2018年高考物理大一轮复习第6章碰撞动量守恒定律章末检测
推荐K12学习2018年高考物理大一轮复习第6章碰撞动量守恒定律配套教案

六碰撞动量守恒定律第1节动量动量定理动量守恒定律一、冲量、动量和动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)表达式:p=mv.(3)单位:千克·米/秒.符号:kg·m/s.(4)特征:动量是状态量,是矢量,其方向和速度方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的变化量.(2)表达式:F合·t=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.二、动量守恒定律1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.2.定律内容:如果一个系统不受外力作用,或者所受的合外力为零,这个系统的总动量保持不变.3.定律的表达式m1v1+m2v2=m1v1′+m2v2′,两个物体组成的系统初动量等于末动量.可写为:p =p ′、Δp =0和Δp 1=-Δp 24.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.[自我诊断]1.判断正误(1)动量越大的物体,其运动速度越大.(×)(2)物体的动量越大,则物体的惯性就越大.(×)(3)物体的动量变化量等于某个力的冲量.(×)(4)动量是过程量,冲量是状态量.(×)(5)物体沿水平面运动,重力不做功,重力的冲量也等于零.(×)(6)系统动量不变是指系统的动量大小和方向都不变.(√)2.(2017·广东广州调研)(多选)两个质量不同的物体,如果它们的( )A .动能相等,则质量大的动量大B .动能相等,则动量大小也相等C .动量大小相等,则质量大的动能小D .动量大小相等,则动能也相等解析:选AC.根据动能E k =12mv 2可知,动量p =2mE k ,两个质量不同的物体,当动能相等时,质量大的动量大,A 正确、B 错误;若动量大小相等,则质量大的动能小,C 正确、D 错误.3.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量解析:选B.由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确.4.(2017·河南开封质检)(多选) 如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( )A .两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零解析:选ACD.当两手同时放开时,系统所受的合外力为零,所以系统的动量守恒,又因开始时总动量为零,故系统总动量始终为零,选项A正确;先放开左手,左边的物体就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,且开始时总动量方向向左,放开右手后总动量方向也向左,故选项B错,而C、D正确.5.(2017·湖南邵阳中学模拟)一个质量m=1.0 kg的物体,放在光滑的水平面上,当物体受到一个F=10 N与水平面成30°角斜向下的推力作用时,在10 s内推力的冲量大小为________ N·s,动量的增量大小为________ kg·m/s.解析:根据p=Ft,可知10 s内推力的冲量大小p=Ft=100 N·s,根据动量定理有Ft cos 30°=Δp.代入数据解得Δp=50 3 kg·m/s=86.6 kg·m/s.答案:100 86.6考点一动量定理的理解及应用1.应用动量定理时应注意两点(1)动量定理的研究对象是一个质点(或可视为一个物体的系统).(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方向.2.动量定理的三大应用(1)用动量定理解释现象①物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.②作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.(2)应用I=Δp求变力的冲量.(3)应用Δp=F·Δt求恒力作用下的曲线运动中物体动量的变化量.[典例1] (2016·高考全国乙卷)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.解析 (1)设Δt 时间内,从喷口喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ①ΔV =v 0S Δt ②由①②式得,单位时间内从喷口喷出的水的质量为Δm Δt=ρv 0S ③ (2)设玩具悬停时其底面相对于喷口的高度为h ,水从喷口喷出后到达玩具底面时的速度大小为v .对于Δt 时间内喷出的水,由能量守恒得12(Δm )v 2+(Δm )gh =12(Δm )v 20④ 在h 高度处,Δt 时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为 Δp =(Δm )v ⑤设水对玩具的作用力的大小为F ,根据动量定理有F Δt =Δp ⑥由于玩具在空中悬停,由力的平衡条件得F =Mg ⑦联立③④⑤⑥⑦式得h =v 202g -M 2g 2ρ2v 20S 2⑧ 答案 (1)ρv 0S (2)v 202g -M 2g 2ρ2v 20S 2(1)用动量定理解题的基本思路(2)对过程较复杂的运动,可分段用动量定理,也可整个过程用动量定理.1.如图所示,一个质量为0.18 kg的垒球,以25 m/s的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s,则这一过程中动量的变化量为( ) A.大小为3.6 kg·m/s,方向向左B.大小为3.6 kg·m/s,方向向右C.大小为12.6 kg·m/s,方向向左D.大小为12.6 kg·m/s,方向向右解析:选D.选向左为正方向,则动量的变化量Δp=mv1-mv0=-12.6 kg·m/s,大小为12.6 kg·m/s,负号表示其方向向右,D正确.2. 质量为1 kg的物体做直线运动,其速度图象如图所示.则物体在前10 s内和后10 s内所受外力的冲量分别是( )A.10 N·s10 N·sB.10 N·s-10 N·sC.0 10 N·sD.0 -10 N·s解析:选D.由图象可知,在前10 s内初、末状态的动量相同,p1=p2=5 kg·m/s,由动量定理知I1=0;在后10 s内末状态的动量p3=-5 kg·m/s,由动量定理得I2=p3-p2=-10 N·s,故正确答案为D.3.如图所示,在倾角为θ的斜面上,有一个质量是m的小滑块沿斜面向上滑动,经过时间t1,速度为零后又下滑,经过时间t2,回到斜面底端.滑块在运动过程中,受到的摩擦力大小始终是F f,在整个运动过程中,摩擦力对滑块的总冲量大小为________,方向是________;合力对滑块的总冲量大小为________,方向是________.解析:摩擦力先向下后向上,因上滑过程用时短,故摩擦力的冲量为F f(t2-t1),方向与向下运动时的摩擦力的方向相同,故沿斜面向上.合力的冲量为mg(t1+t2)sin θ+F f(t1-t2),沿斜面向下.答案:F f(t2-t1) 沿斜面向上mg(t1+t2)sin θ+F f(t1-t2) 沿斜面向下4.如图所示,一质量为M的长木板在光滑水平面上以速度v0向右运动,一质量为m的小铁块在木板上以速度v0向左运动,铁块与木板间存在摩擦.为使木板能保持速度v0向右匀速运动,必须对木板施加一水平力,直至铁块与木板达到共同速度v0.设木板足够长,求此过程中水平力的冲量大小.解析:考虑M、m组成的系统,设M运动的方向为正方向,根据动量定理有Ft=(M+m)v0-(Mv0-mv0)=2mv0则水平力的冲量I=Ft=2mv0.答案:2mv05.(2017·甘肃兰州一中模拟)如图所示,一质量为M=2 kg的铁锤从距地面h=3.2 m 高处自由下落,恰好落在地面上的一个质量为m=6 kg的木桩上,随即与木桩一起向下运动,经时间t=0.1 s停止运动.求木桩向下运动时受到地面的平均阻力大小.(铁锤的横截面小于木桩的横截面,木桩露出地面部分的长度忽略不计,重力加速度g取10 m/s2) 解析:铁锤下落过程中机械能守恒,则v=2gh=8 m/s.铁锤与木桩碰撞过程中动量守恒,Mv=(M+m)v′,v′=2 m/s.木桩向下运动,由动量定理(规定向下为正方向)得[(M+m)g-f]Δt=0-(M+m)v′,解得f=240 N.答案:240 N6.(2016·河南开封二模)如图所示,静止在光滑水平面上的小车质量M=20 kg.从水枪中喷出的水柱的横截面积S=10 cm2,速度v=10 m/s,水的密度ρ=1.0×103 kg/m3.若用水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.当有质量m=5 kg的水进入小车时,试求:(1)小车的速度大小;(2)小车的加速度大小.解析:(1)流进小车的水与小车组成的系统动量守恒,设当进入质量为m的水后,小车速度为v1,则mv=(m+M)v1,即v1=mvm+M=2 m/s(2)质量为m的水流进小车后,在极短的时间Δt内,冲击小车的水的质量Δm=ρS(v -v1)Δt,设此时水对车的冲击力为F,则车对水的作用力为-F,由动量定理有-FΔt=Δmv1-Δmv,得F=ρS(v-v1)2=64 N,小车的加速度a=FM+m=2.56 m/s2答案:(1)2 m/s (2)2.56 m/s2考点二动量守恒定律的理解及应用1.动量守恒的“四性”(1)矢量性:表达式中初、末动量都是矢量,需要首先选取正方向,分清各物体初末动量的正、负.(2)瞬时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等.(3)同一性:速度的大小跟参考系的选取有关,应用动量守恒定律,各物体的速度必须是相对同一参考系的速度.一般选地面为参考系.(4)普适性:它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.2.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp =0,系统总动量的增量为零.[典例2] (2017·山东济南高三质检)光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.解析 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 与B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0④答案 65v 0应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.1.如图所示,在光滑的水平面上放有一物体M ,物体M 上有一光滑的半圆弧轨道,轨道半径为R ,最低点为C ,两端A 、B 等高,现让小滑块m 从A 点由静止开始下滑,在此后的过程中,则( )A .M 和m 组成的系统机械能守恒,动量守恒B .M 和m 组成的系统机械能守恒,动量不守恒C .m 从A 到C 的过程中M 向左运动,m 从C 到B 的过程中M 向右运动D .m 从A 到B 的过程中,M 运动的位移为mRM +m解析:选B.M 和m 组成的系统机械能守恒,总动量不守恒,但水平方向动量守恒,A 错误,B 正确;m 从A 到C 过程中,M 向左加速运动,当m 到达C 处时,M 向左速度最大,m 从C 到B 过程中,M 向左减速运动,C 错误;在m 从A 到B 过程中,有Mx M =mx m ,x M +x m =2R ,得x M =2mR /(m +M ),D 错误.2.(2016·广东湛江联考)如图所示,质量均为m 的小车和木箱紧挨着静止在光滑的水平冰面上,质量为2m 的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v ,木箱运动到右侧墙壁时与竖直墙壁发生弹性碰撞,反弹后能被小孩接住,求:(1)小孩接住箱子后共同速度的大小;(2)若小孩接住箱子后再次以相对于冰面的速度v 将木箱向右推出,木箱仍与竖直墙壁发生弹性碰撞,判断小孩能否再次接住木箱.解析:(1)取向左为正方向,根据动量守恒定律可得推出木箱的过程中0=(m +2m )v 1-mv ,接住木箱的过程中mv +(m +2m )v 1=(m +m +2m )v 2.解得v 2=v 2. (2)若小孩第二次将木箱推出,根据动量守恒定律可得4mv 2=3mv 3-mv ,则v 3=v ,故无法再次接住木箱.答案:(1)v 2(2)否 3.(2017·山东济南高三质检)如图所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端.三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg ,开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 相碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞.求A 与C 发生碰撞后瞬间A 的速度大小.解析:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰撞后瞬间A 的速度大小为v A ,C 的速度大小为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v C ,A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB,A、B达到共同速度后恰好不再与C碰撞,应满足v AB=v C,联立解得v A=2 m/s.