圣维南原理的基本概念

合集下载

圣维南原理及其证明

圣维南原理及其证明

圣维南原理及其证明圣维南原理又称为中值定理,是微积分中一个重要的定理。

它是由法国数学家约瑟夫·路易·圣维南于1690年发现并提出的。

该原理主要用于描述实函数的连续性与导数之间的关系,并说明在一定条件下函数在其中一区间上的平均变化率与其中一点上的瞬时变化率之间存在关系。

1.第一中值定理:设函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导(注意不一定连续),则在开区间(a,b)内存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。

即函数在区间[a,b]上有一点的导数等于该区间上函数值的平均变化率。

2.第二中值定理:设函数f(x)在闭区间[a,b]上连续且在开区间(a,b)上可微,且f(a)≠f(b),则在开区间(a,b)内存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。

即函数在区间[a,b]上其中一点的导数等于该区间上函数值的平均变化率。

3.第三中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续且在开区间(a,b)上可微,且g'(x)≠0且g(a)≠g(b),则在开区间(a,b)内存在一个点c,使得[f(b)-f(a)]/g(b)-g(a)]=f'(c)/g'(c)。

即两个函数在区间[a,b]上的斜率之比等于它们在开区间(a,b)内其中一点的导数之比。

对于圣维南原理的证明,需要运用微积分的基本概念和定理。

以下以第一中值定理为例进行证明。

证明:设函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导。

我们定义一个新的函数g(x)=f(x)-[(f(b)-f(a))/(b-a)](x-a)。

1.首先验证函数g(x)在闭区间[a,b]上连续。

由于f(x)在[a,b]上连续,那么f(x)-[(f(b)-f(a))/(b-a)](x-a)也是连续函数。

2.再来验证函数g(x)在开区间(a,b)上可导。

圣维南原理的概念和应用

圣维南原理的概念和应用

圣维南原理的概念和应用圣维南原理(Saint-Venant's principle)是弹性力学中的基本原理之一,由法国工程师、数学家阿道夫·维南(Adhémar Jean ClaudeBarré de Saint-Venant)于1855年首次提出。

该原理也被称为“局部效应原理”或“远场近似原理”。

圣维南原理的概念是,当应力施加在一个足够大的物体上时,物体内部的应变和位移仅在施加应力的局部区域发生显著变化,而在远离施加应力的区域,应变和位移几乎不变。

换句话说,这个原理认为,对于一个较大的物体,只有局部区域受到应力的影响,而在其他地方,物体的响应可以用远场近似来描述。

1.结构分析:在结构力学中,可以利用圣维南原理来简化复杂的结构系统的分析。

例如,当一个结构受到局部载荷时,可以通过该原理近似地计算结构的响应,而无需考虑整个结构的细节。

这在工程实践中非常有用,因为它可以大大简化结构的分析过程。

2.弯曲问题:弯曲是圣维南原理最经常应用的领域之一、该原理可以用来求解梁的弯曲问题,即当在梁的一端施加弯曲力时,可以通过近似地构建一个等效的约束系统,来计算受力部分的位移和应变。

