第2章 第8讲 圣维南原理
圣维南原理及其证明

圣维南原理及其证明圣维南原理又称为中值定理,是微积分中一个重要的定理。
它是由法国数学家约瑟夫·路易·圣维南于1690年发现并提出的。
该原理主要用于描述实函数的连续性与导数之间的关系,并说明在一定条件下函数在其中一区间上的平均变化率与其中一点上的瞬时变化率之间存在关系。
1.第一中值定理:设函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导(注意不一定连续),则在开区间(a,b)内存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。
即函数在区间[a,b]上有一点的导数等于该区间上函数值的平均变化率。
2.第二中值定理:设函数f(x)在闭区间[a,b]上连续且在开区间(a,b)上可微,且f(a)≠f(b),则在开区间(a,b)内存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。
即函数在区间[a,b]上其中一点的导数等于该区间上函数值的平均变化率。
3.第三中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续且在开区间(a,b)上可微,且g'(x)≠0且g(a)≠g(b),则在开区间(a,b)内存在一个点c,使得[f(b)-f(a)]/g(b)-g(a)]=f'(c)/g'(c)。
即两个函数在区间[a,b]上的斜率之比等于它们在开区间(a,b)内其中一点的导数之比。
对于圣维南原理的证明,需要运用微积分的基本概念和定理。
以下以第一中值定理为例进行证明。
证明:设函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导。
我们定义一个新的函数g(x)=f(x)-[(f(b)-f(a))/(b-a)](x-a)。
1.首先验证函数g(x)在闭区间[a,b]上连续。
由于f(x)在[a,b]上连续,那么f(x)-[(f(b)-f(a))/(b-a)](x-a)也是连续函数。
2.再来验证函数g(x)在开区间(a,b)上可导。
关于圣维南原理的一点注释

关于圣维南原理的一点注释
圣维南原理(St. Vincent's Principle)是由英国19
世纪哲学家兼数学家菲利普·斯蒂芬·斯文森教授(Philip Stevens Stephenson)提出的一个哲学概念。
该原理认为,一件事物的结果可能会受到一件事物的其他潜在结果的影响,并对第三个事物有一定的影响。
因此,一个事件可能会影响另一件事情,即使它们看起来没有关系也一样。
圣维南原理在日常生活中有着广泛的应用。
举例来说,
一个人的行为可能会影响另一个人,甚至连第三个人也会受到影响。
比如,一个家庭父亲的生活方式可能会影响他所有孩子,而他们又可能影响其他人。
所以,圣维南原理告诉我们,一个人的行为可能会影响他周围的所有人,而不仅仅是他直接的联系的人。
此外,圣维南原理也能够帮助人们更好地理解复杂的社
会结构和社会问题。
例如,一个国家需要保持公平的分配来维持和谐;而一个国家中贫富差距大的地区可能会引发一系列的社会问题,从而影响到整个社会。
这就是圣维南原理的重要意义。
总之,圣维南原理是一个重要的哲学概念,它告诉我们,一个个体的行为可能会影响到另一个人,甚至第三个人,从而影响整个社会。
圣维南原理是一个值得深入研究的概念,有助于帮助我们更好地理解社会现象。
圣维南原理的力学应用

圣维南原理的力学应用1. 圣维南原理的概念圣维南原理是力学中的一项基本原理,用于分析和解决物体的平衡和运动问题。
它由法国科学家圣维南在1669年提出,是力学中最重要的原理之一。
该原理描述了物体在受到外力作用时,产生平衡或运动的条件。
2. 圣维南原理的基本假设圣维南原理基于以下两个基本假设:•假设物体是刚体,即其形状和体积不会随时间变化;•假设物体是受力平衡的,即内力和外力之间不存在任何差异。
在这两个假设的前提下,圣维南原理可以应用于研究物体的平衡和运动。
3. 圣维南原理的力学应用3.1 平衡问题的分析圣维南原理可以用于解决物体静止时的平衡问题。
通过分析受力和力矩的平衡条件,可以确定物体所受到的外力和力矩。
具体步骤如下:1.确定物体所受到的所有外力和其作用点;2.列出物体受到的所有外力和力矩的平衡条件;3.根据平衡条件,求解未知量,确定物体的平衡状态。
3.2 运动问题的分析圣维南原理可以用于解决物体运动的问题。
通过分析受力和加速度的关系,可以确定物体的运动状态。
具体步骤如下:1.确定物体所受到的所有外力和其作用点;2.根据物体的受力情况,列出牛顿第二定律的方程;3.根据方程求解未知量,确定物体的加速度和运动状态。
3.3 圣维南原理的局限性虽然圣维南原理在力学中有着广泛的应用,但也存在一定的局限性。
圣维南原理假设物体是刚体,但在实际情况中,很多物体并不是完全刚性的,会发生形变和变形。
此外,圣维南原理只适用于平稳运动和平衡情况,对于非平稳运动和瞬态过程的分析有一定的局限性。
4. 总结圣维南原理是力学中的一项基本原理,用于分析和解决物体的平衡和运动问题。
通过分析受力和力矩的平衡条件,可以确定物体所受到的外力和力矩,从而解决平衡问题。
通过分析受力和加速度的关系,可以确定物体的运动状态,从而解决运动问题。
然而,圣维南原理也存在局限性,只适用于刚体和平稳运动的情况。
在实际应用中,需要考虑到物体的形变和变形,以及非平稳运动和瞬态过程的影响。
圣维南原理

