于理解数学的本 质和解决实际问题具有重要意义

随着新课程改革的推进,高中数 学课程更加注重学生的主体性和
探究性学习。
《曲线与方程》课程目标
01
02
03
知识与技能
掌握曲线与方程的基本概 念、性质和应用,能够运 用所学知识解决相关问题 。
过程与方法
通过探究、合作、交流等 学习方式,培养学生的数 学思维和解决问题的能力 。
05
学生学情分析与应对策略
学生学情分析
知识基础
学生已掌握直线与方程的基本知识,对解析几何有初步认识。
认知能力
学生具备了一定的抽象思维和逻辑推理能力,但处理复杂问题的 能力有待提高。
学习态度
学生对数学的兴趣和重视程度参差不齐,需要激发其内在学习动 力。
针对不同层次学生的教学策略
针对基础薄弱的学生
资源分享
建立教学资源库,定期更新并分享优质课件 、教案、习题等教学资源。
经验交流
鼓励成员之间分享教学经验、教学方法和教 学心得,促进共同成长。
互助互学
建立互助互学机制,鼓励成员之间互相帮助 、互相学习、共同进步。
成果展示
定期举办教学成果展示活动,展示团队成员 的优秀教学成果和创新能力。
THANKS
公开课可以激发教师的创新意识,推 动教学改革的深入进行。
02
教学内容与方法
教学内容梳理
曲线的基本概念
包括曲线的定义、分类和性质,以及 曲线在坐标系中的表示方法。
方程的基本概念
包括方程的定义、分类和解法,以及 方程与曲线之间的关系。
曲线与方程的对应关系
详细阐述如何通过方程来表示曲线, 以及如何通过曲线来求解方程。