这种方法在结构工程中非常常用,因为它可以准确地预测梁的变形和应力分布。

3.施加边界条件:在求解弹性力学问题时,边界条件是一个非常重要的因素。

圣维南原理可以帮助我们确定适当的边界条件,以便正确地描述系统的行为。

例如,当在一个弹性平板上施加一个外力时,通过将维南近似应用于平板的等效系统中,我们可以确定一个合适的边界条件来求解平板的位移和应力分布。

4.地震工程:地震是土木工程中的一个重要考虑因素。

圣维南原理的应用可以帮助工程师们分析建筑物在地震加载下的响应。

通过近似建筑的响应为由局部载荷引起的问题,可以更好地理解建筑结构在地震中的行为,并优化其设计。

总结起来,圣维南原理是弹性力学中一项重要的概念,它通过近似处理复杂的弹性力学问题,使得工程师们能够更好地理解和预测结构的响应。

弹性力学-边界条件

弹性力学-边界条件

xy x, y, z
x, y, x, y, x, y
x
y
xy
独立的(3个)
(3个)
3、位移分量f
ux, y, vx, y, w 独立的(2个) ux, y, vx, y(2个)
二. 平面问题基本方程
平面应力问题 1、平衡微分方程 (2个)
x x
悬臂梁的例子:
边界的积分式
h
2 h
x
xldy 0
2
h
2 h
x
xl ydy M
2
h
2 h
xy
dy 0
xl
2
设中性轴为z
y xdA z 1
自由端边界条件:
y
h
2 h
x
xl dy 0
2h 2 hFra bibliotekh x
2 h
x
xldy
2 h
f x dy
2
2
h
h
y xl f y
2 h
y
dy
xl
2 h
f ydy
2
2
根据圣维南原理,同时还要考虑等效力矩:
h
h
2 h
x
xl ydy
2 h
f x ydy
2
2
平面问题小结

0
左 : (
)
x
s

q, (
)
xy
s

0
上 : (
y)s q, (
y
)
x
s

0
下: (

材料力学的一些基本概念

材料力学的一些基本概念

材料力学材料力学基本概念基本概念Simwe :lian20041、强度:在载荷作用下构件抵抗破坏的能力;刚度:在载荷作用下构件抵抗变形的能力;稳定性:在载荷作用下构件保持稳定平衡的能力;2、基本假设:连续性假设:物体在其整个体积内充满了物质而毫无空隙,其结构是密实的; 均匀性假设:从物体内任意一点处取出的体积单元,其力学性能都能代表整个物体的力学性能;各向同性假设:材料沿各个方向的力学性能相同。

3、力学性能:材料在外力作用下所表现出来的变形和破坏方面的特征。

4、应力:受力杆件某一截面上一点处的内力集度。

正应力:垂直于截面的法向分量切应力:与截面相切的切向分量5、圣维南原理:力作用于杆端方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响。

6、一点处的应力状态:通过一点的所有不同方位截面上应力的全部情况。

7、线应变:每单位长度的伸长(或缩短)。

LL ∆=ε 8、胡克定律:当杆内的应力不超过材料的某一极限值(比例极限)时,杆的伸长△L 与其所受外力F 、杆的原长L 成正比,而与其横截面面积A 成反比。

引进比例常数E ,故有:EAL F L N =∆ 9、泊松比:当拉(压)杆内的应力不超过材料的比例极限时,横向线应变ε’与纵向线应变ε的绝对值之比为一常数,称此值为横向变形因数或泊松比。

εεµ'= 10、应变能:伴随弹性变形的增减而改变的能量称为应变能。

11、应力应变曲线:纵坐标表示名义应力,横坐标表示名义应变,这种能反应材料的力学性能的曲线图称为应力应变曲线。

比例极限:在弹性阶段内,应力应变符合胡克定律的最高限,与之对应的应力称为比例极限;弹性极限:弹性阶段的最高点卸载后不发生塑性变形的极限,与之对应的应力称为弹性极限;屈服极限:在屈服阶段内,应力有幅度不大的波动,最高点的应力为上屈服极限,最低点的应力为下屈服极限,通常将下屈服极限称为屈服极限;强度极限:在强化阶段,最高点对应的应力称为强度极限。

圣维南原理的理解及应用

圣维南原理的理解及应用

圣维南原理的理解及应用什么是圣维南原理?圣维南原理(St. Venant’s Principle)是强度学说中的一个基本原理,它描述了在一个连续介质中施加力或载荷时,力或载荷在介质内的传递方式。

该原理由法国工程师圣维南(Adhémar Jean Claude Barré de Saint-Venant)在19世纪提出,被广泛应用于材料力学、结构工程、土力学以及其他相关领域。