几何方程
应变
协调条件
位移
位移求解: 位移
几何方程
应变
物理方程
应力
应力解法
未知数3个σx、σy、τxy,须联立平衡方程与 变形协调条件,以平面应力问题为例, 将虎克定律代入应变协调条件得到:
xy ( x y ) 2 ( y x ) 2(1 ) 2 y x xy
X Y x y x 2 y 2 ( x y ) (1 )
2 2
(1)
平面应力情形
控制方程
μ
μ/1-μ
平面应变情形
控制方程
1 X Y ( ) x y x 2 y 2 1 x y
i
这种等效只是从平衡的观点而言的,对刚体来而言完全正 确,但对变形体而言一般是不等效的。
2.圣维南原理
(Saint-Venant Principle)
原理: 若把物体的一小部分边界上的面力,变换为分布 不同但静力等效的面力,则近处的应力分布将有 显著改变,而远处所受的影响可忽略不计。 P P/2
P A
h( yx )y Nhomakorabea0dx P cos
可见,与前面结果相同。
§2-8 平面问题应力解法
上节回顾 应力解法 应力函数
上节回顾
平衡方程 基本方程 几何方程 物理方程 位移边界 边界条件 应力边界 混合边界 弹性力学问题的解
基本方程
1、平衡方程
xy x X 0 x y xy y Y 0 x y
P P/2
P A P A
P
3.圣维南原理的应用
圣维南原理并说明它的用途

圣维南原理并说明它的用途圣维南原理(Saint-Venant's principle)是弹性力学中的一个基本原理,也被称为等效自由力原理或诺特尔对偶原理。
它是由法国数学家和工程师阿道夫·圣维南(Adhémar Jean Claude Barréde Saint-Venant)于19世纪中期提出的。
圣维南原理的基本思想是,当对结构施加作用力并达到平衡状态时,结构内部的应力分布在离作用点足够远的地方将变得无关紧要,只保留结构的整体行为。
具体来说,圣维南原理认为结构在受力下,仅在应力集中的区域附近才会出现显著的变形和应力,而在远离这些集中应力区域的地方,结构的变形和应力将逐渐趋于均匀分布,从而使结构产生一个等效的自由体力或力偶。
这种等效力或力偶可以反映出结构的整体行为和响应,用来简化对结构的分析和计算。
圣维南原理的主要用途如下:1. 结构受力分析:在结构力学中,使用圣维南原理可以简化结构的受力分析。
通过将外部作用力转化为等效的自由力或力偶,并结合结构的边界条件和材料性质,可以有效地求解结构的应力、应变和变形等问题。
这对于设计和优化复杂结构的强度和刚度具有重要意义。
2. 结构变形衡量:通过圣维南原理,可以量化结构的变形情况。
根据等效自由力或力偶的大小和方向,可以确定结构的变形形态和位移分布。
这对于工程师评估和控制结构的变形行为,尤其是在弹性阶段的变形情况,非常有帮助。
3. 结构优化设计:圣维南原理可以在结构优化设计中发挥重要作用。
通过分析结构的等效自由力或力偶,可以直观地了解结构的受力特点和存在的问题,从而指导工程师进行合理的结构调整和优化。
这可以使结构更加经济高效,减轻结构在受力中的应力集中和可能的破坏。
4. 材料选择和设计验证:圣维南原理可以帮助工程师选择合适的材料和验证结构的设计安全性。
通过分析结构的等效自由力或力偶,可以评估结构在不同材料参数下的应力分布和变形行为,从而选择适合的材料,并验证结构的安全性和可靠性。
圣维南原理