全国高中青年数学教师优质课大赛一等奖《曲线与方程》教学设计

全国高中青年数学教师优质课大赛一等奖《曲线与方程》教学设计

课题:2.1.1曲线与方程(第1课时)(人教A版普通高中课程标准实验教科书数学选修2—1第二章第一节)一、内容和内容解析1.教学内容《曲线与方程》共分两小节,第一小节主要内容是曲线的方程、方程的曲线的概念;第二小节内容是如何求曲线的方程.本课时为第一小节内容.2.地位与作用本小节内容揭示了几何中的“形”与代数中的“数”相统一的关系,体现了解析几何这门课的基本思想——数形结合思想,对解析几何教学有着指导性的意义.其中,对曲线的方程和方程的曲线从概念上进行明确界定,是解析几何中数与形互化的理论基础和操作依据.《曲线与方程》作为《圆锥曲线与方程》的第一节,一方面,该部分内容是建立在学生学习了直线的方程和圆的方程的基础上对曲线与方程关系认识的一次飞跃;另一方面,它也为下一步学习圆锥曲线方程奠定了模型的基础.因此,它在高中解析几何学习中起着承前启后的关键作用.二、目标和目标解析本课时的教学目标是结合已学曲线及其方程的实例,了解曲线与方程的对应关系,进一步理解数形结合的基本思想.具体目标如下:1.通过探究“以方程的解为坐标的点”汇集的图形,感知并归纳概括曲线与方程的对应关系;2.初步理解方程的曲线与曲线的方程的含义;3.通过经历曲线与方程的对应关系的探究过程,发展抽象概括的能力;4.能使用曲线的方程(方程的曲线)的概念判断曲线与方程的对应关系,继续理解数形结合思想.三、教学问题诊断分析1.问题诊断学生已经对“用方程表示直线、圆”有着感性的认知基础,能够根据直线的方程、圆的方程作对应的图形,并对数形结合思想有初步的了解.但是从直线与方程、圆与方程到曲线与方程的对应关系是一次从感性认识到理性认识的“飞跃”,由于大多数学生对“生活中其他的曲线是否能用、如何使用方程表示”这些问题还未曾有过思考,加之曲线的方程(方程的曲线)这一组概念有着较高的抽象性,所以预计在本课的学习中,学生可能出现以下困难:(1)作图探究结束后,学生独立地归纳概括并写出曲线的方程(方程的曲线)的概念时不规范,不全面;(2)难以理解“曲线上的点的坐标都是方程的解”和“以方程的解为坐标的点都在曲线上”这两句话在揭示“曲线与方程”的关系时各自所起的作用.2.重难点重点:曲线的方程(方程的曲线)的概念难点:曲线的方程(方程的曲线)概念的生成和理解3.突出重点、突破难点的策略本节课的教学,根据“问题引导,任务驱动”的设计思路,遵循概念学习的规律,使学生在过程中感受数形结合,从特殊到一般,化归与转化的数学思想.具体表现在:(1)用蕴含数学文化的广告创设情境,并将“章头图”、“章导言”融入其中,产生认知冲突,感悟学习曲线与方程的必要性;(2)让学生经历“作图—存异—质疑—寻因”的探究过程,感知方程的变化带来曲线的变化,曲线的差异导致方程的差异,再通过“独立书写—交流讨论—互动修正”生成概念;(3)学生自主举例,辨析概念,联系已学知识,完成对概念的“结构化”.四、教学支持条件分析1.学情分析本课授课对象是成都石室中学高二理科实验班的学生,数学基础扎实,思维较活跃,具有较为丰富的探究活动经验,但在抽象概括能力和语言的规范表达上还有待进一步提升.2.教学策略与教法、学法本课采取“探究—发现”教学模式.教师的教法注重活动的安排和问题的引导,通过问题引导学生从特殊到一般进行探索发现,并归纳概括.学生的学法注重独立探究、合作交流、归纳建构.教具:多媒体PPT课件,平板电脑,三角板,彩色粉笔学具:教材、草稿本、三角板、圆规、铅笔五、教学过程设计结合教材知识内容和教学目标,本课的教学环节及时间分配如下:教学内容师生活动(预设)设计说明一、创设情景,引入概念师:不知大家有没有看过下面【阶段小结】教师引导下,学生交流自己对定义的认识.台上给大家讲解.生14:错误.两条都不满足.师:进一步分析不符合要求的点或者是方程的解,请你举例说明.生14:通过图象我们发现曲线是分布在第一、三象限,而方程的曲线在第一、二象限.师:能否用定义加以说明?生14:如点(-4,-1)在曲线上,但不是方程F的解;(-4,1)的坐标是方程的解,以它为坐标的点不在曲线上.师:其实,要解决曲线与方程的关系的判断,除了教材上定义之外,还有其他的一些表述,请你在学习定义的基础上谈谈自己对曲线与方程关系的判断方法.生15:(预设)检查曲线上的点和方程的解之间的关系.师:不错,但注意准确性.应该是曲线上的每一个点和方程的每一个解的关系.生16:(预设)看曲线上是否有不是方程的解为坐标的点,看曲线是否包括了方程的所有解为坐标的点.师:很好,这种判断方法相当于是看曲线是否纯粹地列出了方程的解为坐标的点,无多余的点,而方程的解是否完备地通过曲线体现了,没有漏掉解.通过对概念的应用,将学生对曲线的方程(方程的曲线)这一概念的多角度理解进行梳理,引导学生在说出自己对曲线与方程关系的理解的基础上对概念再认识.四、课堂检测,课外延伸【课堂检测】请将以下四个方程和右边的图形用连段连接起来:||0x y-=师:接下来请看课堂检测.