圣维南原理的理解及其在工程问题中的应用
圣维南原理的概念和应用

圣维南原理的概念和应用圣维南原理(Saint-Venant's principle)是弹性力学中的基本原理之一,由法国工程师、数学家阿道夫·维南(Adhémar Jean ClaudeBarré de Saint-Venant)于1855年首次提出。
该原理也被称为“局部效应原理”或“远场近似原理”。
圣维南原理的概念是,当应力施加在一个足够大的物体上时,物体内部的应变和位移仅在施加应力的局部区域发生显著变化,而在远离施加应力的区域,应变和位移几乎不变。
换句话说,这个原理认为,对于一个较大的物体,只有局部区域受到应力的影响,而在其他地方,物体的响应可以用远场近似来描述。
1.结构分析:在结构力学中,可以利用圣维南原理来简化复杂的结构系统的分析。
例如,当一个结构受到局部载荷时,可以通过该原理近似地计算结构的响应,而无需考虑整个结构的细节。
这在工程实践中非常有用,因为它可以大大简化结构的分析过程。
2.弯曲问题:弯曲是圣维南原理最经常应用的领域之一、该原理可以用来求解梁的弯曲问题,即当在梁的一端施加弯曲力时,可以通过近似地构建一个等效的约束系统,来计算受力部分的位移和应变。
这种方法在结构工程中非常常用,因为它可以准确地预测梁的变形和应力分布。
3.施加边界条件:在求解弹性力学问题时,边界条件是一个非常重要的因素。
圣维南原理可以帮助我们确定适当的边界条件,以便正确地描述系统的行为。
例如,当在一个弹性平板上施加一个外力时,通过将维南近似应用于平板的等效系统中,我们可以确定一个合适的边界条件来求解平板的位移和应力分布。
4.地震工程:地震是土木工程中的一个重要考虑因素。
圣维南原理的应用可以帮助工程师们分析建筑物在地震加载下的响应。
通过近似建筑的响应为由局部载荷引起的问题,可以更好地理解建筑结构在地震中的行为,并优化其设计。
总结起来,圣维南原理是弹性力学中一项重要的概念,它通过近似处理复杂的弹性力学问题,使得工程师们能够更好地理解和预测结构的响应。
圣维南原理的应用

圣维南原理的应用圣维南原理(Saint-Venant's principle),也被称为辐射均匀性原理(Principle of Uniformity of Stress Distribution),是力学中的一个基本原理,用于研究构件受力的分布情况。
圣维南原理的基本观点是:在一个较大的结构中,当受力集中在结构的某一局部区域时,远离这一局部区域的其他区域对受力的影响非常小。
这主要是因为结构的尺寸相比局部受力区域非常大,因此其影响可以被忽略。
圣维南原理的应用十分广泛,涉及到力学、工程结构、土木工程等领域。
下面将就几个具体的应用场景进行介绍。
(1)杆件受力分析:在杆件的受力分析中,常常使用圣维南原理来简化受力的分布情况。
例如,在一个悬臂梁上施加一个力,可以利用圣维南原理简化为一个集中力作用在杆件端点上。
这样可以简化计算,并且结果也能够在一定范围内保持较好的准确性。
(2)板的弯曲分析:在分析板的弯曲行为时,可以利用圣维南原理来简化受力的分布情况。
例如,在一个长方形板中施加一个力,可以使用圣维南原理将力简化为均匀分布在板边缘上的弦拉力,从而简化计算并且求解板的弯曲变形。
(3)土壤力分析:在土木工程中,土壤力是一个重要的研究对象。
而圣维南原理可用于研究局部施加力对土壤的影响情况。
例如,在基坑开挖过程中,假设只在基坑边缘施加力(例如支撑结构),利用圣维南原理可以忽略远离基坑边缘的土壤区域对基坑边缘产生的力的影响,从而简化计算。
(4)结构的稳定性分析:在结构稳定性分析中,圣维南原理也有重要的应用。
例如,在某列柱子或墙面的边缘受力较大时,可以使用圣维南原理来简化计算,并且将受力集中在边缘区域。
这样可以更好地评估结构的稳定性,并制定相应的加固措施。
总之,圣维南原理作为力学中的基本原理,具有广泛的应用。