答案:2 m/s4.人和冰车的总质量为M,另一木球质量为m,且M∶m=31∶2.人坐在静止于水平冰面的冰车上,以速度v(相对地面)将原来静止的木球沿冰面推向正前方向的固定挡板,不计一切摩擦阻力,设小球与挡板的碰撞是弹性的,人接住球后,再以同样的速度v(相对地面)将球推向挡板.求人推多少次后不能再接到球?解析:设第1次推球后人的速度为v1,有0=Mv1-mv,第1次接球后人的速度为v1′,有Mv1+mv=(M+m)v1′;第2次推球(M+m)v1′=Mv2-mv,第2次接球Mv2+mv=(M+m)v2′……第n次推球(M+m)v n-1′=Mv n-mv,可得v n=n-mv M,当v n≥v时人便接不到球,可得n≥8.25,取n=9.答案:9次课时规范训练[基础巩固题组]1.关于物体的动量,下列说法中正确的是( )A.物体的动量越大,其惯性也越大B.同一物体的动量越大,其速度不一定越大C.物体的加速度不变,其动量一定不变D.运动物体在任一时刻的动量方向一定是该时刻的速度方向解析:选 D.惯性大小的唯一量度是物体的质量,如果物体的动量大,但也有可能物体的质量很小,所以不能说物体的动量大其惯性就大,故A错误;动量等于物体的质量与物体速度的乘积,即p=mv,同一物体的动量越大,其速度一定越大,故B错误;加速度不变,速度是变化的,所以动量一定变化,故C错误;动量是矢量,动量的方向就是物体运动的方向,故D正确.2. 运动员向球踢了一脚(如图),踢球时的力F=100 N,球在地面上滚动了t=10 s停下来,则运动员对球的冲量为( )A.1 000 N·s B.500 N·sC.零D.无法确定解析:选D.滚动了t=10 s是地面摩擦力对足球的作用时间.不是踢球的力的作用时间,由于不能确定人作用在球上的时间,所以无法确定运动员对球的冲量.3.(多选)如图所示为两滑块M、N之间压缩一轻弹簧,滑块与弹簧不连接,用一细绳将两滑块拴接,使弹簧处于锁定状态,并将整个装置放在光滑的水平面上.烧断细绳后到两滑块与弹簧分离的过程中,下列说法正确的是( )A.两滑块的动量之和变大B.两滑块与弹簧分离后动量等大反向C.如果两滑块的质量相等,则分离后两滑块的速率也相等D.整个过程中两滑块的机械能增大解析:选BCD.对两滑块所组成的系统,互推过程中,合外力为零,总动量守恒且始终为零,A错误;由动量守恒定律得0=m M v M-m N v N,显然两滑块动量的变化量大小相等,方向相反,B正确;当m M=m N时,v M=v N,C正确;由于弹簧的弹性势能转化为两滑块的动能,则两滑块的机械能增大,D正确.4.(多选)静止在湖面上的小船中有两人分别向相反方向水平抛出质量相同的小球,先将甲球向左抛,后将乙球向右抛.抛出时两小球相对于河岸的速率相等,水对船的阻力忽略不计,则下列说法正确的是( )A.两球抛出后,船向左以一定速度运动B.两球抛出后,船向右以一定速度运动C.两球抛出后,船的速度为0D.抛出时,人给甲球的冲量比人给乙球的冲量大解析:选CD.水对船的阻力忽略不计,根据动量守恒定律,两球抛出前,由两球、人和船组成的系统总动量为0,两球抛出后的系统总动量也是0.两球质量相等,速度大小相等,方向相反,合动量为0,船的动量也必为0,船的速度必为0.具体过程是:当甲球向左抛出后,船向右运动,乙球抛出后,船静止.人给甲球的冲量I甲=mv-0,人给乙球的冲量I2=mv-mv′,v′是甲球抛出后的船速,方向向右,所以乙球的动量变化量小于甲球的动量变化量,乙球所受冲量也小于甲球所受冲量.5.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t +mg B.m 2gh t -mg C.m gh t +mg D.m gh t-mg 解析:选A.由动量定理得(mg -F )t =0-mv ,得F =m 2gh t +mg .选项A 正确. 6. (多选)静止在光滑水平面上的物体,受到水平拉力F 的作用,拉力F 随时间t 变化的图象如图所示,则下列说法中正确的是( )A .0~4 s 内物体的位移为零B .0~4 s 内拉力对物体做功为零C .4 s 末物体的动量为零D .0~4 s 内拉力对物体的冲量为零解析:选BCD.由图象可知物体在4 s 内先做匀加速后做匀减速运动,4 s 末的速度为零,位移一直增大,A 错;前2 s 拉力做正功,后2 s 拉力做负功,且两段时间做功代数和为零,故B 正确;4 s 末的速度为零,故动量为零,故C 正确;根据动量定理,0~4 秒内动量的变化量为零,所以拉力对物体的冲量为零,故D 正确.7.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可当成质点.甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A 后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站.(设甲、乙距离空间站足够远,本题中的速度均指相对空间站的速度)(1)乙要以多大的速度v (相对于空间站)将物体A 推出?(2)设甲与物体A作用时间为t=0.5 s,求甲与A的相互作用力F的大小.解析:(1)以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的方向为正方向,则有:M2v0-M1v0=(M1+M2)v1以乙和A组成的系统为研究对象,有:M2v0=(M2-m)v1+mv代入数据联立解得v1=0.4 m/s,v=5.2 m/s(2)以甲为研究对象,由动量定理得,Ft=M1v1-(-M1v0)代入数据解得F=432 N答案:(1)5.2 m/s (2)432 N[综合应用题组]8. (多选)如图把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面拉出,解释这些现象的正确说法是( )A.在缓慢拉动纸带时,重物和纸带间的摩擦力大B.在迅速拉动时,纸带给重物的摩擦力小C.在缓慢拉动纸带时,纸带给重物的冲量大D.在迅速拉动时,纸带给重物的冲量小解析:选CD.在缓慢拉动纸带时,两物体之间的作用力是静摩擦力,在迅速拉动时,它们之间的作用力是滑动摩擦力.由于通常认为滑动摩擦力等于最大静摩擦力,所以一般情况是缓拉摩擦力小,快拉摩擦力大,故判断A、B都错;在缓慢拉动纸带时,摩擦力虽小些,但作用时间可以很长,故重物获得的冲量即动量的变化可以很大,所以能把重物带动,快拉时,摩擦力虽大些,但作用时间很短,故冲量小,所以重物动量改变很小.9.(多选)某同学质量为60 kg,在军事训练中要求他从岸上以大小为2 m/s的速度跳到一条向他缓缓飘来的小船上,然后去执行任务,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上.则( )A.人和小船最终静止在水面上B.该过程同学的动量变化量为105 kg·m/sC.船最终的速度是0.95 m/sD.船的动量变化量是105 kg·m/s解析:选BD.规定人原来的速度方向为正方向,设人上船后,船与人共同速度为v.由题意,水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力为零,系统的动量守恒,则由动量守恒定律得:m 人v 人-m 船v 船=(m 人+m 船)v ,代入数据解得:v =0.25 m/s ,方向与人的速度方向相同,与船原来的速度方向相反.故A 错误,C 错误;人的动量的变化Δp 为:Δp =m 人v -m 人v 人=60×(0.25-2)=-105 kg·m/s,负号表示方向与选择的正方向相反;故B 正确;船的动量变化量为:Δp ′=m 船v -m 船v 船=140×(0.25+0.5)=105 kg·m/s;故D 正确.10.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一质量为m =1.0 kg 的小木块A .现以地面为参照系,给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,但最后A 并没有滑离木板B .站在地面的观察者看到在一段时间内小木块A 正在做加速运动,则在这段时间内的某时刻木板B 相对地面的速度大小可能是( )A .2.4 m/sB .2.8 m/sC .3.0 m/sD .1.8 m/s解析:选A.A 相对地面速度为0时,木板的速度为v 1,由动量守恒得(向右为正):Mv-mv =Mv 1,解得:v 1=83m/s.木块从此时开始向右加速,直到两者有共速为v 2,由动量守恒得:Mv -mv =(M +m )v 2,解得:v 2=2 m/s ,故B 对地的速度在2 m/s ~83m/s 范围内,选项A 正确.11.如图甲所示,物块A 、B 的质量分别是m A =4.0 kg 和m B =3.0 kg.用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触,另有一物块C 从t =0时以一定速度向右运动,在t =4 s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v t 图象如图乙所示,求:(1)物块C 的质量m C ;(2)从物块C 与A 相碰到B 离开墙的运动过程中弹簧对A 物体的冲量大小.解析:(1)由图可知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒,m C v 1=(m A +m C )v 2,代入数据解得m C =2 kg.(2)12 s 时B 离开墙壁,此时B 速度为零,A 、C 速度相等时,v 3=-v 2从物块C 与A 相碰到B 离开墙的运动过程中,A 、C 两物体的动量变化为:Δp =(m A +m C )v 3-(m A +m C )v 2从物块C 与A 相碰到B 离开墙的运动过程中弹簧对A 物体的冲量大小为I =2(m A +m C )v 2,代入数据整理得到I =36 N·s.答案:(1)2 kg (2)36 N·s12. 如图所示,质量为0.4 kg 的木块以2 m/s 的速度水平地滑上静止的平板小车,小车的质量为1.6 kg ,木块与小车之间的动摩擦因数为0.2(g 取10 m/s 2).设小车足够长,求:(1)木块和小车相对静止时小车的速度;(2)从木块滑上小车到它们处于相对静止所经历的时间;(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离.解析:(1)以木块和小车为研究对象,由动量守恒定律可得mv 0=(M +m )v 解得:v =m M +mv 0=0.4 m/s. (2)再以木块为研究对象,由动量定理可得-μmgt =mv -mv 0解得:t =v 0-v μg=0.8 s. (3)木块做匀减速运动,加速度为a 1=F f m=μg =2 m/s 2 小车做匀加速运动,加速度为a 2=F f M =μmg M=0.5 m/s 2 在此过程中木块的位移为x 1=v 2-v 202a 1=0.96 m 车的位移为:x 2=12a 2t 2=12×0.5×0.82 m =0.16 m 由此可知,木块在小车上滑行的距离为:Δx =x 1-x 2=0.8 m.答案:(1)0.4 m/s (2)0.8 s (3)0.8 m第2节碰撞与能量守恒一、碰撞1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.2.分类(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.二、动量与能量的综合1.区别与联系:动量守恒定律和机械能守恒定律所研究的对象都是相互作用的物体所构成的系统,且研究的都是某一个物理过程.但两者守恒的条件不同:系统动量是否守恒,决定于系统所受合外力是否为零;而机械能是否守恒,决定于系统是否有除重力和弹簧弹力以外的力是否做功.2.表达式不同:动量守恒定律的表达式为矢量式,机械能守恒定律的表达式则是标量式,对功和能量只是代数和而已.[自我诊断]1.判断正误(1)碰撞过程只满足动量守恒,不可能满足动能守恒(×)(2)发生弹性碰撞的两小球有可能交换速度(√)(3)完全非弹性碰撞不满足动量守恒(×)(4)无论哪种碰撞形式都满足动量守恒,而动能不会增加(√)(5)爆炸现象中因时间极短,内力远大于外力,系统动量守恒(√)(6)反冲运动中,动量守恒,动能也守恒(×)2.(2017·山西运城康杰中学模拟)(多选)有关实际中的现象,下列说法正确的是( ) A.火箭靠喷出气流的反冲作用而获得巨大速度B.体操运动员在着地时屈腿是为了减小地面对运动员的作用力C.用枪射击时要用肩部抵住枪身是为了减少反冲的影响D.为了减轻撞车时对司乘人员的伤害程度,发动机舱越坚固越好。
(新课标)2018年高考物理一轮复习 第六章 碰撞与动量守恒章末热点集训