请将以下四个方程和四个曲线配对,并简要说明理由.生17:观察方程中解的正负和曲线上点的坐标的正负,可以筛选答案.师:不错.如果我们要用概念检验曲线和方程之间的关系,该如何分析呢?比如第一个方程和第一幅图.课堂检测的作用是检测学生在对定义的理解是否深入,应用是否灵活.||0x y-=220x y-=x y-=【课外延伸】1.查阅资料了解数学家对圆锥曲线的研究历史,并了解笛卡尔在其中所做出的贡献.2.广告创意使用到的笛卡尔的爱情传说中,关于(1sin)r aθ=-与心形曲线的关系涉及到了极坐标系,我们将会在《选修4-4》中学习.生17:第一支曲线上的部分点的坐标不是第一个方程的解,所以方程不是曲线的方程.师:大家想知道本课之初视频背后的故事吗?生(齐):想.(播放视频)师:广告创意使用到的笛卡尔的爱情传说中,关于(1sin)r aθ=-与心形曲线的关系涉及到了极坐标系,我们将会在《选修4-4》中学习.学生根据范围直接进行配对,体现了其对曲线与方程关系掌握的灵活性.《曲线与方程》衔接了直线、圆与圆锥曲线,了解圆锥曲线的发展历史,更有利于激发学生使用方程研究圆锥曲线的兴趣,更加积极地学习解析几何一眼就问题的方法.对于笛卡尔的爱情传说,学生一定是很有兴趣的,其中涉及到的极坐标系作为本课最后的一个说明即拓展了学生视野,也将高中解析几何的直线与方程、圆与方程、圆锥曲线与方程、坐标系与参数方程四个部分都出现在了本课中.附:板书设计六、目标检测设计在本节课的教学中,为了达成教学目标,我注意了教学环节的设计与教学目标的达成相呼应,做到目标确定环节,在环节中实现目标,具体如下:本课的教学目标达成情况如下:此外,课堂中我还设计了以下目标检测环节: 1.课堂检测请将以下四个方程和图形用连段连接起来:||0x y -= ||0x y -= 220x y -=0x y -=2.课外延伸(1)查阅资料了解数学家对圆锥曲线的研究历史,并了解笛卡尔和坐标系在其中所做出的贡献.(2)广告创意使用到的笛卡尔的爱情传说中关于(1sin)=-与心形曲线的关r aθ系,便是曲线与方程对应关系的体现,它涉及到了极坐标系,我们将会在《选修4-4》坐标系与参数方程中学习.设计意图:课堂检测的目的是检测教学效果.再次感受方程的不同导致曲线的不同之间,曲线的差异对应方程的差异,理解数形结合思想.学会使用概念对曲线与方程的关系进行界定.《中国学生发展核心素养》总体框架中谈到,“文化是人存在的根和魂”,文化基础包括“人文底蕴”、“科学精神”,本课内容承载着这两个要素,曲线与方程的关系体现了解析几何核心思想,而解析几何是近代数学的里程碑.课外延伸旨在通过让学生自主查阅资料拓展视野,了解数学史,感受数学文化,发展数学核心素养.结尾部分让学生了解笛卡尔的信件便使用了“曲线与方程的对应关系”这一知识,激发学生兴趣,并不经意地提及了坐标系及参数方程这一解析几何的板块.《曲线与方程》教学设计说明本课时作为《圆锥曲线与方程》的第一节课,主要内容是曲线的方程(方程的曲线)的概念.学生已经对“用方程表示直线、圆”有着感性的认知基础,能够根据直线的方程、圆的方程作对应的图形,并对数形结合思想有初步的了解.结合以上情况,我制定了本堂课的目标就是结合实例了解曲线与方程的对应关系,感悟数形结合思想.对本课的设计,我作以下说明:1.关于设计定位.如果将曲线的方程(方程的曲线)这一概念直接呈现给学生,然后进行对应练习,学生很可能只会机械记忆判断曲线与方程对应关系的两个条件,无法理解他们在揭示这种关系时各自所起的作用.我在设计这堂课时始终坚持两条思路.一条是以曲线的方程(方程的曲线)这一组概念的知识技能为目标的“明线”,一条是以经历一个完整的“从典型事例中抽象出新的数学概念”体验过程为目标的“暗线”.让数学思想方法似甘露一样浸润学生心田.2.遵循概念学习的规律.曲线与方程的概念的获得应该符合学生的认知规律,在情景中认识到研究“曲线与方程的关系”的必要性,在对典型丰富的事例的探究过程中,归纳概括出特征、性质,并将自然语言逐步转化为数学语言.因此遵循概念教学的规律,设计了“感知概念——形成概念——辨析概念——应用概念”的教学过程.3.实现教材中本章“章头图”、“章导言”的教育价值和作用.作为《圆锥曲线与方程》的第一课时,适当对本章学习内容进行展望是很有必要的,本课的创设情境部分很好的整合了“章头图”、“章导言”与本节内容,产生认知冲动,很好的实现了“章头图”、“章导言”的教育价值和作用.4.浸润数学文化、渗透数学思想、鼓励数学阅读、发展核心素养.文化基础是核心素养的重要内容,包括“人文底蕴”和“科学精神”两个方面,如何在数学学习过程中根据恰当素材进行人文情怀的塑造,是每一位数学教育工作者应该重视的内容.本课的内容体现了解析几何的基本数学思想——数形结合思想,是解析几何的核心概念,课堂中适度安排数学史、数学文化相关内容能够让学生体会数学发展的过程,发展数学素养.5.关于多媒体技术的使用教学中平板电脑充当投影仪的作用,但较传统投影仪有着记录学生活动过程,节约展示时间的优势.因此,根据需要适当选择媒体辅助可以更好的实现教学目的.。