它可以用来简化受力的分布情况,从而方便计算和分析。
然而,在具体应用时,我们也需要注意圣维南原理的适用范围。
圣维南原理并说明它的用途

圣维南原理并说明它的用途圣维南原理(Saint-Venant's principle)是弹性力学中的一个基本原理,也被称为等效自由力原理或诺特尔对偶原理。
它是由法国数学家和工程师阿道夫·圣维南(Adhémar Jean Claude Barréde Saint-Venant)于19世纪中期提出的。
圣维南原理的基本思想是,当对结构施加作用力并达到平衡状态时,结构内部的应力分布在离作用点足够远的地方将变得无关紧要,只保留结构的整体行为。
具体来说,圣维南原理认为结构在受力下,仅在应力集中的区域附近才会出现显著的变形和应力,而在远离这些集中应力区域的地方,结构的变形和应力将逐渐趋于均匀分布,从而使结构产生一个等效的自由体力或力偶。
这种等效力或力偶可以反映出结构的整体行为和响应,用来简化对结构的分析和计算。
圣维南原理的主要用途如下:1. 结构受力分析:在结构力学中,使用圣维南原理可以简化结构的受力分析。
通过将外部作用力转化为等效的自由力或力偶,并结合结构的边界条件和材料性质,可以有效地求解结构的应力、应变和变形等问题。
这对于设计和优化复杂结构的强度和刚度具有重要意义。
2. 结构变形衡量:通过圣维南原理,可以量化结构的变形情况。
根据等效自由力或力偶的大小和方向,可以确定结构的变形形态和位移分布。
这对于工程师评估和控制结构的变形行为,尤其是在弹性阶段的变形情况,非常有帮助。
3. 结构优化设计:圣维南原理可以在结构优化设计中发挥重要作用。
通过分析结构的等效自由力或力偶,可以直观地了解结构的受力特点和存在的问题,从而指导工程师进行合理的结构调整和优化。
这可以使结构更加经济高效,减轻结构在受力中的应力集中和可能的破坏。
4. 材料选择和设计验证:圣维南原理可以帮助工程师选择合适的材料和验证结构的设计安全性。
通过分析结构的等效自由力或力偶,可以评估结构在不同材料参数下的应力分布和变形行为,从而选择适合的材料,并验证结构的安全性和可靠性。
圣维南原理的理解和在工程问题中的应用

一、题目圣维南原理的理解及其在工程问题中的应用二、涉及到的弹性力学相关概念介绍1855年,圣维南在梁理论研究中提出:若在物体一小部分区域上作用一平衡力系,则此力系对物体内距该力系作用区域较远的部分不产生影响,只在该力系作用的区域附近才引起应力和变形。
这就是著名的圣维南原理。
圣维南原理的一种较为实用的提法是:若作用在物体局部表面上的外力,用一个静力等效的力系〔具有相同的主矢和主距代替,则离此区域较远的部分所受影响可以忽略不计[1]。
三、正文部分1圣维南原理的理解1.1 圣维南原理的提出背景求解弹性力学问题就是在给定边界条件下求解偏微分方程。
边界条件不同,问题的解答也不一样。
但是要求出严格满足边界条件的精确解,有时是非常困难的,另外,对于一些实际问题,不能确切的给出面力的分布,只是知道它在某边界上的合理与合力偶的大小。
于是我们会提出一个问题,能不能用一个可解的等效力系来代替它;满足合力、合力偶条件的解是否可以替换它。
这个问题可由圣维南发原理来回答。
1.2 凭借生活经验的理解对于圣维南原理的第一种提法:若在物体一小部分区域上作用一平衡力系,则此力系对物体内距该力系作用区域较远的部分不产生影响,只在该力系作用的区域附近才引起应力和变形,可以用一个实例先简单理解。
例如用钳子剪钢丝即使外力大道把钢丝剪断的程度,根据生活经验,钢丝的应力和变形仅局限于潜口附近。
经验表明,这一平衡力系越小,对钢丝其它部分的影响越小[3]。
对于圣维南原理的另一种提法是:若作用在物体局部表面上的外力,用一个静力等效的力系〔具有相同的主矢和主距代替,则离此区域较远的部分所受影响可以忽略不计。
可以这样理解:悬臂梁在端部不沿受集中力作用,基础上增加一对自相平衡的力系。