第六章 碰撞与动量守恒章末热点集训动量定理的应用一艘帆船在湖面上顺风航行,在风力的推动下做速度为v 0=4 m/s 的匀速直线运动.若该帆船在运动状态下突然失去风力的作用,则帆船在湖面上做匀减速直线运动,经过t =8 s 才可静止.该帆船的帆面正对风的有效面积为S =10 m 2,帆船的总质量约为M =936 kg.若帆船在航行过程中受到的阻力恒定不变,空气的密度为ρ=1.3 kg/m 3,在匀速行驶状态下估算:(1)帆船受到风的推力F 的大小;(2)风速的大小v .[解析] (1)风突然停止,帆船只受到阻力f 的作用,做匀减速直线运动,设帆船的加速度为a ,则 a =0-v 0t=-0.5 m/s 2 根据牛顿第二定律有-f =Ma ,所以f =468 N则帆船匀速运动时,有F -f =0解得F =468 N.(2)设在时间t 内,正对着吹向帆面的空气的质量为m ,根据动量定理有-Ft =m (v 0-v ) 又m =ρS (v -v 0)t所以Ft =ρS (v -v 0)2t解得v =10 m/s.[答案] (1)468 N (2)10 m/s1.皮球从某高度落到水平地板上,每弹跳一次上升的高度总等于前一次的0.64倍,且每次球与地板接触的时间相等.若空气阻力不计,与地板碰撞时,皮球重力可忽略.(1)求相邻两次球与地板碰撞的平均冲力大小之比是多少?(2)若用手拍这个球,使其保持在0.8 m 的高度上下跳动,则每次应给球施加的冲量为多少?(已知球的质量m =0.5 kg ,g 取10 m/s 2)解析:(1)由题意可知,碰撞后的速度是碰撞前的0.8倍.设皮球所处的初始高度为H ,与地板第一次碰撞前瞬时速度大小为v 0=2gH ,第一次碰撞后瞬时速度大小(亦为第二次碰撞前瞬时速度大小)v 1和第二次碰撞后瞬时速度大小v 2满足v 2=0.8v 1=0.82v 0.设两次碰撞中地板对球的平均冲力分别为F 1、F 2,取竖直向上为正方向.根据动量定理,有F 1t =mv 1-(-mv 0)=1.8mv 0F 2t =mv 2-(-mv 1)=1.8mv 1=1.44mv 0则F 1∶F 2=5∶4.(2)欲使球跳起0.8 m ,应使球由静止下落的高度为h =0.80.64m =1.25 m ,球由1.25 m 落到0.8 m 处的速度为v =3 m/s ,则应在0.8 m 处给球的冲量为I =mv =1.5 N ·s ,方向竖直向下.答案:见解析碰撞问题的求解(高考山东卷)如图,光滑水平直轨道上两滑块A 、B 用橡皮筋连接,A 的质量为m .开始时橡皮筋松弛,B 静止,给A 向左的初速度v 0.一段时间后,B 与A 同向运动发生碰撞并粘在一起.碰撞后的共同速度是碰撞前瞬间A 的速度的两倍,也是碰撞前瞬间B 的速度的一半.求:(1)B 的质量;(2)碰撞过程中A 、B 系统机械能的损失.[解析] (1)以初速度v 0的方向为正方向,设B 的质量为m B ,A 、B 碰撞后的共同速度为v ,由题意知:碰撞前瞬间A 的速度为v 2,碰撞前瞬间B 的速度为2v ,由动量守恒定律得m v 2+2m B v =(m +m B )v ①解得m B =m 2.② (2)从开始到碰后的全过程,由动量守恒定律得 mv 0=(m +m B )v ③设碰撞过程A 、B 系统机械能的损失为ΔE ,则ΔE =12m ⎝ ⎛⎭⎪⎫v 22+12m B (2v )2-12(m +m B )v 2④ 联立②③④式得ΔE =16mv 20. [答案] (1)m 2 (2)16mv 202.如图,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数为μ.现让甲物块以速度v 0向着静止的乙运动并发生正碰,试求:(1)甲与乙第一次碰撞过程中系统的最小动能;(2)若甲在乙刚停下来时恰好与乙发生第二次碰撞,则在第一次碰撞中系统损失了多少机械能?解析:(1)碰撞过程中系统动能最小时,为两物体速度相等时,设此时两物体速度为v 由系统动量守恒有2mv 0=3mv得v =23v 0 此时系统动能E k =12·3mv 2=23mv 20.(2)设第一次碰撞刚结束时甲、乙的速度分别为v 1、v 2,之后甲做匀速直线运动,乙以初速度v 2做匀减速直线运动,在乙刚停下时甲追上乙并发生碰撞,因此两物体在这段时间内平均速度相等,有 v 1=v 22而第一次碰撞中系统动量守恒,有2mv 0=2mv 1+mv 2由以上两式可得v 1=v 02v 2=v 0所以第一次碰撞中的机械能损失量为E =12·2mv 20-12·2mv 21-12mv 22=14mv 20. 答案:(1)23mv 20 (2)14mv 20运用动量和能量观点解决力学综合问题如图所示,光滑水平面上,一半圆形槽B 中间放一光滑小球A (可看成质点),A 、B 质量均为2 kg.A 、B 共同以v 0=6 m/s 的速度向右运动,质量为4 kg 的物体C 静止在前方.B 与C 碰撞后粘合在一起运动,求:(1)B 、C 碰撞后瞬间的速度大小;(2)在以后的运动过程中,A 速度等于零时重力势能的增加量.[解析] (1)设B 、C 碰撞后瞬间的速度为v 1,根据水平方向动量守恒有m B v 0=(m B +m C )v 1解得v 1=2 m/s.(2)设当A 的速度为零时,B 、C 整体的速度为v BC ,根据动量守恒定律有m A v 0+m B v 0=(m B +m C )v BC解得v BC =4 m/s重力势能的增加量ΔE p =12m A v 20+12(m B +m C )v 21-12(m B +m C )v 2BC 解得ΔE p =0即当A 的速度为零时,A 处于B 中最低点,重力势能增加量为零.[答案] (1)2 m/s (2)03.(高考北京卷)如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.取重力加速度g =10 m/s 2.求:(1)碰撞前瞬间A 的速率v ;(2)碰撞后瞬间A 和B 整体的速率v ′;(3)A 和B 整体在桌面上滑动的距离l .解析:设滑块的质量为m .(1)根据机械能守恒定律mgR =12mv 2 得碰撞前瞬间A 的速率v =2gR =2 m/s.(2)根据动量守恒定律mv =2mv ′得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理12(2m )v ′2=μ(2m )gl 得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m. 答案:(1)2 m/s (2)1 m/s (3)0.25 m百度文库是百度发布的供网友在线分享文档的平台。
高考物理一轮复习 第六章 碰撞与动量守恒综合检测(含解析)鲁科版-鲁科版高三全册物理试题

碰撞与动量守恒综合检测(时间:90分钟总分为:100分)一、选择题(此题共12小题,每题4分,共48分.在每一小题给出的四个选项中,第1~7题只有一个选项正确,第8~12题有多项正确,全部选对得4分,选对但不全得2分,有选错或不选的得0分)1.如下列图,一倾角为α的光滑斜面,固定在水平面上,一质量为m的小物块从斜面的顶端由静止开始滑下,滑到底端时速度的大小为v,所用时间为t,如此物块滑至斜面的底端时,重力的瞬时功率与下滑过程重力的冲量分别为( D )A.mgv,0B.mgv,mgtsin αC.mgvcos α,mgtD.mgvsin α,mgt解析:根据瞬时功率的公式,可得物块滑至斜面的底端时重力的瞬时功率为p=mgvsin α,重力的冲量为I=mgt,所以D正确,A,B,C错误.2.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A,B用一根弹性良好的轻质弹簧连在一起,如下列图.如此在子弹打击木块A与弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( C )A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒解析:子弹、两木块和弹簧组成的系统在水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒;机械能守恒的条件是除重力、弹力对系统做功外,其他力对系统不做功,此题中子弹射入木块瞬间有局部机械能转化为内能(发热),所以系统的机械能不守恒,故C正确.3.如图,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止.假设救生员以相对水面速率v水平向左跃入水中,如此救生员跃出后小船的速率为( C )A.v0+vB.v0-vC.v0+(v0+v)D.v0+(v0-v)解析:以水平向右为正方向,根据动量守恒定律,对救生员和船有(M+m)v0=-mv+Mv x,解得v x=v0+(v0+v),选项C正确.4.如图,光滑桌面上小滑块P和Q都可以视为质点,质量相等,Q与轻弹簧相连,设Q静止,P以某一初速度与弹簧碰撞,在此后过程中系统具有的最大弹性势能为( B )A.P的初动能B.P的初动能的C.P的初动能的D.P的初动能的解析:当P,Q速度相等时,弹簧有最大的弹性势能,设P的初速度为v0,P,Q相等的速度为v,如此P的初动能E k0=m,根据动量守恒有mv0=2mv,解得v=,如此最大的弹性势能E p=m-·2mv2=m=E k0,故B正确.5.如下列图,跳楼机是常见的大型机动游乐设备.这种设备的座舱装在竖直柱子上,由升降机送至高处后使其自由下落(不计阻力),一段时间后,启动制动系统,座舱匀减速运动到地面时刚好停下.如下说法正确的答案是( D )A.自由下落阶段和制动阶段乘客机械能的变化量相等B.自由下落阶段和制动阶段,乘客所受合力的冲量一样C.自由下落阶段和制动阶段,乘客所受重力做的功一定相等D.整个下落过程中,乘客的最大速度是全程平均速度的两倍解析:自由下落阶段乘客的机械能不变,制动阶段乘客机械能减小,选项A错误;自由下落阶段和制动阶段,乘客的动量变化等大反向,如此乘客所受合力的冲量大小一样,方向相反,选项B 错误;自由下落阶段和制动阶段下降的距离不一定一样,如此乘客所受重力做的功不一定相等,选项C错误;整个下落过程中,假设乘客的最大速度是v,如此自由阶段的平均速度为,制动阶段的平均速度也是,即最大速度是全程平均速度的两倍,选项D正确.6.如下列图,质量为M的小车静止在光滑的水平地面上,小车上有n个质量为m的小球,现用两种方式将小球相对于地面以恒定速度v向右水平抛出,第一种方式是将n个小球一起抛出,第二种方式是将小球一个接一个地抛出,比拟用这两种方式抛完小球后小车的最终速度(小车的长度足够长)( C )A.第一种较大B.第二种较大C.两种一样大D.不能确定解析:n个小球和小车组成的系统动量守恒,设小车的最终速度为v1,由动量守恒定律得Mv1+nmv=0,解得v1=-v,两次求出的最终速度一样,选项C正确.7.质量为m=2 kg的物体受到水平拉力F的作用,在光滑的水平面上由静止开始做直线运动,运动过程中物体的加速度随时间变化的规律如下列图.如此如下判断正确的答案是( D )A.0~4 s内物体先做加速运动再做匀速运动B.6 s末物体的速度为零C.0~4 s内拉力冲量为18 N·sD.0~4 s内拉力做功49 J解析:物体是从静止开始运动,故在0~1 s内做加速度增大的加速运动,2~4 s内做匀加速直线运动,4~6 s做加速度减小的加速运动,6 s末加速度为零,速度最大,A,B错误;a t图象与坐标轴围成的面积表示速度变化量,故根据动量定理可得0~4 s内拉力的冲量为I=Ft=m·Δv=2×(3+4)×2×N·s=14 N·s,C错误;因为水平面光滑,故物体受到的合力大小等于F,根据动能定理可得W F=mv2-0=E k,因为是从静止开始运动的,所以4 s末的动量为p=14 N·s,根据p=可得知W F=49 J,D正确.8.将一物体水平抛出并开始计时,只受重力作用,如下说法正确的答案是( BD )A.瞬时速度与时间成正比B.重力的瞬时功率与时间成正比C.动能的增量与时间成正比D.动量的增量与时间成正比解析:根据平抛运动的规律有v=,可知瞬时速度与时间不成正比,故A错误;根据瞬时功率的定义有P=mgv y=mg2t,如此重力的瞬时功率与时间成正比,B正确;根据动能定理有ΔE k=mgh=mg·gt2,故动能的增量与时间不成正比,故C错误;由动量定理可知Δp=I G=mgt,如此动量的增量与时间成正比,故D正确.9.在光滑水平面上有三个弹性小钢球a,b,c处于静止状态,质量分别为2m,m和2m.其中a,b两球间夹一被压缩了的弹簧,两球通过左右两边的光滑挡板束缚着.假设某时刻将挡板撤掉,弹簧便把a,b两球弹出,两球脱离弹簧后,a球获得的速度大小为v,假设b,c两球相距足够远,如此b,c两球相碰后( BD )A.b球的速度大小为v,运动方向与原来相反B.b球的速度大小为v,运动方向与原来相反C.c球的速度大小为vD.c球的速度大小为v解析:设b球脱离弹簧时的速度为v0,b,c两球相碰后b,c的速度分别为v b和v c,取向右为正方向,弹簧将a,b两球弹出过程,由动量守恒定律得0=-2mv+mv0,解得v0=2v,b,c两球相碰过程,由动量守恒定律和机械能守恒定律得mv0=mv b+2mv c,m=m+·2m,联立解得v b=-v(负号表示方向向左,运动方向与原来相反),v c=v,故B,D正确.10.某同学从圆珠笔中取出轻弹簧,将弹簧一端竖直固定在水平桌面上,另一端套上笔帽,用力把笔帽往下压后迅速放开,他观察到笔帽被弹起并离开弹簧向上运动一段距离.不计空气阻力,忽略笔帽与弹簧间的摩擦,在弹簧恢复原长的过程中( CD )A.笔帽一直做加速运动B.弹簧对笔帽做的功和对桌面做的功相等C.弹簧对笔帽的冲量大小和对桌面的冲量大小相等D.弹簧对笔帽的弹力做功的平均功率大于笔帽抑制重力做功的平均功率解析:弹簧恢复原长的过程中,笔帽先向上做加速运动,弹簧压缩量减小,弹力减小,当弹力等于重力时,加速度为零,速度最大,此后弹力小于重力,合力向下,笔帽做减速运动,故A错误;笔帽向上运动,受到的弹力方向向上,力与位移同向,故弹力对笔帽作正功,重力方向向下,与位移反向,对笔帽做负功,由于笔帽离开弹簧时动能不为0,所以弹簧对笔帽做的功大于笔帽抑制重力做的功,时间一样,根据功率的定义P=可知,D正确;弹簧对桌面虽然有弹力,但没有位移,所以不做功,故B错误;由于轻弹簧质量不计,所以弹簧对桌面的弹力等于对笔帽的弹力,作用时间一样,冲量大小相等,故C正确.11.在冰壶比赛中,球员手持毛刷擦刷冰面,可以改变冰壶滑行时受到的阻力.如图(a)所示,蓝壶静止在圆形区域内,运动员用等质量的红壶撞击蓝壶,两壶发生正碰,假设碰撞前后两壶的v t图象如图(b)所示.关于冰壶的运动,如下说法正确的答案是( CD )A.两壶发生了弹性碰撞B.