高中数学中的曲线与方程分类解读

高中数学中的曲线与方程分类解读

高中数学中的曲线与方程分类解读数学是一门抽象而又具有严密逻辑的科学,而曲线与方程则是数学中的重要概念之一。

在高中数学课程中,我们学习了许多不同类型的曲线与方程,它们有着各自独特的性质和特点。

本文将对高中数学中的曲线与方程进行分类解读,帮助读者更好地理解和应用这些知识。

一、直线与一次函数直线是最基本的曲线之一,它由一次函数所描述。

一次函数的一般形式为y=ax+b,其中a和b为常数,a称为斜率,b称为截距。

通过调整a和b的取值,我们可以得到不同斜率和截距的直线。

斜率决定了直线的倾斜程度,正斜率表示直线向右上方倾斜,负斜率表示直线向右下方倾斜,斜率为零表示直线水平,无斜率表示直线垂直。

截距表示直线与y轴的交点位置。

二、抛物线与二次函数抛物线是一种常见的曲线形状,它由二次函数所描述。

二次函数的一般形式为y=ax^2+bx+c,其中a、b和c为常数,a不为零。

通过调整a、b和c的取值,我们可以得到不同形状和位置的抛物线。

二次函数的图像可以是开口向上的,也可以是开口向下的。

开口向上的抛物线的最低点称为顶点,开口向下的抛物线的最高点也称为顶点。

抛物线还有一个重要的特性是对称性,即关于顶点对称。

三、圆与圆的方程圆是一种特殊的曲线,它由圆的方程所描述。

圆的方程一般形式为(x-a)^2+(y-b)^2=r^2,其中(a,b)为圆心的坐标,r为半径。

通过调整圆心的位置和半径的大小,我们可以得到不同位置和大小的圆。

圆的方程还可以表示为x^2+y^2=r^2,这是一种简化形式。

圆具有许多独特的性质,例如,任意一点到圆心的距离都等于半径的长度。

四、椭圆与椭圆的方程椭圆是一种特殊的曲线,它由椭圆的方程所描述。

椭圆的方程一般形式为(x/a)^2+(y/b)^2=1,其中a和b为正数,且a>b。

通过调整a和b的取值,我们可以得到不同形状和大小的椭圆。

椭圆具有许多独特的性质,例如,椭圆的长轴和短轴分别与x轴和y轴平行,长轴的长度为2a,短轴的长度为2b。

高中数学 2.1.1曲线与方程

高中数学 2.1.1曲线与方程

曲线与方程(30分钟 50分)一、选择题(每题3分,共18分)(x 0,y 0)=0是点P(x 0,y 0)在曲线f(x,y)=0上的 ( )A.充分没必要要条件B.必要不充分条件C.充要条件D.既不充分也没必要要条件【解析】选C.由曲线与方程的概念可知,假设点P(x 0,y 0)在曲线f(x,y)=0上,那么必有f(x 0,y 0)=0;又当f(x 0,y 0)=0时,点P(x 0,y 0)也必然在方程f(x,y)=0对应的曲线上,应选C.2.下面四组方程表示同一条曲线的一组是 ( )=x 与y=√x =lgx 2与y=2lgxC.y +1x −2=1与lg(y+1)=lg(x-2) +y 2=1与|y|=√1−x 2【解析】选D.要紧考虑x,y 的取值范围,A 中y 2=x 中y ∈R,而y=√x 中y ≥0,B 中y=lgx 2中x ≠0,而y=2lgx 中x>0;C 中y +1x −2=1中y ∈R,x ≠2,而lg(y+1)=lg(x-2)中y>-1,x>2,故只有D 正确. 3.(2021·石家庄高二检测)方程x 2+y 2=1(xy<0)的曲线形状是 ( )【解析】选C.方程x 2+y 2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部份.4.(2021·安阳高二检测)曲线y=√1−x 2和y=-x+√2公共点的个数为 ( )B.2 【解析】选C.由{y =√1−x 2,y =−x +√2,得-x+√2=√1−x 2,两边平方并整理得(√2x-1)2=0,因此x=√22,这时y=√22,故公共点只有一个(√22,√22). 【误区警示】解题中易忽略y=√1−x 2中x 的取值范围,而写成x 2+y 2=1,从而解出两组解而致使出错.5.如果曲线C 上点的坐标知足方程F(x,y)=0,那么有( )A.方程F(x,y)=0表示的曲线是CB.曲线C 的方程是F(x,y)=0C.