再减少一对相平衡的力系,根据圣维南原理,仅在小区域那有明显差异,而在该区域之外应力几乎是相同的[1]。
1.3简单应用的理解书上的例子是这样的:如图1.1所示,设有柱形构件,在两端截面的形心受到大小相等而方向相反的拉力F,如图1.1〔a,如果把一端或两端的拉力变化为静力等效的力,图1.1〔b或图1.1〔c,则只有虚线划出的部分的应力分布有显著的改变,而其余部分所受的影响是可以不计的。
6圣维南原理解析

6圣维南原理解析圣维南 (Saint-Venant) 原理是应用于弹性体力学的一种物理原理,它描述了在应力场中,当载荷施加在物体表面时,这个载荷会沿着物体的体积方向向内传播,引起物体内部的变形和应力分布。
圣维南原理的基本思想是假设物体是连续、均匀且各向同性的,其应变和应力满足弹性力学方程。
圣维南原理可用数学方程表示,假设载荷作用在物体表面的小区域,而物体内部每个小区域都是向外均匀受力的平衡状态。
根据这个原理,我们可以推导出弹性体的位移、应变和应力满足的偏微分方程,称为圣维南方程。
该方程描述了物体内部的变形和应力分布,并能通过求解该方程来获得物体的解析解。
圣维南原理的应用范围广泛,它可以用于解析地基沉降、桥梁和建筑物的变形、材料的弹性行为等问题。
具体应用有:1.地基工程:圣维南原理可用于分析地下水或地震等外部载荷引起的地基沉降。
通过求解圣维南方程,可以预测地基变形,并为工程设计提供依据。
2.结构工程:圣维南原理可用于分析桥梁、建筑物等结构物在受外部荷载作用下的变形情况。
通过求解圣维南方程,可以评估结构物的强度和刚度,并进行结构优化设计。
3.材料工程:圣维南原理可用于研究材料的弹性行为。
通过求解圣维南方程,可以分析材料的应力分布和应变变化,评估材料的机械性能,并为材料疲劳寿命预测提供依据。
需要注意的是,圣维南原理是在弹性条件下成立的,即物体在加载后能恢复到原来的形状。
在实际工程中,弹性体的行为往往与非弹性效应有关,如塑性、粘弹性、破裂等。
因此,在实际应用中,圣维南原理通常与其他力学原理相结合,如塑性力学、粘弹性力学等。
为了更好地应用圣维南原理,我们还需要关注实验测试和数值模拟等方法。
实验测试可以用于验证圣维南原理的适用性,并提供实际数据用于验证数值模拟结果。
数值模拟可以通过有限元法等数值方法求解圣维南方程,从而得到更复杂的物体变形和应力分布情况。
总之,圣维南原理是弹性体力学领域的基本原理之一,广泛应用于地基工程、结构工程和材料工程等领域。
简述圣维南原理及其应用公式

简述圣维南原理及其应用公式
圣维南原理(Saint-Venant's principle)是指当一个外部载荷作用于一根杆件时,如果这个杆件在距离载荷作用点处足够远的地方,其挠度几乎不受载荷位置的影响,即载荷反应在杆件上的分布是近似均匀的。
该原理适用于解决结构力学中的弯曲问题。
圣维南原理还可以用于分析结构的自由振动问题。
在自由振动问题中,需要求解结构的固有频率和振型,而圣维南原理可以用来简化结构的初始条件。
通常情况下,结构的自由振动问题可以分解为多个单独的振动模态,圣维南原理则可以使每个模态的振型分布趋于均匀,从而简化求解过程。
圣维南原理的应用公式为:
Δ = (Ml^2)/(2EI)
其中,Δ表示载荷作用点处的挠度,M表示载荷矩,l表示载荷作用点到杆件固定端的距离,E表示弹性模量,I表示截面惯性矩。
该公式可以用来计算载荷作用点处的挠度。
根据圣维南原理,载荷作用点处的挠度与载荷位置的影响几乎无关,因此可以通过该公式计算出载荷作用点处的挠度,而无需考虑载荷位置的具体情况。
在实际工程中,圣维南原理广泛应用于弯曲问题的分析与设计中。
例如,在桥梁设计中,为了确保桥梁能够承受车辆和行人的重量,
需要对桥梁的弯曲问题进行分析和设计。
圣维南原理可以用来简化桥梁弯曲问题的分析,从而提高设计效率和准确性。
圣维南原理是结构力学中非常重要的原理之一,其应用广泛,可以用于弯曲问题的分析和设计,也可以用于结构的自由振动问题的求解。