蓝壶运动了4 s停下C.碰撞后两壶相距的最远距离为1.275 mD.碰撞后蓝壶的加速度大小为0.3 m/s2解析:由图(b)可知,碰前红壶的速度v0=1.2 m/s,碰后红壶的速度v红=0.3 m/s,取碰撞前红壶的速度方向为正方向,碰撞过程系统动量守恒,如此有mv0=mv红+mv,解得v=0.9 m/s;碰撞前两壶的总动能E k1=m=0.72 m,碰撞后两壶的总动能E k2=m+mv2=0.45 m<E k1,所以两壶碰撞为非弹性碰撞,故A错误;由碰前红壶的v t图象可知,红壶的加速度大小为a= m/s2=0.4m/s2,即蓝壶再次静止的时刻为t= s=4 s,所以蓝壶运动了3 s停下,故B错误;v t图线与坐标轴围成的面积表示位移,如此碰后两壶相距的最远距离s=-m=1.275 m,故C正确;碰后蓝壶的加速度大小a'== m/s2=0.3 m/s2,故D正确.12.如下列图,小车的上面固定一个光滑弯曲圆管道,整个小车(含管道)的质量为2m,原来静止在光滑的水平面上.今有一个可以看做质点的小球,质量为m,半径略小于管道半径,以水平速度v 从左端滑上小车,小球恰好能到达管道的最高点,然后从管道左端滑离小车.关于这个过程,如下说法正确的答案是( BC )A.小球滑离小车时,小车回到原来位置B.小球滑离小车时相对小车的速度大小为vC.车上管道中心线最高点的竖直高度为D.小球从滑进管道到滑到最高点的过程中,小车的动量变化大小是解析:小球恰好到达管道的最高点,说明在最高点时小球和管道之间相对速度为0,小球从滑进管道到滑到最高点的过程中,根据水平方向的动量守恒,有mv=(m+2m)v',得v'=,小车动量变化大小Δp车=2m·=mv,D项错误.小球从滑进管道到滑到最高点,根据机械能守恒定律有mgH=mv2-(m+2m)v'2,得H=,C项正确.小球从滑上小车到滑离小车的过程,有mv=mv1+2mv2,mv2=m+·2m,解得v1=-,v2=v,如此小球滑离小车时相对小车的速度大小为v+v=v,B项正确.在整个过程中小球对小车总是做正功,因此小车一直向右运动,A项错误.二、非选择题(共52分)13.(8分)如图为一弹簧弹射装置,在内壁光滑、水平固定的金属管中放有轻弹簧,弹簧压缩并锁定,在金属管两端各放置一个金属小球1和2(两球直径略小于管径且与弹簧不固连).现解除弹簧锁定,两个小球同时沿同一直线向相反方向弹射.然后按下述步骤进展实验:①记录两球在水平地面上的落点P,Q;②用刻度尺测出两管口离地面的高度h;③用天平测出两球质量m1,m2.回答如下问题:(1)要测定弹射装置在弹射时所具有的弹性势能,还需测量的物理量有.(重力加速度g)A.弹簧的压缩量ΔxB.两球落点P,Q到对应管口M,N的水平距离s1,s2C.小球直径D.两球从管口弹出到落地的时间t1,t2(2)根据测量结果,可得弹性势能的表达式为E p=(用测出量表示).(3)由上述测得的物理量来表示,如果满足关系式(用测出量表示),就说明弹射过程中两小球组成的系统动量守恒.解析:(1)根据机械能守恒定律可知,弹簧的弹性势能等于两球得到的动能之和,而要求解动能必须还要知道两球弹射的初速度v0,由平抛运动规律可知v0=,故还需要测出两球落点P,Q到对应管口M,N的水平距离s1,s2.(2)小球被弹开时获得的动能E k=m=,故弹性势能的表达式为E p=m1+m2=+.(3)如果满足关系式m1v1=m2v2,即m1s1=m2s2,那么就说明弹射过程中两小球组成的系统动量守恒. 答案:(1)B (2)+(3)m1s1=m2s2评分标准:第(1)问2分,第(2)(3)问各3分.14.(6分)用如图(甲)所示的气垫导轨来验证动量守恒定律,用频闪照相机闪光4次拍得照片如图(乙)所示,闪光时间间隔为Δt=0.02 s,闪光本身持续时间极短,在这4次闪光时间内A,B均在0~80 cm范围内且第一次闪光时,A恰好过s=55 cm处,B恰好过s=70 cm处,如此由图可知:(1)两滑块在s=cm处碰撞.(2)两滑块在第一次闪光后t=s时发生碰撞.(3)假设碰撞过程中满足动量守恒,如此A,B两滑块的质量比为.解析:(1)碰撞发生在第1,2两次闪光时刻之间,碰撞后B静止,故碰撞发生在s=60 cm处. (2)碰撞后A向左做匀速运动,设其速度为v A',所以v A'·Δt=20 cm.从碰撞到第二次闪光时A 向左运动10 cm,设经历的时间为t',有v A'·t'=10 cm.设第一次闪光到发生碰撞经历的时间为t,有t+t'=Δt,得t==0.01 s.(3)碰撞前,A的速度大小为v A==5 m/s;B的速度大小为v B==10 m/s;碰撞后,A的速度v A'==10 m/s,取向左为正方向,如此由动量守恒定律可知m A v A'=m B v B-m A v A,解得m A∶m B=2∶3.答案:(1)60 (2)0.01 (3)2∶3评分标准:每空2分.15.(6分)如下列图,一只质量为5.4 kg 的保龄球,撞上一只原来静止,质量为1.7 kg的球瓶.此后球瓶以3.0 m/s的速度向前飞出,而保龄球以1.8 m/s的速度继续向前运动,假设它们相互作用的时间为0.05 s.求:(1)碰撞后保龄球的动量;(2)碰撞时保龄球与球瓶间的相互作用力的大小.解析:(1)碰撞后保龄球的动量p'=m1v'=5.4×1.8 kg·m/s=9.72 kg·m/s.(2分)(2)以初速度方向为正方向,对球瓶有Δp=Mv-0=1.7×3.0 kg·m/s=5.1 kg·m/s(1分)由动量定理得F·t=Δp(2分)代入数据求得F=102 N.(1分)答案:(1)9.72 kg·m/s(2)102 N16.(8分)如图,“冰雪游乐场〞滑道上的B点左侧水平而粗糙,右侧是光滑的曲面,左右两侧平滑连接,质量m=30 kg的小孩从滑道顶端A点由静止开始下滑,经过B点时被静止的质量为M=60 kg 的家长抱住,一起滑行到C点停下(C点末画出),A点高度h=5 m,人与水平滑道间的动摩擦因数μ=0.2,g取10 m/s2,求:(1)小孩刚到B点时的速度大小v B;(2)B,C间的距离s.解析:(1)从A点到B点,根据机械能守恒定律得mgh=m(2分)得v B=10 m/s.(1分)(2)家长抱住小孩瞬间,由动量守恒定律有mv B=(m+M)v(1分)解得v= m/s(1分)接着以共同速度v向左做匀减速直线运动,由动能定理得-μ(m+M)gs=0-(m+M)v2(1分)解得s= m.(2分)答案:(1)10 m/s (2) m17.(12分)如下列图,光滑的水平面上有P,Q两个竖直固定挡板,A,B是两挡板连线的三等分点.A点处有一质量为m2的静止小球,紧贴P挡板的右侧有一质量为m1的等大小球以速度v0向右运动并与m2相碰.小球与小球、小球与挡板间的碰撞均为弹性正碰,两小球均可视为质点.求:(1)两小球m1和m2第一次碰后的速度v1和v2;(2)假设两小球之间的第二次碰撞恰好发生在B点,且m1<m2,求m1和m2的可能比值.解析:(1)两球发生弹性正碰,设碰后速度分别为v1和v2,如此有m1v0=m1v1+m2v2,(2分)m1=m1+m2,(2分)解得v1=v0,(1分)v2=.(1分)(2)m1与m2在B点相碰有两种情形.第一种情形,m1被P反弹后追上m2.由于v1=v0<0,m1运动距离为m2的3倍,如此有|-v1t|=3v2t,(2分)解得=.(1分)第二种情形,m1与P反弹,m2与Q反弹后在B点相碰,m1,m2运动距离相等,有|-v1t|=v2t,(2分)解得=.(1分)答案:(1)v0(2)1∶7或1∶318.(12分)如下列图,质量分别为m1=1.0 kg和m2=2.0 kg 的甲、乙两物体之间夹有少量炸药,两物体一起沿水平地面向右做直线运动,当速度v0=1 m/s时夹在两物体间的炸药爆炸,之后甲物体以7 m/s的速度仍沿原方向运动.两物体均可视为质点,甲物体与地面间的动摩擦因数为0.35,乙物体与地面间的动摩擦因数为0.2,重力加速度g=10 m/s2.求:(1)炸药爆炸使甲、乙两物体增加的总动能;(2)甲、乙两物体别离2 s后两者之间的距离.解析:(1)爆炸瞬间系统动量守恒,以向右为正方向,设爆炸后甲物体的速度为v1,乙物体的速度为v2,由动量守恒定律得(m1+m2)v0=m1v1+m2v2(1分)代入数据解得v2=-2 m/s,负号表示速度方向与正方向相反(1分)由能量守恒定律得ΔE k=m1+m2-(m1+m2)(2分)代入数据解得ΔE k=27 J.(1分)(2)甲、乙两物体别离后,甲物体向右匀减速滑行,乙物体向左匀减速滑行根据牛顿第二定律得甲物体滑行的加速度大小a1=μ1g=3.5 m/s2(1分)乙物体滑行的加速度大小a2=μ2g=2 m/s2(1分) 从别离到甲物体停止运动,经过的时间t1==2 s(1分)甲物体运动的位移为s1=t1=7 m(1分)从别离到乙物体停止运动,经过的时间t2==1 s(1分)乙物体运动的位移为s2=t2=1 m(1分)故甲、乙两物体别离2 s后两者之间的距离d=s1+s2=8 m.(1分)答案:(1)27 J (2)8 m。
2018高考物理大一轮复习领航检测:第六章 碰撞 动量守恒定律 章末检测6 2

章末检测六 碰撞 动量守恒定律(时间:60分钟 满分:100分)一、选择题(本题共8小题,每小题6分,共48分,1~5题每小题只有一个选项正确,6~8小题有多个选项符合题目要求,全选对得6分,选对但不全得3分,有选错的得0分)1. 如图所示,水平轻弹簧与物体A和B相连,放在光滑水平面上,处于静止状态,物体A的质量为m,物体B的质量为M,且M>m.现用大小相等的水平恒力F1、F2拉A和B,从它们开始运动到弹簧第一次为最长的过程中( )A.因F1=F2,所以A、B和弹簧组成的系统机械能守恒B.因F1=F2,所以A、B和弹簧组成的系统动量守恒C.由于F1、F2大小不变,所以m,M各自一直做匀加速运动D.弹簧第一次最长时,A和B总动能最大解析:选B.此过程F1、F2均做正功,A、B和弹簧组成的系统机械能增大,系统机械能不守恒,故A错误;两拉力大小相等方向相反,系统所受合外力为零,系统动量守恒,故B正确;在拉力作用下,A、B开始做加速度减小的加速运动,后做加速度增大的减速运动,故C错误;弹簧第一次最长时,A、B的总动能最小,故D错误;故选B.2. 如图所示,两辆质量相同的小车置于光滑的水平面上,有一个人静止站在A车上,两车静止,若这个人自A车跳到B车上,接着又跳回A车,静止于A车上,则A车的速率( )A.等于零 B.小于B车的速率C.大于B车的速率D.等于B车的速率解析:选B.两车和人组成的系统位于光滑的水平面上,因而该系统动量守恒,设人的质量为m1,车的质量为m2,A、B车的速率分别为v1、v2,则由动量守恒定律得(m 1+m 2)v 1-m 2v 2=0,所以,有v 1=v 2,<1,故m 2m 1+m 2m 2m 1+m 2v 1<v 2,所以B 正确.3.有甲、乙两碰碰车沿同一直线相向而行,在碰前双方都关闭了动力,且两车动量关系为p 甲>p 乙.假设规定p 甲方向为正,不计一切阻力,则( )A .碰后两车可能以相同的速度沿负方向前进,且动能损失最大B .碰撞过程甲车总是对乙车做正功,碰撞后乙车一定沿正方向前进C .碰撞过程甲车可能反弹,且系统总动能减小,碰后乙车一定沿正方向前进D .两车动量变化量大小相等,方向一定是Δp 甲沿正方向,Δp 乙沿负方向解析:选C.由于规定p 甲方向为正,两车动量关系为p 甲>p 乙.碰后两车可能以相同的速度沿正方向前进,且动能损失最大,选项A 错误.碰撞过程甲车先对乙车做负功,选项B 错误.碰撞过程甲车可能反弹,且系统总动能减小,碰后乙车一定沿正方向前进,选项C 正确.由动量守恒定律,两车动量变化量大小相等,方向可能是Δp 甲沿负方向,Δp 乙沿正方向,选项D 错误.4. 如图所示,在光滑的水平面上有一物体M ,物体上有一光滑的半圆弧轨道,最低点为C ,两端A 、B 一样高.现让小滑块m 从A 点静止下滑,则( )A .m 不能到达小车上的B 点B .m 从A 到C 的过程中M 向左运动,m 从C 到B 的过程中M 向右运动C .m 从A 到B 的过程中小车一直向左运动,m 到达B 的瞬间,M 速度为零D .M 与m 组成的系统机械能守恒,动量守恒解析:选C.A.M 和m 组成的系统水平方向动量守恒,机械能守恒所以m 恰能达到小车上的B 点,到达B 点时小车与滑块的速度都是0,故A 错误;B.M 和m 组成的系统水平方向动量守恒,m 从A 到C 的过程中以及m 从C 到B 的过程中m 一直向右运动,所以M 一直向左运动,m 到达B 的瞬间,M 与m 速度都为零,故B 错误,C 正确;D.小滑块m 从A 点静止下滑,物体M 与滑块m 组成的系统水平方向所受合力为零,系统水平方向动量守恒,竖直方向有加速度,合力不为零,所以系统动量不守恒.M 和m 组成的系统机械能守恒,故D 错误.5.质量为m 的物体,以v 0的初速度沿斜面上滑,到达最高点处返回原处的速度为v t ,且v t =0.5v 0,则( )A .上滑过程中重力的冲量比下滑时大B .上滑时和下滑时支持力的冲量都等于零C .合力的冲量在整个过程中大小为m v 032D .整个过程中物体动量变化量为m v 012解析:选C.以v 0的初速度沿斜面上滑,返回原处时速度为v t =0.5v 0,说明斜面不光滑.设斜面长为L ,则上滑过程所需时间t 1==,下滑过程所需lv 022l v 0时间t 2==,t 1<t 2.根据冲量的定义,可知上滑过程中重力的冲量比下滑时lv t 24lv 0小,A 错误;上滑和下滑时支持力的大小都不等于零,B 错误;对全过程应用动量定理,则I 合=Δp =-m v t -m v 0=-m v 0,C 正确,D 错误.326.质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正撞,碰撞后两者的动量正好相等,两者质量之比M /m 可能为( )A .2B .3C .4D .5解析:选AB.