圣维南原理的基本概念圣维南原理认为,在一个连续介质中施加的力或载荷作用在某一点上时,它会通过介质内的应力场以波的形式传递,直至作用于介质的其他部分。

这种波传递的方式符合弹性波的特征,可以用弹性理论进行描述。

根据圣维南原理,当介质的尺寸足够大,且外力作用点与观察点足够远时,介质的应力场在其它部位的变化可以忽略不计。

这意味着在计算应力和变形时,我们可以将外力仅作用于感兴趣的部位,而不必考虑整个结构的响应。

圣维南原理的应用•结构分析圣维南原理在结构力学的分析中具有广泛的应用。

当我们需要对一个杆件、梁或框架进行受力分析时,可以使用圣维南原理简化结构的计算。

根据原理,我们只需关注关键的力作用点和观察点,而无需考虑结构的整体响应。

这大大简化了结构力学的计算步骤。

圣维南原理的另一个重要应用是在结构的变形分析中。

我们可以使用原理来计算结构在外力作用下的变形情况,从而评估结构的稳定性和安全性。

•土力学分析圣维南原理在土力学中的应用同样重要。

在土体力学中,我们经常需要分析土体受力、稳定性和沉降等问题。

通过应用圣维南原理,我们可以简化土体力学的计算,并准确估计土体内力的分布情况。

这对于土体的设计和工程施工非常重要。

圣维南原理在土力学中的另一个重要应用是地基工程中的基础设计。

通过使用原理,我们可以分析地基受力情况,并设计合适的基础结构,以确保地基的稳定性和承载力。

•材料强度分析圣维南原理在材料力学中也有广泛的应用。

材料强度分析是指评估材料在外力作用下的抗拉、抗压、抗弯等能力。

圣维南原理的基本概念

圣维南原理的基本概念

圣维南原理的基本概念圣维南原理(St. Venant's principle),也被称为维南原理或惯性原理,是弹性力学中一个基本的概念。

圣维南原理描述了在一个受力体系中,在应力场已经达到平衡状态的情况下,外界施加的一个局部载荷的效果将在有限的距离内逐渐减弱。

这个原理是由法国工程师阿多尔夫・圣维南(Adhémar Jean Claude Barré de Saint-Venant)于1855年首次提出。

1.定义:圣维南原理描述了在充分远离加载区域时,结构体系的不同部分对于局部载荷的响应是相同的。

也就是说,当一个力作用于一个结构体系上时,它会在整个结构中以波动的方式传播,并且在传播过程中逐渐减弱。

2.局部载荷:圣维南原理适用于局部载荷,即作用点处的载荷集中在一个较小的区域。

这个载荷可以是一个力、一个力矩或者其他一些形式的载荷。

3.有限距离:圣维南原理指出,这种载荷的响应会在有限的距离内传播。

这个有限的距离取决于结构体系的特性,如材料的刚度、几何形状等。

4.平衡状态:圣维南原理的适用条件是结构体系的应力场已经达到平衡状态。

也就是说,体系中各个部分的应力分布已经稳定,没有出现明显的不均衡情况。

圣维南原理的应用可以在结构力学领域中发现。

当一个结构受到局部载荷时,通过圣维南原理可以预测载荷对结构体系的整体影响。

根据原理,从作用点处开始,载荷的影响将逐渐减小,并在一些距离内消失。

这个距离通常被称为圣维南剪切段(St. Venant shear region)或圣维南区域。

在应用圣维南原理时,需要注意以下几点:1.非线性效应:当加载超过结构材料的弹性极限时,将出现非线性效应,需要使用更复杂的模型来描述。

2.材料异质性:结构体系中的材料异质性会对圣维南区域的大小和形状产生影响。

异质性越高,圣维南区域的长度越大。

3.结构几何形状:结构的几何形状也会影响圣维南区域的大小和形状。

通常情况下,较长的结构具有较大的圣维南区域。

圣维南原理

圣维南原理

x
y
弹性力学解
(4)
2 x 2
2 y 2
( x
y
)
0
弹 性
应力边界条件

l x m yx X
l xy m y Y

(5) 问 题

式(4)
式(5)解答
例 如图所示薄片,周边作用有法向均布荷载q, 不计体力,试证明下列一组应力分量是本问题
的解答。 x q, y q, xy 0
MO mO (F i )