掌握圣维南原理和其应用公式,可以提高工程师在结构力学和结构设计领域的能力和水平。
圣维南原理的理解及应用

圣维南原理的理解及应用什么是圣维南原理?圣维南原理(St. Venant’s Principle)是强度学说中的一个基本原理,它描述了在一个连续介质中施加力或载荷时,力或载荷在介质内的传递方式。
该原理由法国工程师圣维南(Adhémar Jean Claude Barré de Saint-Venant)在19世纪提出,被广泛应用于材料力学、结构工程、土力学以及其他相关领域。
圣维南原理的基本概念圣维南原理认为,在一个连续介质中施加的力或载荷作用在某一点上时,它会通过介质内的应力场以波的形式传递,直至作用于介质的其他部分。
这种波传递的方式符合弹性波的特征,可以用弹性理论进行描述。
根据圣维南原理,当介质的尺寸足够大,且外力作用点与观察点足够远时,介质的应力场在其它部位的变化可以忽略不计。
这意味着在计算应力和变形时,我们可以将外力仅作用于感兴趣的部位,而不必考虑整个结构的响应。
圣维南原理的应用•结构分析圣维南原理在结构力学的分析中具有广泛的应用。
当我们需要对一个杆件、梁或框架进行受力分析时,可以使用圣维南原理简化结构的计算。
根据原理,我们只需关注关键的力作用点和观察点,而无需考虑结构的整体响应。
这大大简化了结构力学的计算步骤。
圣维南原理的另一个重要应用是在结构的变形分析中。
我们可以使用原理来计算结构在外力作用下的变形情况,从而评估结构的稳定性和安全性。
•土力学分析圣维南原理在土力学中的应用同样重要。
在土体力学中,我们经常需要分析土体受力、稳定性和沉降等问题。
通过应用圣维南原理,我们可以简化土体力学的计算,并准确估计土体内力的分布情况。
这对于土体的设计和工程施工非常重要。
圣维南原理在土力学中的另一个重要应用是地基工程中的基础设计。
通过使用原理,我们可以分析地基受力情况,并设计合适的基础结构,以确保地基的稳定性和承载力。
•材料强度分析圣维南原理在材料力学中也有广泛的应用。
材料强度分析是指评估材料在外力作用下的抗拉、抗压、抗弯等能力。
浅论圣维南原理的应用条件

浅论圣维南原理的应用条件简介圣维南原理(St. Venant’s Principle)是弹性力学中的一个重要定理,描述了一个结构体在受力后的应力分布情况。
它是理解和应用弹性力学的基础,对于工程领域中的设计和分析工作起到了重要的指导作用。
本文将探讨圣维南原理的应用条件。
1. 弹性体假设圣维南原理的应用条件首先要满足弹性体假设,即结构体材料的应力-应变关系是线弹性的。
线弹性是指材料在弹性变形范围内,应力和应变之间的关系是线性的。
•弹性体假设要求材料的应力-应变曲线是直线,即材料的应变与外部施加的应力成正比。
•材料的线弹性行为可以通过实验测试得到,例如拉伸试验、压缩试验等。
2. 结构体形状圣维南原理的应用条件还要求结构体具有合适的形状,即结构体应该是细长的,且在受力区域内的几何形状应相对均匀。
•圣维南原理适用于结构体在边界上施加荷载的情况,例如悬臂梁、梁和柱等。
•结构体的几何形状要求在受力区域内没有突变或者急剧变化的情况,以保证应变和应力的分布是均匀的。
3. 受力方式圣维南原理的应用条件要求结构体受力方式是通过边界施加载荷,且边界不能移动或者旋转。
•边界施加载荷可以是集中力、均布载荷、单向力矩等。
•边界的固定方式可以是夹持、支撑或者固定边界。
4. 边界条件圣维南原理的应用条件还要求结构体边界条件是已知的,并且在边界上施加的载荷是已知的。
•已知的边界条件可以包括位移、倾斜角、刚度等。
•已知的载荷可以包括集中力、均布载荷、单向力矩等。
5. 无孔、无裂纹圣维南原理的应用条件要求结构体是无孔且无裂纹的,即结构体的形态应该是完整的。
•孔洞和裂纹会导致应力集中,不满足线弹性的假设,因此圣维南原理不适用于带有孔洞或者裂纹的结构体。