碰后动量相等,设此动量为p ,方向一定与v 相同,则可知碰后速度关系,碰后m 的速度v 2一定要大于或等于碰后M 的速度v 1即v 2≥v 1由m v 2=M v 1,可知=≥1,由能量关系可知≥+,解得:M m v 2v 1(2p )22M p 22m p 22M ≤3,由上述结论可知,A 、B 项正确.M m 7. 如图所示,质量相等的两个滑块位于光滑水平桌面上.其中,弹簧两端分别与静止的滑块N 和挡板P 相连接,弹簧与挡板的质量均不计;滑块M 以初速度v 0向右运动,它与挡板P 碰撞后开始压缩弹簧,最后,滑块N 以速度v 0向右运动.在此过程中( )A .M 的速度等于0时,弹簧的弹性势能最大B .M 与N 具有相同的速度时,两滑块动能之和最小C .M 的速度为v 0/2时,弹簧的长度最长D .M 的速度为v 0/2时,弹簧的长度最短解析:选BD.M 、N 两滑块碰撞过程中动量守恒,当M 与N 具有相同的速度v 0/2时,系统动能损失最大,损失的动能转化为弹簧的弹性势能,即弹簧弹性势能最大,A 错误,B 正确;M 的速度为v 0/2时,弹簧的压缩量最大,弹簧的长度最短,C 错误,D 正确.8.在光滑的水平桌面上有等大的质量分别为M =0.6 kg ,m =0.2 kg 的两个小球,中间夹着一个被压缩的具有E p =10.8 J 弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然释放弹簧,球m 脱离弹簧后滑向与水平面相切、半径为R =0.425 m 的竖直放置的光滑半圆形轨道,如图所示.g 取10 m/s 2.则下列说法正确的是( )A .球m 从轨道底端A 运动到顶端B 的过程中所受合外力冲量大小为3.4 N·sB .M 离开轻弹簧时获得的速度为9 m/sC .若半圆轨道半径可调,则球m 从B 点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D .弹簧弹开过程,弹力对m 的冲量大小为1.8 N·s解析:选AD.释放弹簧过程中,由动量守恒定律得M v 1=m v 2,由机械能守恒定律得E p =M v +m v ,解得v 1=3 m/s ,v 2=9 m/s ,故B 错误;对m ,由1221122A 运动到B 的过程由机械能守恒定律得m v =m v 2′2+mg ×2R ,得v 2′=8 12212m/s ,由A 运动到B 的过程由动量定理得I 合=m v 2′-(-m v 2)=3.4 N·s ,故A 正确;球m 从B 点飞出后,由平抛运动可知水平方向x =v 2′t ,竖直方向2R =gt 2,解得x =,故C 错误;弹簧弹开过程,弹力对m 的冲量1225.6R I =m v 2=1.8 N·s ,故D 正确.二、非选择题(共4小题,52分)9.(12分)某同学利用打点计时器和气垫导轨做验证动量守恒定律的实验,气垫导轨装置如图甲所示,所用的气垫导轨装置由导轨、滑块、弹射架等组成.在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,这样就大大减小了因滑块和导轨之间的摩擦而引起的误差.下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨通入压缩空气;③把打点计时器固定在紧靠气垫导轨左端弹射架的外侧,将纸带穿过打点计时器和弹射架并固定在滑块1的左端,调节打点计时器的高度,直至滑块拖着纸带移动时,纸带始终在水平方向;④使滑块1挤压导轨左端弹射架上的橡皮绳;⑤把滑块2放在气垫导轨的中间,已知碰后两滑块一起运动;⑥先________,然后________,让滑块带动纸带一起运动;⑦取下纸带,重复步骤④⑤⑥,选出较理想的纸带如图乙所示;⑧测得滑块1(包括撞针)的质量为310 g ,滑块2(包括橡皮泥)的质量为205 g.(1)试着完善实验步骤⑥的内容.(2)已知打点计时器每隔0.02 s 打一个点,计算可知两滑块相互作用前质量与速度的乘积之和为________kg·m/s ;两滑块相互作用以后质量与速度的乘积之和为________kg·m/s.(保留3位有效数字)(3)试说明(2)问中两结果不完全相等的主要原因是_______________.解析:(1)使用打点计时器时应先接通电源,后放开滑块1.(2)作用前滑块1的速度v 1= m/s =2 m/s ,其质量与速度的乘积为0.20.10.310×2 kg·m/s =0.620 kg·m/s ,作用后滑块1和滑块2具有相同的速度v = m/s =1.2 m/s ,其质量与速度的乘积之和为(0.310+0.205)×1.2 0.1680.14kg·m/s =0.618 kg·m/s.(3)相互作用前后动量减小的主要原因是纸带与打点计时器的限位孔有摩擦.答案:(1)接通打点计时器的电源 放开滑块1 (2)0.620 0.618 (3)纸带与打点计时器的限位孔有摩擦10.(12分)如图,一长木板位于光滑水平面上,长木板的左端固定一挡板,木板和挡板的总质量为M =3.0 kg ,木板的长度为L =1.5 m ,在木板右端有一小物块,其质量m =1.0 kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态,现令小物块以初速度v 0沿木板向左运动,重力加速度g =10 m/s 2.(1)若小物块刚好能运动到左端挡板处,求v 0的大小;(2)若初速度v 0=3 m/s ,小物块与挡板相撞后,恰好能回到右端而不脱离木板,求碰撞过程中损失的机械能.解析:(1)设木板和物块最后共同的速度为v ,由动量守恒定律m v 0=(m +M )v ①对木板和物块系统,由功能关系μmgL =m v -(M +m )v 2②122012由①②两式解得:v 0= m/s =2 m/s2μgL (M +m )M 2×0.1×10×1.5×(3+1)3(2)同样由动量守恒定律可知,木板和物块最后也要达到共同速度v .设碰撞过程中损失的机械能为ΔE .对木板和物块系统的整个运动过程,由功能关系有μmg 2L +ΔE =m v -(m +M )v 2③122012由①③两式解得:ΔE =v -2μmgL =×32-2×0.1×10×1.5 J =0.375 J mM 2(M +m )201×32(3+1)答案:(1)2 m/s (2)0.375 J11.(14分)如图所示,在光滑的水平面上有一长为L的木板B ,其右侧边缘放有小滑块C ,与木板B 完全相同的木板A 以一定的速度向左运动,与木板B 发生正碰,碰后两者粘在一起并继续向左运动,最终滑块C 刚好没有从木板上掉下.已知木板A 、B 和滑块C 的质量均为m ,C 与A 、B 之间的动摩擦因数均为μ.求:(1)木板A 与B 碰前的速度v 0;(2)整个过程中木板B 对木板A 的冲量I .解析:(1)A 、B 碰后瞬时速度为v 1,碰撞过程中动量守恒,以A 的初速度方向为正方向,由动量守恒定律得:m v 0=2m v 1A 、B 粘为一体后通过摩擦力与C 发生作用,最后有共同的速度v 2,此过程中动量守恒,以A 的速度方向为正方向,由动量守恒定律得:2m v 1=3m v 2C 在A 上滑动过程中,由能量守恒定律得:-μmgL =·3m v -·2m v 1221221联立以上三式解得:v 0=3μgL(2)根据动量定理可知,B 对A 的冲量与A 对B 的冲量等大反向,则I 的大小等于B 的动量变化量,即:I =-m v 2=-,负号表示B 对A 的冲量2m 3μgL3方向向右.答案:(1)2 (2)-,负号表示B 对A 的冲量方向向右3μgL 2m 3μgL312.(14分) 水平光滑的桌面上平放有一质量为2m 的均匀圆环形细管道,管道内有两个质量都为m 的小球(管道的半径远远大于小球的半径),位于管道直径AB 的两端.开始时,环静止,两个小球沿着向右的切线方向,以相同的初速度v 0开始运动,如图所示.设系统处处无摩擦,所有的碰撞均为弹性碰撞.(质量相等的两物体弹性正碰后交换速度,此结论本题可直接用)(1)当两个小球在管道内第一次相碰前瞬间,试求两个小球之间的相对速度大小;(2)两小球碰后在第一次返回到A 、B 时,两小球相对桌面的速度方向(朝左还是朝右)和速度大小.解析:(1)根据对称性,两球运动相同的路程在细圆管的最右端相遇,相遇前,两小球与细圆管在左右方向上共速,共同速度设为v 1,此时两球相对于细圆管的速度方向沿切线,大小相同设为v y .左右方向上两球与细圆管动量守恒2m v 0=(2m +2m )v 1,解得v 1=v 02根据能量守恒定律可得2×m v =×2m v +2×m (v +v )1220122112212y 解得v y =v 022两球相对速度大小v =2×v y =v 02(2)两球相碰,左右方向速度不变,沿管切线方向交换速度,之后两球同时分别到达A 、B 位置.从刚开始两球运动到两球第一次回到A、B位置,两球与细圆管组成的系统可以看成弹性碰撞,即质量为2m的物体与细圆管发生了弹性正碰,交换速度,故而两球相对桌面速度为零,细圆管相对桌面速度为v0.2答案:(1)v0 (2)两小球相对桌面速度为零。
2018年高考物理大一轮复习第6章碰撞动量守恒定律配套教案

六碰撞动量守恒定律第1节动量动量定理动量守恒定律一、冲量、动量和动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)表达式:p=mv.(3)单位:千克·米/秒.符号:kg·m/s.(4)特征:动量是状态量,是矢量,其方向和速度方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的变化量.(2)表达式:F合·t=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.二、动量守恒定律1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.2.定律内容:如果一个系统不受外力作用,或者所受的合外力为零,这个系统的总动量保持不变.3.定律的表达式m1v1+m2v2=m1v1′+m2v2′,两个物体组成的系统初动量等于末动量.可写为:p =p ′、Δp =0和Δp 1=-Δp 24.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.[自我诊断]1.判断正误(1)动量越大的物体,其运动速度越大.(×)(2)物体的动量越大,则物体的惯性就越大.(×)(3)物体的动量变化量等于某个力的冲量.(×)(4)动量是过程量,冲量是状态量.(×)(5)物体沿水平面运动,重力不做功,重力的冲量也等于零.(×)(6)系统动量不变是指系统的动量大小和方向都不变.(√)2.(2017·广东广州调研)(多选)两个质量不同的物体,如果它们的( )A .动能相等,则质量大的动量大B .动能相等,则动量大小也相等C .动量大小相等,则质量大的动能小D .动量大小相等,则动能也相等解析:选AC.根据动能E k =12mv 2可知,动量p =2mE k ,两个质量不同的物体,当动能相等时,质量大的动量大,A 正确、B 错误;若动量大小相等,则质量大的动能小,C 正确、D 错误.3.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量解析:选B.由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确.4.(2017·河南开封质检)(多选) 如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( )A .两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零解析:选ACD.当两手同时放开时,系统所受的合外力为零,所以系统的动量守恒,又因开始时总动量为零,故系统总动量始终为零,选项A正确;先放开左手,左边的物体就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,且开始时总动量方向向左,放开右手后总动量方向也向左,故选项B错,而C、D正确.5.(2017·湖南邵阳中学模拟)一个质量m=1.0 kg的物体,放在光滑的水平面上,当物体受到一个F=10 N与水平面成30°角斜向下的推力作用时,在10 s内推力的冲量大小为________ N·s,动量的增量大小为________ kg·m/s.解析:根据p=Ft,可知10 s内推力的冲量大小p=Ft=100 N·s,根据动量定理有Ft cos 30°=Δp.代入数据解得Δp=50 3 kg·m/s=86.6 kg·m/s.答案:100 86.6考点一动量定理的理解及应用1.应用动量定理时应注意两点(1)动量定理的研究对象是一个质点(或可视为一个物体的系统).(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方向.2.动量定理的三大应用(1)用动量定理解释现象①物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.②作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.(2)应用I=Δp求变力的冲量.(3)应用Δp=F·Δt求恒力作用下的曲线运动中物体动量的变化量.[典例1] (2016·高考全国乙卷)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.解析 (1)设Δt 时间内,从喷口喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ①ΔV =v 0S Δt ②由①②式得,单位时间内从喷口喷出的水的质量为Δm Δt=ρv 0S ③ (2)设玩具悬停时其底面相对于喷口的高度为h ,水从喷口喷出后到达玩具底面时的速度大小为v .