正负数的认识张2
认识正负数理解正负数的概念

认识正负数理解正负数的概念认识正负数,理解正负数的概念正负数是数学中的基本概念之一,广泛应用于各个领域。
它们是对数值的一种表示,用于表示不同的方向和大小关系。
正负数的理解对于我们的日常生活和学习发展具有重要意义。
本文将深入探讨正负数的概念,并解释其在实际中的应用。
正负数的定义正数是大于零的数,用“+”表示;负数是小于零的数,用“-”表示。
正负数之间有一个重要的关系:正数加负数等于零。
这是因为正数和负数在数轴上呈现对称性,其中零作为它们的中心点。
正负数的应用正负数在许多实际场景中起着重要作用。
下面我们将介绍一些常见的应用领域。
1. 温度计量温度计是我们生活中经常使用的一种设备。
它通常用来表示温度的高低,而温度既可以是正数,也可以是负数。
例如,正数表示高温,负数表示低温。
当我们需要比较不同的温度时,正负数可以帮助我们理解它们的差异和变化趋势。
2. 财务账单在财务管理中,正负数被广泛应用于账单和财务报表中。
正数表示收入或盈利,负数表示支出或亏损。
通过计算正数和负数的和,我们可以了解到企业或个人的财务状况,并作出相应的决策。
3. 运动方向在物理学中,正负数用于表示物体的运动方向。
正数表示向右或向上的方向,负数表示向左或向下的方向。
通过使用正负数,我们可以准确描述物体的运动轨迹,预测它们的位置和速度。
4. 坐标系正负数在数学中的应用领域也是不可忽视的。
在平面几何中,坐标系用于描述点的位置。
通过设定原点和坐标轴方向,并使用正负数来指示点的位置,我们可以方便地确定点的具体坐标。
正负数的运算法则除了了解正负数的定义和应用外,了解正负数的运算法则也非常重要。
在计算过程中,我们需要遵守以下几个基本法则:1. 正负数相加正数与正数相加,结果仍为正数;负数与负数相加,结果仍为负数。
当正数与负数相加时,我们需要计算它们的差值,正负由被减数的符号决定。
2. 正负数相乘正数与正数相乘,结果为正数;负数与负数相乘,结果也为正数。
数学五年级认识正负数

数学五年级认识正负数五年级学习数学,其中一个重要的内容是认识正负数。
正负数是数学中的基础概念,对于我们理解数轴、运算规则等方面起着关键的作用。
在本文中,我们将深入探讨正负数的含义、数轴的作用以及正负数的运算规则。
正负数是用来表示具有相反意义的两类数的概念。
正数表示较大的数,常写为带有正号“+”的数字,如+2、+10等;负数则表示较小的数,常写为带有负号“-”的数字,如-3、-8等。
在数轴上,正数位于原点右侧,负数则位于原点左侧。
我们可以通过数轴直观地理解正负数,并进行比较大小。
数轴是一个直线,上面标有一系列刻度,用来表示数字的相对位置和大小。
在数轴上,原点(0)位于中间位置,左侧是负数区域,右侧是正数区域。
通过数轴,我们可以更好地理解正负数之间的关系。
例如,在数轴上,-5和-3之间的距离比-5和-8之间的距离更近,这表示-3比-8更接近于0,即-3的绝对值比-8小。
正负数的运算规则是我们学习数学时需要掌握的重要内容。
首先,同号相加或相减,取其绝对值相加,符号不变。
例如,+7和+3相加等于+10,-9和-4相减等于-13。
若异号相加或相减,取绝对值较大的数,并且结果的符号与绝对值较大的数的符号保持一致。
例如,-5和+9相加等于+4,-8和+11相减等于-3。
在实际生活中,正负数有着广泛的应用。
例如,银行账户中的存款和贷款可以用正负数表示。
存款为正数,表示账户余额增加;而贷款为负数,表示账户欠款增加。
此外,温度计中的正负数也是常见的例子。
正数表示高温,负数表示低温。
在学习正负数的过程中,我们需要注意一些常见的错误。
首先,不要将正负号与数值混淆。
正负号和数字之间应该紧密结合,不应该有多余的空格。
例如,“- 5”是错误的写法,应该写为“-5”。