6. 小变形圣维南原理的应用条件还要求结构体的变形是小的,即初始和受力后的结构体形态之间的相对变化很小。
•小变形假设要求结构体的刚度是常数,不随变形而变化。
•当结构体的变形较大时,需要考虑非线性弹性,此时圣维南原理不适用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、题目圣维南原理的理解及其在工程问题中的应用
二、涉及到的弹性力学相关概念介绍
1855年,圣维南在梁理论研究中提出:若在物体一小部分区域上作用一平衡力系,则此力系对物体内距该力系作用区域较远的部分不产生影响,只在该力系作用的区域附近才引起应力和变形。
这就是著名的圣维南原理。
圣维南原理的一种较为实用的提法是:若作用在物体局部表面上的外力,用一个静力等效的力系(具有相同的主矢和主距)代替,则离此区域较远的部分所受影响可以忽略不计[1]。
三、正文部分
1圣维南原理的理解
1.1 圣维南原理的提出背景
求解弹性力学问题就是在给定边界条件下求解偏微分方程。
边界条件不同,问题的解答也不一样。
但是要求出严格满足边界条件的精确解,有时是非常困难的,另外,对于一些实际问题,不能确切的给出面力的分布,只是知道它在某边界上的合理与合力偶的大小。
于是我们会提出一个问题,能不能用一个可解的等效力系来代替它;满足合力、合力偶条件的解是否可以替换它。
这个问题可由圣维南发原理来回答。
1.2 凭借生活经验的理解
对于圣维南原理的第一种提法:若在物体一小部分区域上作用一平衡力系,则此力系对物体内距该力系作用区域较远的部分不产生影响,只在该力系作用的区域附近才引起应力和变形,可以用一个实例先简单理解。
例如用钳子剪钢丝即使外力大道把钢丝剪断的程度,根据生活经验,钢丝的应力和变形仅局限于潜口附近。
经验表明,这一平衡力系越小,对钢丝其它部分的影响越小[3]。
对于圣维南原理的另一种提法是:若作用在物体局部表面上的外力,用一个静力等效的力系(具有相同的主矢和主距)代替,则离此区域较远的部分所受影响可以忽略不计。
可以这样理解:悬臂梁在端部不沿受集中力作用,基础上增加一对自相平衡的力系。
再减少一对相平衡的力系,根据圣维南原理,仅在小区域那有明显差异,而在该区域之外应力几乎是相同的[1]。
1.3简单应用的理解
书上的例子是这样的:如图1.1所示,设有柱形构件,在两端截面的形心受到大小
相等而方向相反的拉力F,如图1.1(a),如果把一端或两端的拉力变化为静力等效的力,图1.1(b)或图1.1(c),则只有虚线划出的部分的应力分布有显著的改变,而其余部分所受的影响是可以不计的。
如果再将两端的拉力变换为均匀分布的力,集度等于F/A,其中A为构建的横截面面积,如图1.1(d),仍然只有靠近两端部分的应力受到显著的影响。
这就是说,在上述四种情况下,离开两端较远的部分的应力并没有显著的差别[2]。
图1.1
2误差影响区域的大小以及应用时的注意事项
2.1误差影响区域的大小
关于影响区域的大小,古地尔通过应变能量级的分析,指出当三维实心体受局部自相平衡力系的作用时,影响区域的尺寸和载荷作用的区域尺寸量级相同。
这里的“载荷作用区”对第一种提法是自相平衡力系的作用区,对第二种提法是实际载荷与静力等效载荷之差所确定的区域。
2.2圣维南原理应用时的注意事项
(1)虽然圣维南原理还没有严格的证明,但是弹性力学的分析、计算结果都表明圣维南原理的正确性。
(2)运用圣维南原理时要注意误差影响区域的大小。
即圣维南原理适用在“次要边界”。
因为经过变换的此力系对物体内距该力系作用区域较远的部分不产生影响,在该力系作用的区域附近才引起应力和变形。
(3)利用圣维南原理可以放宽边界条件。
利用圣维南原理,还可以把位移边界转化为等效的力边界。
例如图2.1(a)中的悬臂梁,为混合边界问题,其左边固定端的应力分布并不知道,但由总体平衡条件可以算出其合力与合力距的大小。
用合力与合力距代