对于Δt 时间内喷出的水,由能量守恒得12(Δm )v 2+(Δm )gh =12(Δm )v 20④ 在h 高度处,Δt 时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为 Δp =(Δm )v ⑤设水对玩具的作用力的大小为F ,根据动量定理有F Δt =Δp ⑥由于玩具在空中悬停,由力的平衡条件得F =Mg ⑦联立③④⑤⑥⑦式得h =v 202g -M 2g 2ρ2v 20S 2⑧ 答案 (1)ρv 0S (2)v 202g -M 2g 2ρ2v 20S 2(1)用动量定理解题的基本思路(2)对过程较复杂的运动,可分段用动量定理,也可整个过程用动量定理.1.如图所示,一个质量为0.18 kg的垒球,以25 m/s的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s,则这一过程中动量的变化量为( ) A.大小为3.6 kg·m/s,方向向左B.大小为3.6 kg·m/s,方向向右C.大小为12.6 kg·m/s,方向向左D.大小为12.6 kg·m/s,方向向右解析:选D.选向左为正方向,则动量的变化量Δp=mv1-mv0=-12.6 kg·m/s,大小为12.6 kg·m/s,负号表示其方向向右,D正确.2. 质量为1 kg的物体做直线运动,其速度图象如图所示.则物体在前10 s内和后10 s内所受外力的冲量分别是( )A.10 N·s10 N·sB.10 N·s-10 N·sC.0 10 N·sD.0 -10 N·s解析:选D.由图象可知,在前10 s内初、末状态的动量相同,p1=p2=5 kg·m/s,由动量定理知I1=0;在后10 s内末状态的动量p3=-5 kg·m/s,由动量定理得I2=p3-p2=-10 N·s,故正确答案为D.3.如图所示,在倾角为θ的斜面上,有一个质量是m的小滑块沿斜面向上滑动,经过时间t1,速度为零后又下滑,经过时间t2,回到斜面底端.滑块在运动过程中,受到的摩擦力大小始终是F f,在整个运动过程中,摩擦力对滑块的总冲量大小为________,方向是________;合力对滑块的总冲量大小为________,方向是________.解析:摩擦力先向下后向上,因上滑过程用时短,故摩擦力的冲量为F f(t2-t1),方向与向下运动时的摩擦力的方向相同,故沿斜面向上.合力的冲量为mg(t1+t2)sin θ+F f(t1-t2),沿斜面向下.答案:F f(t2-t1) 沿斜面向上mg(t1+t2)sin θ+F f(t1-t2) 沿斜面向下4.如图所示,一质量为M的长木板在光滑水平面上以速度v0向右运动,一质量为m的小铁块在木板上以速度v0向左运动,铁块与木板间存在摩擦.为使木板能保持速度v0向右匀速运动,必须对木板施加一水平力,直至铁块与木板达到共同速度v0.设木板足够长,求此过程中水平力的冲量大小.解析:考虑M、m组成的系统,设M运动的方向为正方向,根据动量定理有Ft=(M+m)v0-(Mv0-mv0)=2mv0则水平力的冲量I=Ft=2mv0.答案:2mv05.(2017·甘肃兰州一中模拟)如图所示,一质量为M=2 kg的铁锤从距地面h=3.2 m 高处自由下落,恰好落在地面上的一个质量为m=6 kg的木桩上,随即与木桩一起向下运动,经时间t=0.1 s停止运动.求木桩向下运动时受到地面的平均阻力大小.(铁锤的横截面小于木桩的横截面,木桩露出地面部分的长度忽略不计,重力加速度g取10 m/s2) 解析:铁锤下落过程中机械能守恒,则v=2gh=8 m/s.铁锤与木桩碰撞过程中动量守恒,Mv=(M+m)v′,v′=2 m/s.木桩向下运动,由动量定理(规定向下为正方向)得[(M+m)g-f]Δt=0-(M+m)v′,解得f=240 N.答案:240 N6.(2016·河南开封二模)如图所示,静止在光滑水平面上的小车质量M=20 kg.从水枪中喷出的水柱的横截面积S=10 cm2,速度v=10 m/s,水的密度ρ=1.0×103 kg/m3.若用水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.当有质量m=5 kg的水进入小车时,试求:(1)小车的速度大小;(2)小车的加速度大小.解析:(1)流进小车的水与小车组成的系统动量守恒,设当进入质量为m的水后,小车速度为v1,则mv=(m+M)v1,即v1=mvm+M=2 m/s(2)质量为m的水流进小车后,在极短的时间Δt内,冲击小车的水的质量Δm=ρS(v -v1)Δt,设此时水对车的冲击力为F,则车对水的作用力为-F,由动量定理有-FΔt=Δmv1-Δmv,得F=ρS(v-v1)2=64 N,小车的加速度a=FM+m=2.56 m/s2答案:(1)2 m/s (2)2.56 m/s2考点二动量守恒定律的理解及应用1.动量守恒的“四性”(1)矢量性:表达式中初、末动量都是矢量,需要首先选取正方向,分清各物体初末动量的正、负.(2)瞬时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等.(3)同一性:速度的大小跟参考系的选取有关,应用动量守恒定律,各物体的速度必须是相对同一参考系的速度.一般选地面为参考系.(4)普适性:它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.2.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp =0,系统总动量的增量为零.[典例2] (2017·山东济南高三质检)光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.解析 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 与B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0④答案 65v 0应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.1.如图所示,在光滑的水平面上放有一物体M ,物体M 上有一光滑的半圆弧轨道,轨道半径为R ,最低点为C ,两端A 、B 等高,现让小滑块m 从A 点由静止开始下滑,在此后的过程中,则( )A .M 和m 组成的系统机械能守恒,动量守恒B .M 和m 组成的系统机械能守恒,动量不守恒C .m 从A 到C 的过程中M 向左运动,m 从C 到B 的过程中M 向右运动D .m 从A 到B 的过程中,M 运动的位移为mRM +m解析:选B.M 和m 组成的系统机械能守恒,总动量不守恒,但水平方向动量守恒,A 错误,B 正确;m 从A 到C 过程中,M 向左加速运动,当m 到达C 处时,M 向左速度最大,m 从C 到B 过程中,M 向左减速运动,C 错误;在m 从A 到B 过程中,有Mx M =mx m ,x M +x m =2R ,得x M =2mR /(m +M ),D 错误.2.(2016·广东湛江联考)如图所示,质量均为m 的小车和木箱紧挨着静止在光滑的水平冰面上,质量为2m 的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v ,木箱运动到右侧墙壁时与竖直墙壁发生弹性碰撞,反弹后能被小孩接住,求:(1)小孩接住箱子后共同速度的大小;(2)若小孩接住箱子后再次以相对于冰面的速度v 将木箱向右推出,木箱仍与竖直墙壁发生弹性碰撞,判断小孩能否再次接住木箱.解析:(1)取向左为正方向,根据动量守恒定律可得推出木箱的过程中0=(m +2m )v 1-mv ,接住木箱的过程中mv +(m +2m )v 1=(m +m +2m )v 2.解得v 2=v 2. (2)若小孩第二次将木箱推出,根据动量守恒定律可得4mv 2=3mv 3-mv ,则v 3=v ,故无法再次接住木箱.答案:(1)v 2(2)否 3.(2017·山东济南高三质检)如图所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端.三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg ,开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 相碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞.求A 与C 发生碰撞后瞬间A 的速度大小.解析:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰撞后瞬间A 的速度大小为v A ,C 的速度大小为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v C ,A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB,A、B达到共同速度后恰好不再与C碰撞,应满足v AB=v C,联立解得v A=2 m/s.答案:2 m/s4.人和冰车的总质量为M,另一木球质量为m,且M∶m=31∶2.人坐在静止于水平冰面的冰车上,以速度v(相对地面)将原来静止的木球沿冰面推向正前方向的固定挡板,不计一切摩擦阻力,设小球与挡板的碰撞是弹性的,人接住球后,再以同样的速度v(相对地面)将球推向挡板.求人推多少次后不能再接到球?解析:设第1次推球后人的速度为v1,有0=Mv1-mv,第1次接球后人的速度为v1′,有Mv1+mv=(M+m)v1′;第2次推球(M+m)v1′=Mv2-mv,第2次接球Mv2+mv=(M+m)v2′……第n次推球(M+m)v n-1′=Mv n-mv,可得v n=n-mv M,当v n≥v时人便接不到球,可得n≥8.25,取n=9.答案:9次课时规范训练[基础巩固题组]1.关于物体的动量,下列说法中正确的是( )A.物体的动量越大,其惯性也越大B.同一物体的动量越大,其速度不一定越大C.物体的加速度不变,其动量一定不变D.运动物体在任一时刻的动量方向一定是该时刻的速度方向解析:选 D.惯性大小的唯一量度是物体的质量,如果物体的动量大,但也有可能物体的质量很小,所以不能说物体的动量大其惯性就大,故A错误;动量等于物体的质量与物体速度的乘积,即p=mv,同一物体的动量越大,其速度一定越大,故B错误;加速度不变,速度是变化的,所以动量一定变化,故C错误;动量是矢量,动量的方向就是物体运动的方向,故D正确.2. 运动员向球踢了一脚(如图),踢球时的力F=100 N,球在地面上滚动了t=10 s停下来,则运动员对球的冲量为( )A.1 000 N·s B.500 N·sC.零D.无法确定解析:选D.滚动了t=10 s是地面摩擦力对足球的作用时间.不是踢球的力的作用时间,由于不能确定人作用在球上的时间,所以无法确定运动员对球的冲量.3.(多选)如图所示为两滑块M、N之间压缩一轻弹簧,滑块与弹簧不连接,用一细绳将两滑块拴接,使弹簧处于锁定状态,并将整个装置放在光滑的水平面上.烧断细绳后到两滑块与弹簧分离的过程中,下列说法正确的是( )A.两滑块的动量之和变大B.两滑块与弹簧分离后动量等大反向C.如果两滑块的质量相等,则分离后两滑块的速率也相等D.整个过程中两滑块的机械能增大解析:选BCD.对两滑块所组成的系统,互推过程中,合外力为零,总动量守恒且始终为零,A错误;由动量守恒定律得0=m M v M-m N v N,显然两滑块动量的变化量大小相等,方向相反,B正确;当m M=m N时,v M=v N,C正确;由于弹簧的弹性势能转化为两滑块的动能,则两滑块的机械能增大,D正确.4.(多选)静止在湖面上的小船中有两人分别向相反方向水平抛出质量相同的小球,先将甲球向左抛,后将乙球向右抛.抛出时两小球相对于河岸的速率相等,水对船的阻力忽略不计,则下列说法正确的是( )A.两球抛出后,船向左以一定速度运动B.两球抛出后,船向右以一定速度运动C.两球抛出后,船的速度为0D.抛出时,人给甲球的冲量比人给乙球的冲量大解析:选CD.水对船的阻力忽略不计,根据动量守恒定律,两球抛出前,由两球、人和船组成的系统总动量为0,两球抛出后的系统总动量也是0.两球质量相等,速度大小相等,方向相反,合动量为0,船的动量也必为0,船的速度必为0.具体过程是:当甲球向左抛出后,船向右运动,乙球抛出后,船静止.人给甲球的冲量I甲=mv-0,人给乙球的冲量I2=mv-mv′,v′是甲球抛出后的船速,方向向右,所以乙球的动量变化量小于甲球的动量变化量,乙球所受冲量也小于甲球所受冲量.5.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t +mg B.m 2gh t -mg C.m gh t +mg D.m gh t-mg 解析:选A.由动量定理得(mg -F )t =0-mv ,得F =m 2gh t +mg .选项A 正确. 6. (多选)静止在光滑水平面上的物体,受到水平拉力F 的作用,拉力F 随时间t 变化的图象如图所示,则下列说法中正确的是( )A .0~4 s 内物体的位移为零B .0~4 s 内拉力对物体做功为零C .4 s 末物体的动量为零D .0~4 s 内拉力对物体的冲量为零解析:选BCD.由图象可知物体在4 s 内先做匀加速后做匀减速运动,4 s 末的速度为零,位移一直增大,A 错;前2 s 拉力做正功,后2 s 拉力做负功,且两段时间做功代数和为零,故B 正确;4 s 末的速度为零,故动量为零,故C 正确;根据动量定理,0~4 秒内动量的变化量为零,所以拉力对物体的冲量为零,故D 正确.7.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可当成质点.甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A 后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站.(设甲、乙距离空间站足够远,本题中的速度均指相对空间站的速度)(1)乙要以多大的速度v (相对于空间站)将物体A 推出?(2)设甲与物体A作用时间为t=0.5 s,求甲与A的相互作用力F的大小.解析:(1)以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的方向为正方向,则有:M2v0-M1v0=(M1+M2)v1以乙和A组成的系统为研究对象,有:M2v0=(M2-m)v1+mv代入数据联立解得v1=0.4 m/s,v=5.2 m/s(2)以甲为研究对象,由动量定理得,Ft=M1v1-(-M1v0)代入数据解得F=432 N答案:(1)5.2 m/s (2)432 N[综合应用题组]8. (多选)如图把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面拉出,解释这些现象的正确说法是( )A.在缓慢拉动纸带时,重物和纸带间的摩擦力大B.在迅速拉动时,纸带给重物的摩擦力小C.在缓慢拉动纸带时,纸带给重物的冲量大D.在迅速拉动时,纸带给重物的冲量小解析:选CD.在缓慢拉动纸带时,两物体之间的作用力是静摩擦力,在迅速拉动时,它们之间的作用力是滑动摩擦力.由于通常认为滑动摩擦力等于最大静摩擦力,所以一般情况是缓拉摩擦力小,快拉摩擦力大,故判断A、B都错;在缓慢拉动纸带时,摩擦力虽小些,但作用时间可以很长,故重物获得的冲量即动量的变化可以很大,所以能把重物带动,快拉时,摩擦力虽大些,但作用时间很短,故冲量小,所以重物动量改变很小.9.(多选)某同学质量为60 kg,在军事训练中要求他从岸上以大小为2 m/s的速度跳到一条向他缓缓飘来的小船上,然后去执行任务,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上.则( )A.人和小船最终静止在水面上B.该过程同学的动量变化量为105 kg·m/sC.船最终的速度是0.95 m/sD.船的动量变化量是105 kg·m/s解析:选BD.规定人原来的速度方向为正方向,设人上船后,船与人共同速度为v.由题意,水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力为零,系统的动量守恒,则由动量守恒定律得:m 人v 人-m 船v 船=(m 人+m 船)v ,代入数据解得:v =0.25 m/s ,方向与人的速度方向相同,与船原来的速度方向相反.故A 错误,C 错误;人的动量的变化Δp 为:Δp =m 人v -m 人v 人=60×(0.25-2)=-105 kg·m/s,负号表示方向与选择的正方向相反;故B 正确;船的动量变化量为:Δp ′=m 船v -m 船v 船=140×(0.25+0.5)=105 kg·m/s;故D 正确.10.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一质量为m =1.0 kg 的小木块A .现以地面为参照系,给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,但最后A 并没有滑离木板B .站在地面的观察者看到在一段时间内小木块A 正在做加速运动,则在这段时间内的某时刻木板B 相对地面的速度大小可能是( )A .2.4 m/sB .2.8 m/sC .3.0 m/sD .1.8 m/s解析:选A.A 相对地面速度为0时,木板的速度为v 1,由动量守恒得(向右为正):Mv-mv =Mv 1,解得:v 1=83m/s.木块从此时开始向右加速,直到两者有共速为v 2,由动量守恒得:Mv -mv =(M +m )v 2,解得:v 2=2 m/s ,故B 对地的速度在2 m/s ~83m/s 范围内,选项A 正确.11.如图甲所示,物块A 、B 的质量分别是m A =4.0 kg 和m B =3.0 kg.用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触,另有一物块C 从t =0时以一定速度向右运动,在t =4 s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v t 图象如图乙所示,求:(1)物块C 的质量m C ;(2)从物块C 与A 相碰到B 离开墙的运动过程中弹簧对A 物体的冲量大小.解析:(1)由图可知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒,m C v 1=(m A +m C )v 2,代入数据解得m C =2 kg.(2)12 s 时B 离开墙壁,此时B 速度为零,A 、C 速度相等时,v 3=-v 2从物块C 与A 相碰到B 离开墙的运动过程中,A 、C 两物体的动量变化为:Δp =(m A +m C )v 3-(m A +m C )v 2从物块C 与A 相碰到B 离开墙的运动过程中弹簧对A 物体的冲量大小为I =2(m A +m C )v 2,代入数据整理得到I =36 N·s.答案:(1)2 kg (2)36 N·s12. 如图所示,质量为0.4 kg 的木块以2 m/s 的速度水平地滑上静止的平板小车,小车的质量为1.6 kg ,木块与小车之间的动摩擦因数为0.2(g 取10 m/s 2).设小车足够长,求:(1)木块和小车相对静止时小车的速度;(2)从木块滑上小车到它们处于相对静止所经历的时间;(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离.解析:(1)以木块和小车为研究对象,由动量守恒定律可得mv 0=(M +m )v 解得:v =mM +m v 0=0.4 m/s.(2)再以木块为研究对象,由动量定理可得-μmgt =mv -mv 0解得:t =v 0-vμg =0.8 s.(3)木块做匀减速运动,加速度为a 1=F f m =μg =2 m/s 2小车做匀加速运动,加速度为a 2=F f M =μmg M =0.5 m/s 2在此过程中木块的位移为x 1=v 2-v 22a 1=0.96 m车的位移为:x 2=12a 2t 2=12×0.5×0.82m =0.16 m由此可知,木块在小车上滑行的距离为:Δx =x 1-x 2=0.8 m.答案:(1)0.4 m/s (2)0.8 s (3)0.8 m第2节碰撞与能量守恒一、碰撞1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.2.分类(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.二、动量与能量的综合1.区别与联系:动量守恒定律和机械能守恒定律所研究的对象都是相互作用的物体所构成的系统,且研究的都是某一个物理过程.但两者守恒的条件不同:系统动量是否守恒,决定于系统所受合外力是否为零;而机械能是否守恒,决定于系统是否有除重力和弹簧弹力以外的力是否做功.2.表达式不同:动量守恒定律的表达式为矢量式,机械能守恒定律的表达式则是标量式,对功和能量只是代数和而已.[自我诊断]1.判断正误(1)碰撞过程只满足动量守恒,不可能满足动能守恒(×)(2)发生弹性碰撞的两小球有可能交换速度(√)(3)完全非弹性碰撞不满足动量守恒(×)(4)无论哪种碰撞形式都满足动量守恒,而动能不会增加(√)(5)爆炸现象中因时间极短,内力远大于外力,系统动量守恒(√)(6)反冲运动中,动量守恒,动能也守恒(×)2.(2017·山西运城康杰中学模拟)(多选)有关实际中的现象,下列说法正确的是( ) A.火箭靠喷出气流的反冲作用而获得巨大速度B.体操运动员在着地时屈腿是为了减小地面对运动员的作用力C.用枪射击时要用肩部抵住枪身是为了减少反冲的影响D.为了减轻撞车时对司乘人员的伤害程度,发动机舱越坚固越好。
2018版高考物理大一轮复习第六章碰撞与动量守恒基础课1动量和动量定理课时训练(含解析)粤教版

基础课1 动量和动量定理一、选择题(1~4题为单项选择题,5~7题为多项选择题)1.某一水平力F =1 000 N ,对竖直固定的墙壁作用,作用时间为t 1=10 s 、t 2=1 h ,若其力对应的冲量分别为I 1、I 2,则( )A .I 1=I 2=0B .I 1=104 N·s;I 2=3.6×106 N·sC .I 1=103 N·s;I 2=102 N·sD .以上都不正确解析 由冲量定义得: I 1=Ft 1=104 N·sI 2=Ft 2=3.6×106 N·s故选项B 正确。
答案 B2.将一个质量为m 的小木块放在光滑的斜面上,使木块从斜面的顶端由静止开始向下滑动,滑到底端总共用时t ,如图1所示,设在下滑的前一半时间内木块的动量变化为Δp 1,在后一半时间内其动量变化为Δp 2,则Δp 1∶Δp 2为( )图1A .1∶2B .1∶3C .1∶1D .2∶1解析 木块在下滑的过程中,一直受到的是重力与斜面支持力的作用,二力的合力大小恒定为F =mg sin θ,方向也始终沿斜面向下不变。
由动量定理可得Δp 1∶Δp 2=(F ·t 1)∶(F ·t 2)=(mg sin θ·12t )∶(mg sin θ·12t )=1∶1。
故选项C 正确。
答案 C3.质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来。
已知安全带的缓冲时间是1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为 ( )A .500 NB .600 NC .1 100 ND .100 N解析 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s 。
受安全带的保护经1.2 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -mg )t =0-(-mv ),则F =mv t +mg =1 100 N ,C 正确。
全程复习构想2018高考物理一轮复习第六章碰撞与动量守恒章末质量评估新人教版

故本题选C、D.
答案:CD
7.在光滑水平面上,动能为E0、动量的大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2,则必有()
答案:ABD
8.(2017·合肥市质量检测)一质量为2 kg的物体受水平拉力F作用,在粗糙水平面上做加速直线运动时的a-t图象如图所示,t=0时其速度大小为2 m/s,滑动摩擦力大小恒为2 N,则()
A.在t=6 s的时刻,物体的速度为18 m/s
B.在0~6 s时间内,合力对物体做的功为400 J
B.人抱住物体的过程中系统机械能守恒
C.物体压缩弹簧过程中,系统总动量守恒
D.物体压缩弹簧过程中,人、物体和弹簧组成的系统机械能守恒
解析:在人抱住物体的过程中,因为作用时间极短,可认为系统静止,所以不受弹力作用,系统合力为零,动量守恒,选项A错误;在人抱住物体的过程中,一部分机械能转化为系统的内能,即系统的机械能不守恒,选项B错误;物体压缩弹簧过程中,系统受到水平向右的弹力作用,合外力不为零,系统的总动量不守恒,所以选项C错误;物体压缩弹簧过程中,由人、物体和弹簧组成的系统,只有系统内的弹力做功,所以系统的机械能守恒,选项D正确.
C.在0~6 s时间内,拉力对物体的冲量为48 N·s
D.在t=6 s的时刻,拉力F的功率为200 W
解析:类比速度图象位移的表示方法可知,速度变化量在加速度—时间图象中由图线与坐标轴所围面积表示,在0~6 s内Δv=18 m/s,v0=2 m/s,则t=6 s时的速度v=20 m/s,A项错;由动能定理可知,0~6 s内,合力做功W= mv2- mv =396 J,B项错;由冲量定理可知,I-Ff·t=mv-mv0,代入已知条件解得:I=48 N·s,C项正确;由牛顿第二定律可知,6 s末F-Ff=ma,解得:F=10 N,所以拉力的功率P=Fv=200 W,D项正确.
(新课标)2018年高考物理一轮复习第六章碰撞与动量守恒第一节动量冲量动量定理课件

[解析]
从绳恰好伸直到人第一次下降至最低点的过程中,
人先做加速度减小的加速运动, 后做加速度增大的减速运动, 加速度等于零时,速度最大,故人的动量和动能都是先增大 后减小, 加速度等于零时(即绳对人的拉力等于人所受的重力 时)速度最大,动量和动能最大,在最低点时人具有向上的加 速度,绳对人的拉力大于人所受的重力.绳的拉力方向始终 向上与运动方向相反,故绳对人的冲量方向始终向上,绳对 人的拉力始终做负功.故选项 A 正确,选项 B、C、D 错误.
2.冲量
作用时间 的乘积. (1)定义:力和力的__________
Ft ,适用于求恒力的冲量. (2)公式:I=______ 力F的方向 相同. (3)方向:与____________
1.判断正误 (1)动量越大的物体,其运动速度越大.( ) ) )
(2)物体的动量越大,则物体的惯性就越大.(
b.建立如图所示的 Oxy 直角坐标系.
x 方向: 根据(2)a 同理可知,两光束对小球的作用力沿 x 轴负方向. y 方向: 设Δ t 时间内,光束①穿过小球的粒子数为 n1,光束②穿过 小球的粒子数为 n2,n1>n2.
这些粒子进入小球前的总动量为 p1y=(n1-n2)psin θ 从小球出射时的总动量为 p2y=0 根据动量定理得 FyΔ t=p2y-p1y=-(n1-n2)psin θ 可知,小球对这些粒子的作用力 Fy 的方向沿 y 轴负方向,根 据牛顿第三定律,两光束对小球的作用力沿 y 轴正方向. 所以两光束对小球的合力的方向指向左上方.
(2)表达式:F· Δ t=Δ p=p′-p.