点集{P|P ∈C}⊆{(x,y)|F(x,y)=0}D.点集{P|P ∈C}{(x,y)|F(x,y)=0}【解析】选,B 错,因为以方程F(x,y)=0的解为坐标的点不必然在曲线C 上,假设以方程F(x,y)=0的解为坐标的点都在曲线C 上,那么点集{P|P ∈C}={(x,y)|F(x,y)=0},故D 错,选C.6.(2021·青岛高二检测)方程(x-y)2+(xy-1)2=0表示的是 ( )A.两条直线B.一条直线和一双曲线C.两个点D.圆【解析】选C.由题意,{x −y =0,xy =1,因此x=1,y=1或x=-1,y=-1,因此方程(x-y)2+(xy-1)2=0表示的是两个点(1,1)或(-1,-1).二、填空题(每题4分,共12分)7.(2021·天津高二检测)点P(2,-3)在曲线x 2-ay 2=1上,那么a= .【解析】将(2,-3)代入x 2-ay 2=1,得a=13. 答案:13【变式训练】已知点A(a,2)既是曲线y=mx 2上的点,也是直线x-y=0上的一点,那么m= .【解析】因为点A(a,2)在直线x-y=0上,得a=2,即A(2,2).又点A 在曲线y=mx 2上,因此2=m ·22,得m=12. 答案:12 8.(2021·重庆高二检测)若是直线l :x+y-b=0与曲线C:y=√1−x 2有公共点,那么b 的取值范围是 .【解题指南】此题考查曲线的交点问题,能够先作出曲线y=√1−x 2的图象,利用数形结合解题. 【解析】曲线C:y=√1−x 2表示以原点为圆心,以1为半径的单位圆的上半部份(包括(±1,0)),如图,当l 与l 1重合时,b=-1,当l 与l 2重合时,b=√2,因此直线l 与曲线C 有公共点时,-1≤b ≤√2.答案:[-1,√2]9.方程y=√x 2−4x +4所表示的曲线是 .【解析】原方程可化为:y=|x-2|={x −2,x ≥2,−x +2,x <2.因此方程表示的是射线x-y-2=0(x ≥2)及x+y-2=0(x<2).答案:两条射线【误区警示】此题易轻忽方程自身的条件对y 的约束,即y ≥0,而将方程变形为(x+y-2)(x-y-2)=0,从而得出方程表示的曲线是两条直线.三、解答题(每题10分,共20分)10.方程√1−|x |=√1−y 表示的曲线是什么图形?【解析】原方程可化为{1−y =1−|x |,1−|x |≥0,即{y =|x |,|x |≤1, 因此它表示的图形是两条线段y=-x(-1≤x ≤0)和y=x(0≤x ≤1).如图:11.曲线x 2+(y-1)2=4与直线y=k(x-2)+4有两个不同的交点,求k 的范围,假设有一个交点、无交点呢?【解析】由{y =k (x −2)+4,x 2+(y −1)2=4,得(1+k2)x2+2k(3-2k)x+(3-2k)2-4=0,Δ=4k 2(3-2k)2-4(1+k 2)[(3-2k)2-4]=48k-20.因此Δ>0,即k>512时,直线与曲线有两个不同的交点; Δ=0,即k=512时,直线与曲线有一个交点; Δ<0,即k<512时,直线与曲线没有交点. 【拓展延伸】曲线与直线交点个数的判别方式曲线与直线交点的个数确实是曲线方程与直线方程联立方程组解的组数,而方程组解的组数可利用根的判别式进行判定.此题是判定直线和圆的交点问题,用的是代数法.也可用几何法,即通过圆心到直线的距离与半径的关系求出k 的范围.有些题目,在判定交点个数时,也可用数形结合法.(30分钟 50分)一、选择题(每题4分,共16分)1.已知曲线ax 2+by 2=2通过点A(0,2)和B(1,1),那么a,b 的值别离为 ( )A.12,32B.32,12 32,32 D.12,-32【解析】选B.因为点A(0,2)和B(1,1)都在曲线ax 2+by 2=2上,因此{a ·0+4b =2,a +b =2,解得{a =32,b =12. 2.(2021·临沂高二检测)方程x 2|x |+y 2|y |=1表示的图形是 ( ) A.一条直线B.两条平行线段C.一个正方形D.一个正方形(除去四个极点)【解析】选D.由方程可知,方程表示的图形关于坐标轴和原点对称,且x ≠0,y ≠0,当x>0,y>0时,方程可化为x+y=1,表示第一象限内的一条线段(去掉两头点),因此原方程表示的图形是一个正方形(除去四个极点).3.