另外,不要忽视正负数的运算规则,在进行运算时应该遵循标准的计算方法,以确保结果的准确性。
总结起来,五年级的数学学习中,我们要认识和理解正负数的概念,学会利用数轴进行正负数的比较和加减运算。
认识正负数初步了解正负数的概念

认识正负数初步了解正负数的概念正负数是数学中的基本概念之一,它们在我们日常生活和各个领域都有着重要的应用。
正数是大于零的数,负数是小于零的数。
虽然我们对正负数已经有了一定的认识,但是它们的特性和运算规则还值得我们进一步了解和研究。
一、正负数的概念正数是我们最为熟悉的数,它表示多于的数量,例如1、2、3等。
而负数则表示少于的数量,例如-1、-2、-3等。
正数和负数之间通过零相连接,零既不是正数也不是负数,它表示“没有数量”。
二、正负数的表示方法正数和负数都可以通过数轴表示出来。
数轴是一个直线,上面有一个基准点,通常是0。
正数在数轴上表示为右侧的点,负数表示为左侧的点。
通过这样的表示方式,我们可以直观地看到正负数之间的大小关系。
三、正负数的比较正数和负数之间可以进行比较。
根据数的大小规则,正数是大于负数的。
例如,2大于-3,5大于-7等。
当两个正数进行比较时,数值大的为较大数;当两个负数进行比较时,数值小的为较大数;正数和负数进行比较时,正数为较大数。
四、正负数的运算规则1. 同号数相加或相减,绝对值加和符号保持不变。
例如,正数加正数仍为正数,负数加负数仍为负数。
2. 异号数相加时,绝对值较大的数减去绝对值较小的数,符号取较大数的符号。
例如,正数加负数时,先将两个数的绝对值相减,再取绝对值较大的数的符号。
3. 正数和负数进行乘法运算时,结果为负数。
例如,正数乘以负数结果为负数,负数乘以正数结果仍为负数。
4. 负数之间进行乘法运算时,结果为正数。
例如,负数乘以负数结果为正数。
5. 正数和负数进行除法运算时,结果为负数。
例如,正数除以负数结果为负数,负数除以正数结果仍为负数。
五、实际应用举例正负数在我们的日常生活中有着广泛的应用。
例如,在温度上,正数表示高温,负数表示低温;在银行账户上,正数表示存款,负数表示透支;在航空航天领域,正数表示东经和北纬,负数表示西经和南纬。
六、正负数的意义正负数反映了数量的相对增减关系,并且在数学中起到了重要的作用。
正负数的认识

正负数的认识一、具有相反意义的量在现实世界中存在着各种各样的量。
有一类量只有大小而没有方向,例如人的年龄,产品的件数,物体的长度、质量等。
这种没有方向的量叫做绝对值量,其大小一般是用算术数(自然数、零、非负分数)来表达的。
还有一类量,它们既有大小又有方向,例如物体的速度,人的推力等。
其中具有两个相反方向的量,叫做具有相反意义的量。
例如某一天,温度计上中午的气温零上2°,午夜的气温是零下2°,这两个温度都是2°,但却有“零上”与“零下”之分,它们在温度计上关于零度的方向是相反的,反映着两个不同的数量。
如果不加“零上”与“零下”这两个词,就反映不出它们之间的差异。
另一方面,“零上”与“零下”又是相辅相成的,没有“零上”就无所谓“零下”,没有“零下”也就无所谓“零上”。
“零上”与“零下”的意义是相反的,所以温度是具有相反意义的量。
又如火车向东行驶100千米,向西行驶150千米;珠穆朗玛峰高出海平面8848米,太平洋最低处低于海平面11022米;水位上升8.5厘米,下降5.6厘米;产量增加5000千克,减少500千克等都是具有相反意义的量。
二、正数和负数为了区别具有相反意义的量,我们把其中具有某一种意义的数量规定为正的,而把另一种意义相反的数量规定为负的。
例如,如果把零上的温度规定为正的,那么零下的温度就是负的;如果上升多少规定为正的,那么下降多少就是负的;正的量,我们在算术数(零除外)前面放上“+”(读作正)号来表示,也可以省略“+”号,直接用算术数(零除外)来表示;负的量,我们在算术数(零除外)前面放上“-”(读作负)号来表示。