合力 的方向相同,可以 (3)矢量性:动量变化量的方向与________
在某一方向上应用动量定理.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六 碰撞 动量守恒定律(时间:60分钟 满分:100分)一、选择题(本题共8小题,每小题6分,共48分,1~5题每小题只有一个选项正确,6~8小题有多个选项符合题目要求,全选对得6分,选对但不全得3分,有选错的得0分)1. 如图所示,水平轻弹簧与物体A 和B 相连,放在光滑水平面上,处于静止状态,物体A 的质量为m ,物体B 的质量为M ,且M >m .现用大小相等的水平恒力F 1、F 2拉A 和B ,从它们开始运动到弹簧第一次为最长的过程中( )A .因F 1=F 2,所以A 、B 和弹簧组成的系统机械能守恒B .因F 1=F 2,所以A 、B 和弹簧组成的系统动量守恒C .由于F 1、F 2大小不变,所以m ,M 各自一直做匀加速运动D .弹簧第一次最长时,A 和B 总动能最大解析:选B.此过程F 1、F 2均做正功,A 、B 和弹簧组成的系统机械能增大,系统机械能不守恒,故A 错误;两拉力大小相等方向相反,系统所受合外力为零,系统动量守恒,故B 正确;在拉力作用下,A 、B 开始做加速度减小的加速运动,后做加速度增大的减速运动,故C 错误;弹簧第一次最长时,A 、B 的总动能最小,故D 错误;故选B.2. 如图所示,两辆质量相同的小车置于光滑的水平面上,有一个人静止站在A 车上,两车静止,若这个人自A 车跳到B 车上,接着又跳回A 车,静止于A 车上,则A 车的速率( )A .等于零B .小于B 车的速率C .大于B 车的速率D .等于B 车的速率解析:选 B.两车和人组成的系统位于光滑的水平面上,因而该系统动量守恒,设人的质量为m 1,车的质量为m 2,A 、B 车的速率分别为v 1、v 2,则由动量守恒定律得(m 1+m 2)v 1-m 2v 2=0,所以,有v 1=m 2m 1+m 2v 2,m 2m 1+m 2<1,故v 1<v 2,所以B 正确. 3.有甲、乙两碰碰车沿同一直线相向而行,在碰前双方都关闭了动力,且两车动量关系为p 甲>p 乙.假设规定p 甲方向为正,不计一切阻力,则( )A .碰后两车可能以相同的速度沿负方向前进,且动能损失最大B .碰撞过程甲车总是对乙车做正功,碰撞后乙车一定沿正方向前进C .碰撞过程甲车可能反弹,且系统总动能减小,碰后乙车一定沿正方向前进D .两车动量变化量大小相等,方向一定是Δp 甲沿正方向,Δp 乙沿负方向解析:选C.由于规定p 甲方向为正,两车动量关系为p 甲>p 乙.碰后两车可能以相同的速度沿正方向前进,且动能损失最大,选项A 错误.碰撞过程甲车先对乙车做负功,选项B 错误.碰撞过程甲车可能反弹,且系统总动能减小,碰后乙车一定沿正方向前进,选项C 正确.由动量守恒定律,两车动量变化量大小相等,方向可能是Δp 甲沿负方向,Δp 乙沿正方向,选项D 错误.4. 如图所示,在光滑的水平面上有一物体M ,物体上有一光滑的半圆弧轨道,最低点为C ,两端A 、B 一样高.现让小滑块m 从A 点静止下滑,则()A .m 不能到达小车上的B 点B .m 从A 到C 的过程中M 向左运动,m 从C 到B 的过程中M 向右运动C .m 从A 到B 的过程中小车一直向左运动,m 到达B 的瞬间,M 速度为零D .M 与m 组成的系统机械能守恒,动量守恒解析:选C.A.M 和m 组成的系统水平方向动量守恒,机械能守恒所以m 恰能达到小车上的B 点,到达B 点时小车与滑块的速度都是0,故A 错误;B.M 和m 组成的系统水平方向动量守恒,m 从A 到C 的过程中以及m 从C 到B 的过程中m 一直向右运动,所以M 一直向左运动,m 到达B 的瞬间,M 与m 速度都为零,故B 错误,C 正确;D.小滑块m 从A 点静止下滑,物体M 与滑块m 组成的系统水平方向所受合力为零,系统水平方向动量守恒,竖直方向有加速度,合力不为零,所以系统动量不守恒.M 和m 组成的系统机械能守恒,故D 错误.5.质量为m 的物体,以v 0的初速度沿斜面上滑,到达最高点处返回原处的速度为v t ,且v t =0.5v 0,则( )A .上滑过程中重力的冲量比下滑时大B .上滑时和下滑时支持力的冲量都等于零C .合力的冲量在整个过程中大小为32mv 0 D .整个过程中物体动量变化量为12mv 0 解析:选C.以v 0的初速度沿斜面上滑,返回原处时速度为v t =0.5v 0,说明斜面不光滑.设斜面长为L ,则上滑过程所需时间t 1=l v 02=2l v 0,下滑过程所需时间t 2=l v t 2=4l v 0,t 1<t 2.根据冲量的定义,可知上滑过程中重力的冲量比下滑时小,A 错误;上滑和下滑时支持力的大小都不等于零,B 错误;对全过程应用动量定理,则I 合=Δp =-mv t -mv 0=-32mv 0,C 正确,D 错误.6.质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正撞,碰撞后两者的动量正好相等,两者质量之比M /m 可能为( )A .2B .3C .4D .5解析:选AB.碰后动量相等,设此动量为p ,方向一定与v 相同,则可知碰后速度关系,碰后m 的速度v 2一定要大于或等于碰后M 的速度v 1即v 2≥v 1由mv 2=Mv 1,可知M m =v 2v 1≥1,由能量关系可知p22M ≥p 22m +p 22M ,解得:M m≤3,由上述结论可知,A 、B 项正确. 7. 如图所示,质量相等的两个滑块位于光滑水平桌面上.其中,弹簧两端分别与静止的滑块N 和挡板P 相连接,弹簧与挡板的质量均不计;滑块M 以初速度v 0向右运动,它与挡板P 碰撞后开始压缩弹簧,最后,滑块N 以速度v 0向右运动.在此过程中( )A .M 的速度等于0时,弹簧的弹性势能最大B .M 与N 具有相同的速度时,两滑块动能之和最小C .M 的速度为v 0/2时,弹簧的长度最长D .M 的速度为v 0/2时,弹簧的长度最短解析:选BD.M 、N 两滑块碰撞过程中动量守恒,当M 与N 具有相同的速度v 0/2时,系统动能损失最大,损失的动能转化为弹簧的弹性势能,即弹簧弹性势能最大,A 错误,B 正确;M 的速度为v 0/2时,弹簧的压缩量最大,弹簧的长度最短,C 错误,D 正确.8.在光滑的水平桌面上有等大的质量分别为M =0.6 kg ,m =0.2 kg 的两个小球,中间夹着一个被压缩的具有E p =10.8 J 弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然释放弹簧,球m 脱离弹簧后滑向与水平面相切、半径为R =0.425 m 的竖直放置的光滑半圆形轨道,如图所示.g 取10 m/s 2.则下列说法正确的是( )A .球m 从轨道底端A 运动到顶端B 的过程中所受合外力冲量大小为3.4 N·sB .M 离开轻弹簧时获得的速度为9 m/sC .若半圆轨道半径可调,则球m 从B 点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D .弹簧弹开过程,弹力对m 的冲量大小为1.8 N·s解析:选AD.释放弹簧过程中,由动量守恒定律得Mv 1=mv 2,由机械能守恒定律得E p =12Mv 21+12mv 22,解得v 1=3 m/s ,v 2=9 m/s ,故B 错误;对m ,由A 运动到B 的过程由机械能守恒定律得12mv 22=12mv 2′2+mg ×2R ,得v 2′=8 m/s ,由A 运动到B 的过程由动量定理得I 合=mv 2′-(-mv 2)=3.4 N·s,故A 正确;球m 从B 点飞出后,由平抛运动可知水平方向x=v 2′t ,竖直方向2R =12gt 2,解得x =25.6R ,故C 错误;弹簧弹开过程,弹力对m 的冲量I =mv 2=1.8 N·s,故D 正确.二、非选择题(共4小题,52分)9.(12分)某同学利用打点计时器和气垫导轨做验证动量守恒定律的实验,气垫导轨装置如图甲所示,所用的气垫导轨装置由导轨、滑块、弹射架等组成.在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,这样就大大减小了因滑块和导轨之间的摩擦而引起的误差.下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨通入压缩空气;③把打点计时器固定在紧靠气垫导轨左端弹射架的外侧,将纸带穿过打点计时器和弹射架并固定在滑块1的左端,调节打点计时器的高度,直至滑块拖着纸带移动时,纸带始终在水平方向;④使滑块1挤压导轨左端弹射架上的橡皮绳;⑤把滑块2放在气垫导轨的中间,已知碰后两滑块一起运动;⑥先________,然后________,让滑块带动纸带一起运动;⑦取下纸带,重复步骤④⑤⑥,选出较理想的纸带如图乙所示;⑧测得滑块1(包括撞针)的质量为310 g ,滑块2(包括橡皮泥)的质量为205 g.(1)试着完善实验步骤⑥的内容.(2)已知打点计时器每隔0.02 s 打一个点,计算可知两滑块相互作用前质量与速度的乘积之和为________kg·m/s ;两滑块相互作用以后质量与速度的乘积之和为________kg·m/s.(保留3位有效数字)(3)试说明(2)问中两结果不完全相等的主要原因是_______________.解析:(1)使用打点计时器时应先接通电源,后放开滑块1.(2)作用前滑块1的速度v 1=0.20.1m/s =2 m/s ,其质量与速度的乘积为0.310×2 kg·m/s =0.620 kg·m/s,作用后滑块1和滑块2具有相同的速度v =0.1680.14m/s =1.2 m/s ,其质量与速度的乘积之和为(0.310+0.205)×1.2 kg·m/s=0.618 kg·m/s.(3)相互作用前后动量减小的主要原因是纸带与打点计时器的限位孔有摩擦.答案:(1)接通打点计时器的电源 放开滑块 1 (2)0.620 0.618 (3)纸带与打点计时器的限位孔有摩擦10.(12分)如图,一长木板位于光滑水平面上,长木板的左端固定一挡板,木板和挡板的总质量为M =3.0 kg ,木板的长度为L =1.5 m ,在木板右端有一小物块,其质量m =1.0 kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态,现令小物块以初速度v 0沿木板向左运动,重力加速度g =10 m/s 2.(1)若小物块刚好能运动到左端挡板处,求v 0的大小;(2)若初速度v 0=3 m/s ,小物块与挡板相撞后,恰好能回到右端而不脱离木板,求碰撞过程中损失的机械能.解析:(1)设木板和物块最后共同的速度为v ,由动量守恒定律mv 0=(m +M )v ① 对木板和物块系统,由功能关系μmgL =12mv 20-12(M +m )v 2② 由①②两式解得:v 0=2μgL M +mM =+3 m/s =2 m/s(2)同样由动量守恒定律可知,木板和物块最后也要达到共同速度v .设碰撞过程中损失的机械能为ΔE .对木板和物块系统的整个运动过程,由功能关系有μmg 2L +ΔE =12mv 20-12(m +M )v 2③ 由①③两式解得:ΔE =mM M +m v 20-2μmgL =1×3+×32-2×0.1×10×1.5 J=0.375 J答案:(1)2 m/s (2)0.375 J11.(14分)如图所示,在光滑的水平面上有一长为L 的木板B ,其右侧边缘放有小滑块C ,与木板B 完全相同的木板A 以一定的速度向左运动,与木板B 发生正碰,碰后两者粘在一起并继续向左运动,最终滑块C 刚好没有从木板上掉下.已知木板A 、B 和滑块C 的质量均为m ,C 与A 、B 之间的动摩擦因数均为μ.求:(1)木板A 与B 碰前的速度v 0;(2)整个过程中木板B 对木板A 的冲量I .解析:(1)A 、B 碰后瞬时速度为v 1,碰撞过程中动量守恒,以A 的初速度方向为正方向,由动量守恒定律得:mv 0=2mv 1A 、B 粘为一体后通过摩擦力与C 发生作用,最后有共同的速度v 2,此过程中动量守恒,以A 的速度方向为正方向,由动量守恒定律得:2mv 1=3mv 2C 在A 上滑动过程中,由能量守恒定律得:-μmgL =12·3mv 22-12·2mv 21 联立以上三式解得:v 0=23μgL(2)根据动量定理可知,B 对A 的冲量与A 对B 的冲量等大反向,则I 的大小等于B 的动量变化量,即:I =-mv 2=-2m 3μgL 3,负号表示B 对A 的冲量方向向右. 答案:(1)23μgL (2)-2m 3μgL 3,负号表示B 对A 的冲量方向向右 12.(14分) 水平光滑的桌面上平放有一质量为2m 的均匀圆环形细管道,管道内有两个质量都为m 的小球(管道的半径远远大于小球的半径),位于管道直径AB 的两端.开始时,环静止,两个小球沿着向右的切线方向,以相同的初速度v 0开始运动,如图所示.设系统处处无摩擦,所有的碰撞均为弹性碰撞.(质量相等的两物体弹性正碰后交换速度,此结论本题可直接用)(1)当两个小球在管道内第一次相碰前瞬间,试求两个小球之间的相对速度大小;(2)两小球碰后在第一次返回到A 、B 时,两小球相对桌面的速度方向(朝左还是朝右)和速度大小.解析:(1)根据对称性,两球运动相同的路程在细圆管的最右端相遇,相遇前,两小球与细圆管在左右方向上共速,共同速度设为v 1,此时两球相对于细圆管的速度方向沿切线,大小相同设为v y .左右方向上两球与细圆管动量守恒2mv 0=(2m +2m )v 1,解得v 1=v 02根据能量守恒定律可得2×12mv 20=12×2mv 21+2×12m (v 21+v 2y ) 解得v y =22v 0 两球相对速度大小v =2×v y =2v 0(2)两球相碰,左右方向速度不变,沿管切线方向交换速度,之后两球同时分别到达A 、B 位置.从刚开始两球运动到两球第一次回到A 、B 位置,两球与细圆管组成的系统可以看成弹性碰撞,即质量为2m 的物体与细圆管发生了弹性正碰,交换速度,故而两球相对桌面速度为零,细圆管相对桌面速度为v 0. 答案:(1)2v 0 (2)两小球相对桌面速度为零。