已知圆C:(x-2)2+(y+1)2=4及直线l:x+2y-2=0,那么点M(4,-1) ( )A.不在圆C上,但在直线l上B.在圆C上,但不在直线l上C.既在圆C上,也在直线l上D.既不在圆C上,也不在直线l上【解析】选C.将点M(4,-1)的坐标别离代入圆C及直线l的方程,均知足.4.(2021·成都高二检测)已知方程y=a|x|和y=x+a(a>0)所确信的两条曲线有两个交点,那么a的取值范围是( )>1 <a<1<a<1或a>1 ∈【解题指南】别离作出y=a|x|和y=x+a所表示的曲线.再依照图象求a的取值范围.【解析】选A.因为a>0,因此方程y=a|x|和y=x+a(a>0)的图象大致如图,要使方程y=a|x|和y=x+a(a>0)所确信的两条曲线有两个交点,那么要求y=a|x|在y轴右边的斜率足够大,因此a>1.【变式训练】如下图,定圆半径为a,圆心为(b,c),那么直线ax+by+c=0与直线x-y+1=0的交点在( ) A.第一象限 B.第二象限C.第三象限D.第四象限【解析】选C.由{ax+by+c=0,x−y+1=0,因此{x=−b+ca+b,y=a−ca+b.因为a+b<0,a-c>0,b+c<0,因此x<0,y<0,因此交点在第三象限,选C.二、填空题(每题5分,共10分)5.(2021·济宁高二检测)曲线y=|x-2|-2的图象与x轴所围成的三角形的面积是.【解析】当x-2<0时,原方程可化为y=-x;当x-2≥0时,原方程可化为y=x-4.故原方程表示两条共极点的射线,易患极点为B(2,-2),与x 轴的交点为O(0,0),A(4,0),因此曲线y=|x-2|-2与x 轴围成的三角形面积为S △AOB = 12|OA|·|y B |=4. 答案:46.(2021·石家庄高二检测)曲线y=-√1−x 2与曲线y+|ax|=0(a ∈R)的交点个数为 .【解析】由{y =−√1−x 2,y +|ax |=0,得-|ax|=-√1−x 2,即a 2x 2=1-x 2,因此(a 2+1)x 2=1,解得x=√1a 2+1和x=-√1a 2+1, 代入y=-|ax|,得y=-√a 21+a 2,因此它们有2个交点.答案:2【一题多解】由y=-√1−x 2,得x 2+y 2=1(y ≤0)表示半圆如图:由y+|ax|=0,得y=-|a||x|,表示过原点的两条射线,如图.因此由图象可知,它们有两个交点.答案:2三、解答题(每题12分,共24分)7.已知点P(x 0,y 0)是曲线f(x,y)=0和曲线g(x,y)=0的交点,求证:点P 在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【证明】因为P 是曲线f(x,y)=0和曲线g(x,y)=0的交点,因此P 在曲线f(x,y)=0上,即f(x 0,y 0)=0,P 在曲线g(x,y)=0上,即g(x 0,y 0)=0,因此f(x 0,y 0)+λg(x 0,y 0)=0+λ0=0,故点P 在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【拓展延伸】证明曲线与方程关系的技术 解答本类问题的关键是正确明白得并运用曲线的方程与方程的曲线的概念,明确两条原那么,即假设点的坐标适合方程,那么该点必在方程的曲线上;假设点在曲线上,那么该点的坐标必适合曲线的方程.另外,要证明方程是曲线的方程,依照概念需完成两步:①曲线上任意一点的坐标都是方程的解;②以方程的解为坐标的点都在曲线上.二者缺一不可.8.当曲线y=1+√4−x 2与直线y=k(x-2)+4有两个相异交点时,求实数k 的取值范围.【解析】曲线y=1+√4−x 2是以(0,1)为圆心,2为半径的半圆,如图. 直线y=k(x-2)+4是过定点(2,4)的直线.设切线PC 的斜率为k 0,切线PC 的方程为y=k 0(x-2)+4.圆心(0,1)到直线PC 的距离等于半径2,即0√1+k 0=2, 因此k 0=512,直线PA 的斜率k 1=34, 因此实数k 的取值范围是512<k ≤34.。