这样,如果将零上的温度、高出海平面的高度、上升多少作为正的,那么,零上2度可记作+2°(或2°),零下2度可记作-2°;高出海平面8848米(或8848米),低于海平面11022米可记作-11022米;水位上升8.5厘米可记作+8.5厘米(或8.5厘米),水位下降5.6厘米可记作-5.6厘米。
认识正负数课件

01
02
03
文字表示法
用“+”表示正数,用“”表示负数。
符号表示法
用“+”或“-”符号放在 数字前面表示正负数。例 如:+5表示正5,-5表示 负5。
数轴表示法
在数轴上,正数位于原点 的右侧,负数位于原点的 左侧。
03
正负数的运算规则
加法运算规则
同号相加
同为正数或同为负数时,加法运算遵 循“同号相加,取相同符号,并把绝 对值相加”的规则。
01
02
03
04
理解正负数的概念和表 示方法。
掌握正负数的运算规则 。
能够解决实际问题中的 正负数问题。
培养学生的数学思维和 逻辑推理能力。
02正负数的概念与性质来自正负数的定义正数
大于0的数。例如:+5、+2.8、 +100等。
负数
小于0的数。例如:-5、-2.8、100等。
正负数的性质
正负数的相反性
学生提出对教学的建议和意见,包括教学 方法、教学资源、课堂互动等方面,以帮 助教师改进教学和提高教学效果。
THANKS
谢谢您的观看
正数除以负数
正数除以负数等于正数乘以这个负数 的绝对值。
负数除以正数
负数除以正数等于负数乘以这个正数 的绝对值。
04
正负数在实际生活中的应用
温度表示中的应用
• 温度是日常生活中常见的量,正负数在温度表示中有着广泛的应用。例如,在摄氏温度中,零上温度用正数表示,零下温 度用负数表示。如:+10℃表示10摄氏度,而-5℃则表示零下5摄氏度。
。
实际应用
举例说明正负数在实际生活中 的应用,如温度、海拔、收入
正负数的认识

正负数的认识正数和负数是数学中最基本的概念,而对于初学者来说,理解正负数的概念并直观的使用它们进行计算也是一个必须要掌握的基本技能。
正负数经常出现在日常的生活和工作中,比如气温的变化,盈亏的计算等等。
因此,对于正负数的认识以及正确使用,对我们生活和工作中的计算至关重要。
一、正负数的实际意义如果我们站在数轴上,数轴上的每个点代表一个实数,而其左边和右边分别代表了负数和正数。
换一种说法,负数就是从零点向左的数,而正数则是从零点向右的数。
比如说我们扔向上抛的物体,物体在空中的高度就是一个典型的正负数的实际意义。
物体在向上运动时数值为正数,到达最高点时数值为零,再往下落的过程中数值变为负数。
二、正负数的加减法正负数的加减法是计算中最常用的操作之一,下面介绍一些关于正负数的加减法的基本知识点,以便更好地理解正负数的加减法。
1.同号相加,异号相减当两个数的符号相同时,我们只需将它们的数值相加或相减,然后将它们的符号保持不变,这就是同号相加异号相减的规律。
比如:-5 + (-3) = -87 + 9 = 16-5 - (-3) = -29 - 5 = 42.绝对值较大的数减去绝对值较小的数当两个数的符号不同时,绝对值较大的数减去绝对值较小的数,然后将它们的符号与绝对值较大的数的符号保持一致,这就是绝对值较大的数减去绝对值较小的数的规律。
比如:-7 + 5 = -27 - 5 = 2-7 - 5 = -127 - (-5) = 12三、正负数在生活中的应用我们在生活和工作中的很多计算都需要用到正负数,比如温度的计算,盈亏的计算等等。
下面简单介绍一下正负数在生活和工作中的应用。
1.温度计算温度是生活和工作中经常和我们相伴的,而温度计算中的正负数也是正负数的一个典型应用场景。
不同于其他计算,温度计算中,我们可以很明显的看出正负数的物理象征。