这种等效只是从平衡的观点而言的,对刚体来而言完全正 确,但对变形体而言一般是不等效的。
2.圣维南原理
(Saint-Venant Principle)
原理: 若把物体的一小部分边界上的面力,变换为分布 不同但静力等效的面力,则近处的应力分布将有
显著改变,而远处所受的影响可忽略不计。
o
x
A
q y
[解] 分析:欲证明是否弹性力学解答,只需证明在弹性 体内部满足式(4),在应力边界上能够满足式(5)
1)
将这组应力分量代入式(4),式(4) 中三式恒满足
2) 再考察边界条件,取边界上A点,有
y
X q cos,Y q sin
yx
l cos, m cos(900 ) x xy A
2 y2
(
x
y
)
2 x2
(
y
x
)
2(1
)
2 xy
xy
利用平衡方程式消去上式的 xy
xy
y
xy
x
x
x
y
y
X Y
2
2 xy
xy
2 x
x2

弹性力学综合题及其解题提示

弹性力学综合题及其解题提示

1. 基本概念(1) 什么是体力、面力和应力?其方向是如何规定的?试画出正、负y 面上正的应力和正的面力,写出平面问题应力分量满足的Cauchy 公式。

⎪⎩⎪⎨⎧=+=+⇒⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡)()(s f l m s f m l f f m l y yx y x xy x s y x s y yx xy x τστσσττσ(2) 弹性力学有哪些基本假定(6个)?1) 连续性假设:物体内物理量-用连续函数表示2) 线弹性假设:物体服从胡克定律-弹性常数不变 3) 均匀性假设:物体由同一材料组成-材料常数不变4) 各向同性假设:物体内任一点弹性性质各向同性-弹性常数不随方向而变--符合以上四个假定的物体称为理想弹性体5) 小变形假设:微小位移和应变-尺寸不变-可略去高阶小量-方程线性化 6) 无初始应力假设:物体处于自然状态-求解应力仅由外力或温度改变而产生(3) 已知物体的边界形状、材料性质、体力和边界约束,如何求解应力、形变和位移? (4) 弹性力学的两类平面问题是什么?等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束,同时,体力也平行于板面且不沿厚度变化。

这类问题即为平面应力问题。

很长的柱形体,其横截面不沿长度变化,在柱面上受平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,这类问题即为平面应变问题。

平面应力问题的物理方程为:xy xy x y y y x x EE E τμγμσσεμσσε)1(2,)(1,)(1+=-=-=平面应变问题的物理方程为:xy xy x y y y x x EE E τμ+=γσμ-μ-σμ-=εσμ-μ-σμ-=ε)1(2,)1(1,)1(122(5) 圣维南原理的基本内容是什么?写出与主矢和主矩对应的静力等效条件。

圣维南原理指出:作用在物体表面上一个局部区域内的平衡力系(主矢量为0,对于同一点的主矩也为0),可以用一个与之静力等效的任意力系来代替,由他们产生的应力分布在力系作用区域内有显著不同,在离开力系作用区域相当远的范围内,其应力分布几乎是相同的(可忽略不计)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圣维南原理的基本概念
圣维南原理是针对弹性力学边值问题提出的一个简化原理。

它把弹性力学边界分成主次两个边界(以边界尺寸大小为标准,尺寸大可看成是主要边界),主要边界必须精准满足边界条件,次要边界静力等效满足即可,这样得到的简化解答在次要边界的附近和精准解答有较大差异,但在离开次要边界足够远的地方和精准解答没有太大差异。

有时问题的主次边界尺寸差不多,圣维南原理就不能用。

这个原理不是用来确定应力分布形式的。

其是一个宏观上的原理不能把材料无线分成小块。

圣维南原理在薄壁材料结构的应用上存在例外的情况。

相关文档
最新文档