高中高二数学教案曲线和方程

高中高二数学教案曲线和方程

高中高二数学教案:曲线和方程曲线和方程教学目标(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.(5)进一步理解数形结合的思想方法.教学建议教材分析(1)知识结构曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.(2)重点、难点分析①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.②本节的难点是曲线方程的概念和求曲线方程的方法.教法建议(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.(4)从集合与对应的观点可以看得更清楚:设表示曲线上适合某种条件的点的集合;表示二元方程的解对应的点的坐标的集合.可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即文字语言中的几何条件数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的,的代数方程由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.教学设计示例课题:求曲线的方程(第一课时)教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步掌握求曲线方程的方法.(4)通过本节内容的教学,培养学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线.学生思考并回答.教师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.【问题】如何根据已知条件,求出曲线的方程.【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所适合的条件可表示为将上式两边平方,整理得果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.求解过程略.【概括总结】通过学生讨论,师生共同总结:分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出适合条件的点的集合;(3)用坐标表示条件,列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合由距离公式,点适合的条件可表示为①将①式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.【练习巩固】题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.根据条件,代入坐标可得化简得①由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为【小结】师生共同总结:(1)解析几何研究研究问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?【作业】课本第72页练习1,2,3;。

【新人教B版】(新教材)2022版高中数学选择性必修第一册第二章平面解析几何4曲线与方程课件

【新人教B版】(新教材)2022版高中数学选择性必修第一册第二章平面解析几何4曲线与方程课件
第二章 平面解析几何
2.4 曲线与方程
课标要求素养要求源自1.了解曲线上的点与方程的 课 解之间的一一对应关系. 1.数学抽象——能通过具体的实例理解“ 标 解 2.初步理解“曲线的方程” 曲线的方程”与“方程的曲线”的概念. 读 与“方程的曲线”的概念. 2.数学运算——能掌握求动点的轨迹方程
3.初步掌握根据已知条件求 的常见方法.
曲线方程的方法.
要点一 曲线的方程与方程的曲线
点的坐标
1. 如果曲线与方程仅满足“以这个方程的解为坐标的点都在曲线上”会出 现什么情况?你能举例说明吗?
要点二 动点的轨迹方程
直线
圆周
2. 求动点的轨迹方程与求其轨迹有何区别? 提示 求动点的轨迹方程得出方程即可,而求动点的轨迹在得出方程后还要 指出方程的曲线是什么图形. 3. 求轨迹方程时,根据一个已知的平面图形建立的坐标系是唯一的吗? 提示 不是唯一的,一般以得到的曲线方程最简单为标准.
ACD
探究点二 曲线的交点
解题感悟 结合曲线方程的定义,两曲线的交点的坐标即为两曲线的方程构成的方
程组的解,所以可以把求两曲线的交点坐标的问题转化为解方程组的问题, 把讨论交点的个数问题转化为讨论方程组解的个数问题.如果只涉及曲线的 一部分,那么常用到数形结合的方法.
2
探究点三 求动点的轨迹方程
探究点一 曲线的方程与方程的曲线的概念的理解及应用
例 D
A.
B.
C.
D.
B
解题感悟 曲线上的点的坐标都是这个方程的解,即直观地说“点不比解多”,称为纯粹 性;以这个方程的解为坐标的点都在曲线上,即直观地说“解不比点多”,称 为完备性,只有点和解一一对应,才能说曲线是方程的曲线,方程是曲线的方 程.