当温度是正数时,我们表示天空在释放出一定的热能,而当温度是负数时,我们表示天空在吸收热能。
北师大版数学六年级上册《正负数(二)》课件

42
41
0
8月1日 8月2日 8月3日 8月4日 8月5日 8月6日 8月7日 日期
(2)说一说表中正负数表示的意思。
日期
水位/米
高出警戒 水位/米
8月1日 41.80 -0.20
8月2日 8月3日 8月4日 8月5日 8月6日 8月7日
42.60 42.35 42.36 42.00 41.86 41.94
北师大版六年级数学上册
教学目标
1.知识目标:在熟悉的生活情景中,进一步加 深对负数的意义的理解。
2.能力目标:会画折线统计图描述事物的变化 情况。
3.情感目标:引导大家热爱生活,关注身边的 每个事物。
0 38
0 38
0 38
下面是某市水文站发布的8月1~7日期间, 每日下午3时的汛情公告。
8月2日 42.60
8月3日 8月4日 42.35 42.36
8月5日 8月6日 8月7日 42.00 41.86 41.94
把历史最高水 位看作0米。
警戒水位米
历史最高水位米
8月1日 水位米 8月2日 水位米 8月3日 水位米 8月4日 水位米 8月5日 水位米 8月6日 水位米 8月7日 水位米
日期
水位/米
高出历史最 高水位/米
8月1日 41.80
8月2日 42.60
0.12
8月3日 8月4日 8月5日 8月6日 8月7日 42.35 42.36 42.00 41.86 41.94
-0.13 -0.12 -0.48 -0.62 -0.54
(3)在图中标出高出历史最高水位的结果,并制成折线统计图。
(3)分别把(1)(2)的结果制成折线统 计图,这两幅图有什么关系?
认识和运用小学数学中的正负数

认识和运用小学数学中的正负数数学是一门重要的学科,也是孩子们在小学阶段必须学习的内容之一。
在数学中,我们会遇到各种概念和方法,其中之一就是正负数。
正负数是数学中的基础概念之一,对于孩子们来说,正确理解和运用正负数至关重要。
本文将介绍正负数的概念及其在小学数学中的运用。
一、正负数的概念正负数是实数的一种表示形式,表示数的相对大小和方向。
在数轴上,我们可以将正数表示为向右的箭头,负数表示为向左的箭头。
0表示原点,是正数和负数的分界线。
正数是大于0的数,如1、2、3等。
正数可以表示数量,如表示有3个苹果。
正数也可以表示方向,如向右走3步。
正数在数轴上位于原点右侧。
负数是小于0的数,如-1、-2、-3等。
负数也可以表示数量,如表示亏损了5元。
负数在数轴上位于原点左侧。
二、认识正负数为了帮助孩子们正确理解正负数,我们可以通过生活中的实例进行讲解和练习。
1. 温度的表示温度是我们生活中常见的使用正负数的例子之一。
我们可以告诉孩子们,当气温高于0摄氏度时,为正数,表示天气较热;当气温低于0摄氏度时,为负数,表示天气较冷。
通过这种方式,孩子们可以直观地理解正负数的概念。
2. 高度的表示另一个常见的例子是高度的表示。
我们可以告诉孩子们,当我们站在地面上时,高度为0;当站在地面以下时,高度为负数,表示我们在地面以下;当站在地面以上时,高度为正数,表示我们在地面以上。
通过这种方式,孩子们可以更好地理解正负数的表示方式和含义。
三、运用小学数学中的正负数正负数在小学数学中的运用可以帮助孩子们更好地理解数学概念和解决问题。
1. 计算题中的正负数在一些计算题中,正负数的运算是必不可少的。
例如,当我们计算两个数的差时,如果一个数是正数,另一个数是负数,那么它们的差将带有符号,表示差的相对方向。
通过这种方式,孩子们可以在计算题中准确地理解和运用正负数。
2. 应用题中的正负数在一些应用题中,正负数的运用也是非常关键的。
例如,当我们解决关于方向或位移的问题时,正负数可以帮助我们正确表示方向和位移的正负值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