替原未知分布力系以后,该问题就变成了一个应力边界问题如图 2.1(b)。
梁变形变形后如虚线所示,其左端面有一个转角。
要恢复图2.1(a)中铅锤平面状态,必须在端面加一力系。
显然,为了保持物体的平衡,这一附加力系是自平衡的。
即图(a)(b)在左端面上的差异只是自平衡力系。
由圣维南原理,其影响区的尺寸与梁的横截面尺寸量级相同[1]。
图2.1
(4)对于薄壁构件,使用圣维南原理时要谨慎。
如图2.2所示为工字梁截面梁,在端面的两个翼缘上作用着一对大小相等、方向相反的力偶,结构力学中称为双力偶,从杆件的整个横截面范围来看,它是一个自相平衡力系,但由于腹板较薄,每个翼缘所受的弯曲应力可以传递到相当远的部分。
极端地,当,弯曲应力可以达梁的根部。
同时注意到,左边的翼缘在力偶作用下向上弯曲,而右边的翼缘向下弯曲,显然,还将引起工字型截面的扭转。
这个例子表明,当荷载作用区域大于物体受力处截面组成部分的最小尺寸时,圣维南原理无效。
如果双力偶同时作用在腹板上,且双力偶的臂小于腹板厚度,圣维南原理仍然是有效的[4]。
图2.2
(5)应用圣维南原理,要注意“静力等效”这个条件。
例如图1.1中合力F 要作用在截面的形心,如果有偏移,不管它的分布如何,作用于截面形心的力F 就不是静力等效的[2]。
3圣维南原理在复杂问题中的一些应用
3.1圣维南原理在“简支梁受均布载荷”中的应用
设有矩形截面的简支梁,深度为h ,长度为2l ,体力可以不计,在上面受有均布载荷q ,由两端的反力ql 维持平衡,取单位宽度的梁来考虑。
如图3.1所示。
通常,梁的跨度大于梁的宽度。
梁的上下两个边界,占全部边界的绝大部分,因而是主要的边界。
在主要的边界上,边条件必须满足精度。
在次要的边界上如果边界条件不能精度满足。
就可以引用圣维南原理。
我们是边界条件得以近似地满足。
图3.1
次要边界用积分粗略表示。
在梁的右边,没有水平面力,用多项式求解,只能要求σx 在这部分边界上合成为平衡力系[2]。
σx ℎ2 −ℎ2 d y =0
σx ℎ2 −ℎ2 yd y =0
3.2圣维南原理在“圆环或圆桶受均布压力”中的应用
如图3.2所示。
由公式
σρ=−a 2
2q a
σφ=a2
q a
ρ2
图3.2
距圆筒或圆形孔道较远之处,应力是很小的。
这个实例也证明了圣维南原理[2]。
3.3圣维南原理在“曲梁的纯弯曲”中的应用
如图3.3所示,如果弯矩M是由其它分布方式的面力合成,则靠近梁端处的应力分布将和所求公式有显著的差别,但是,在离梁端较远的地方,根据圣维南原理,这个差别无关重要[2]。
图3.3
3.4圣维南原理在“锲形体在楔顶受力或楔面受力”中的应用
楔形体在楔形体的顶部不会受到集中在一点力或力偶,只要面力的集度超过新型体的材料的比例极限,弹性力学的基本方程就不再适用。
如图3.4所示。
楔形体的楔顶受有一定的面力,侧面力的最大集度不超过比例极限。
如图3.5所示。
当然压力分布的方式不同。
应力分布会不同,但是在离开楔顶梢远之处,应力分布都相同[5]。
为了计算方便,便使用了圣维南原理,并且保证了一定的精度。
图3.4图3.5
四、结论
圣维南原理可以简化受力模型,便于计算,所以在工程中得到大量的应用。
但是应用圣维南原理时要注意一些限制条件,例如要注意误差影响区域的大小,要注意“静力等效”这个条件,不能盲目使用。
合理的使用圣维南原理可以事半功倍。
五、主要参考文献
[1]王光钦,丁桂保,杨杰.弹性力学. 北京: 清华大学出版社,2004.
[2]徐芝纶. 弹性力学. 北京: 高等教育出版社,1998.
[3]刘建飞. 基于哈密顿原理的钢箱梁剪力滞效应研究[D].重庆交通大学,2011.
[4]汪先俊. 薄壁梁约束扭转研究[D].中国农业大学,2000.
[5]刘章军,叶永,周宜红,李建林. 用楔形体解答求解矩形变截面梁及其适用范围[J]. 力学与实
践,2012,34(02):71-74.。