人教新课标版数学高二选修2-1课件曲线与方程

人教新课标版数学高二选修2-1课件曲线与方程
普通高中课程标准实验教科书 数学选修2-1
2.1.1 曲线与方程
教学目标
1.了解曲线上的点与方程的解之间的一一对应关系. 2.初步领会“曲线的方程”与“方程的曲线”的概念. 3.学会根据已有的情境资料找规律,学会分析、判断曲线与方程的 关系,强化“形”与“数”的统一以及相互转化的思想方法.
下图为卫星绕月球飞行示意图,据图回答下面问题:假 若卫星在某一时间内飞行轨迹上任意一点到月球球心和月球 表面上一定点的距离之和近似等于定值2a,视月球为球体, 半径为R,你能写出一个轨迹的方程吗?
1 2345
解析答案
课堂小结
(1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是不是方 程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就 说明点不在曲线上. (2)已知点在某曲线上,可将点的坐标代入曲线的方程,从而可研究有关 参数的值或范围问题.
返回
答案
探究点1 曲线与方程的概念应用 例1 证明与两条坐标轴的距离的积是常数k(k>0)的点的轨迹方程是xy=±k.
反思与感悟
解析答案
探究点2 曲线与方程关系的应用 例2 如果曲线C上的点的坐标(x,y)都是方程F(x,y)=0的解,那么( ) A.以方程F(x,y)=0的解为坐标的点都在曲线C上 B.以方程F(x,y)=0的解为坐标的点有些不在曲线C上 C.不在曲线C上的点的坐标都不是方程F(x,y)=0的解 D.坐标不满足F(x,y)=0的点不在曲线C上
自主学习
知识点一 曲线与方程的概念 一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条
件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关
系:
(1) 曲线上点的坐标 都是这个方程的解;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1. (1)等腰三角形顶点坐标为A(0,3), B(2,0),C(2,0), 中线AO(O为原点)的方程是x 0吗?为什么?
解 :不是.尽管中线AO上点的坐标都是方程x 0的解, 但是以方程x 0的解为坐标的点不全是中线AO 上点,比如点D(0,4),因而中线AO的方程不是x 0.
中线AO的方程应该是 x 0(0 y 3).
数学研究问题的常用范式: 特殊 一般 特殊
直线、圆及其方程 一般曲线及其方程 圆锥曲线及其方程
2.1曲线与方程 可能不“曲”, 也可能非“线”
曲线: 点的集合或适合某种条件的点的轨迹
方程: Ax By C 0;Ax2 By2 Cx Dy E 0 二元方程f ( x, y) 0
即轨迹方程为y x.
小结:
作业:
一般地,在直角坐标系中, 如果某曲线C上的点 与一个二元方程f ( x, y) 0的实数解建立如下 的关系: (1) 曲线上点的坐标都是这个方程的解; (2) 以这个方程的解为坐标的点都是曲线上的点.
则该方程叫做曲线的方程;该曲线叫做方程的曲线.
曲线与方程等价对应的两个判定条件: (1) 曲线上点的坐标都是这个方程的解; (2) 以这个方程的解为坐标的点都是曲线上的点.
a a
02 12
b
52
3
b 12 2
2,
解得a b
32 1285. 25
例3. (1)阅读课本P35例1, 体会如何从曲线与方程的等价 对应的两个条件去说明.
例3. (2)试给出与两条坐标轴距离相等的点的轨迹方程. 解:设M( x, y)是轨迹上的任意一点,由题设知 x y ,
例1.
(2)以原点为圆心,
半径为1的圆的方程是 1
x
2
y
2
1
吗?为什么?

:
不是.因为圆上点的坐标不都是方程
1
x
2
y2Βιβλιοθήκη 1的解,比如点A(0,1), B(0,1).而圆的方程应是x2 y2 1.
例2. (1)课本P37A组1题; (2)课本P37练习2题.
解:(2)因为曲线上点的坐标是对应方程的解,由题设知
相关文档
最新文档