3
4
5
6
7
8
1、小华从0点向东行5米,表示+5米, 那么从0点向西行3米,表示为( ) 米。 2、如果现在小华的位置是7米,说明 她是向( )行了( )米。 3、如果现在小华的位置是—8米, 说明她向( )行了( )米。
东
了解史料: 了解史料:
中国是世界上最早认识和应用负数 的国家。早在两千多年前的《九章算术》 的国家。早在两千多年前的《九章算术》 就有正数和负数的记载。 中,就有正数和负数的记载。在古代人 民的生活中,以收入钱为正, 民的生活中,以收入钱为正,以支出钱 为负。在粮食生产中,以产量增加为正, 为负。在粮食生产中,以产量增加为正, 以产量减少为负。 以产量减少为负。 古代的人们为区分正、负数, 古代的人们为区分正、负数,常用 红色的算筹表示正数, 红色的算筹表示正数,用黑色的算筹表 示负数。而西方国家认识正、 示负数。而西方国家认识正、负数比咱 们国家晚了数百年。 们国家晚了数百年。
20 20 10 10 10 10
0
0
0
0
-10
-10
-10
-10
-20
-20
月 光 湖
吐鲁番月光湖水位下降 20厘米,记作(—20厘米), 那么河水上涨5厘米,记作 ( +5厘米(或者5厘米) )
如果减产记作 “—”,库尔班大 , 叔的葡萄园科学管 产量增加12 理,产量增加12 记作( 吨,记作(+12吨 ) 12吨
葡萄沟
火山
有资料记载:吐鲁番 3月份平均最高温度是 零上13度左右,日平均 最低温度是零下3度.
科学家把水结冰的温度定为0℃ 科学家把水结冰的温度定为 ℃。 读作: 摄氏度 简单说成: 度 摄氏度。 读作:0摄氏度。简单说成:0度
20
20
10
10
0
0
0℃ ℃
-10
-10
-20
-20
用正、 用正、负数表示温度
比一比谁最棒 一、上()、右()、前()、东()、对() ()、右()、前()、东()、对 二、上车()、增加()、上升()、 上车()、增加()、上升()、 ()、增加()、上升 收入()、转入()、盈利()。 收入()、转入()、盈利()。 ()、转入()、盈利 厘米、 三、上车 5人、下车 3人;伸长 5厘米、 人 人 厘米 厘米; 缩短 3厘米;收入 1500元、支出 500元 厘米 元 元
库尔班大叔经营葡萄园的收入情况 日期 2006年10月7 2006年10月 2006年10月24 2006年10月 摘要 存入 支出 支出或存入 5918 —3500
这里也有正负数,你找到了吗?说说它表示的意思。 这里也有正负数,你找到了吗?说说它表示的意思。
西
-8 -7-6 -5 - 4 -3 -2 -10
20 20 10 10
5℃ ℃
0 0 -10 -10
-20
-20
用正、 用正、负数表示温度
20 20 10 10
+10 ℃ 或 10℃ ℃
0
0
-10
-10
-20
-20
用正、 用正、负数表示温度
20 20 10 10
+16℃ ℃ 或 16℃ ℃
0
0
-10
一指:-5 ℃在哪个位置 :-
20 20 10 10
0
0
-10
-10
-20
-20
指一指:-10 指一指:-10 ℃在哪个位置 :-
20 20 10 10
0
0
-10
-10
-20
-20
指一指:-15 ℃在哪个位置 指一指:-15 :-
20 20 10 10
0
0
-10
-10
-20
-20
- 10 ℃和- 15℃哪个温度低? 哪个温度低
4、填表。
18 0 18 1.8
25 ÷ 2.5
30
13.5 ÷ 0.3 = = 这节课你有那些收获? 这节课你有那些收获 0.25 0.0 3
4、填表。
18 0 18
25 ÷ 2.5 0.25
30
=
13.5 ÷ 0.3 0.0 3
=
1.8