圣维南原理
维南原理(Saint Venant’s Principle)是弹性力学的基础性原理,是法国力学家圣维南于1855年提出的。
其内容是:分布于弹性体上一小块面积(或体积)内的荷载所引起的物体中的应力,在离荷载作用区稍远的地方,基本上只同荷载的合力和合力矩有关;荷载的具体分布只影响荷载作用区附近的应力分布。
还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的荷载的合力和合力矩都等于零,则在远离荷载作用区的地方,应力就小得几乎等于零。
不少学者研究过圣维南原理的正确性,结果发现,它在大部分实际问题中成立。
因此,圣维南原理中“原理”二字,只是一种习惯提法。
在弹性力学的边值问题中,严格地说在面力给定的边界条件及位移给定的边界条件应该是逐点满足的,但在数学上要给出完全满足边界条件的解答是非常困难的。
另一方面,工程中人们往往只知道作用于物体表面某一部分区域上的合力和合力矩,并不知道面力的具体分布形式。
因此,在弹性力学问题的求解过程中,一些边界条件可以通过某种等效形式提出。
这种等效将出带来数学上的某种近似,但人们
在长期的实践中发现这种近似带来的误差是局部的,这是法国科学家圣维南首先提出的。
简述圣维南原理

简述圣维南原理圣维南原理是指在一个封闭系统内,熵的增加趋势是不可逆的。
这个原理是热力学第二定律的一个重要表述,也是热力学基本原理之一。
圣维南原理的提出,对于热力学和统计力学的发展产生了深远的影响。
圣维南原理最早是由德国物理学家克劳修斯·门德尔在1854年提出的。
他认为,封闭系统内熵的增加是不可逆的,即热力学过程总是趋向于使系统的熵增加。
这一原理在热力学和统计力学中有着重要的地位,它揭示了自然界中一种普遍的趋势,即系统总是朝着混乱和无序的状态发展。
在热力学中,熵是描述系统混乱程度的物理量。
系统的熵增加意味着系统的无序程度增加,而熵减少则意味着系统的有序程度增加。
圣维南原理告诉我们,封闭系统内熵的增加是不可逆的,这意味着系统总是朝着更加混乱的状态发展。
这也是为什么我们会感觉时间是朝着一个方向流逝的原因之一。
圣维南原理的重要性在于它揭示了自然界中一种普遍的趋势,这种趋势与时间的箭头密切相关。
在统计力学中,我们可以通过微观粒子的运动来理解圣维南原理。
微观粒子的运动会导致系统的混乱程度增加,从而使系统的熵增加。
这种微观层面的理解有助于我们更深入地理解圣维南原理。
圣维南原理还对能量转化和利用提出了重要的限制。
在能量转化过程中,总会有一部分能量转化为无用的热能,从而使系统的熵增加。
这也是为什么热机的效率总是低于100%的原因之一。
圣维南原理告诉我们,能量转化过程总是伴随着熵的增加,这为能源利用和节约能源提出了重要的挑战。
总的来说,圣维南原理是热力学第二定律的一个重要表述,它揭示了自然界中一种普遍的趋势,即系统总是朝着更加混乱的状态发展。
这一原理对于热力学和统计力学的发展产生了深远的影响,也对能源转化和利用提出了重要的限制和挑战。
我们应该深刻理解圣维南原理的内涵,这有助于我们更好地认识和理解自然界中的各种现象。
圣维南原理验证过程

圣维南原理验证过程课程:有限元方法及CAE软件班级:姓名学号:圣维南原理验证过程一、圣维南原理简介圣维南原理属于弹性力学中一个局部效应原理,是由法国力学家圣维南于1855年提出。
意在表述:分布于弹性体上一小块面积(或者体积)内的载荷所引起的物体中的应力,在离载荷作用区域较远的地方,基本只同载荷的合力和合力矩有关,载荷的具体分布只影响载荷作用区域附近的应力分布。
(弹性力学一般原理-圣维南原理)二、圣维南原理验证实验的前提条件1.载荷作用于弹性体。
2.满足静力学等效条件。
3.只能在边界上用圣维南原理,在主要边界上不能使用。
三、圣维南实验验证的准备工作此次实验验证使用的零件是一根梁,长为800mm,截面宽为50mm,截面高为30mm,材料属性为弹性模量为2.07E11Pa,泊松比为0.29。
分析软件为ANSYS15.0。
图1 梁二维图四、圣维南原理有限元分析过程4.1 模型建立使用ANSYS建模工具,建立三维模型图,如图2。
图2 三维模型4.2 有限元分析前置处理前处理包括:单元选取、常数设置、材料属性定义、网格划分和载荷施加等。
单元选取为solid 8nodes185。
常数不需设定。
材料选取为stl_AISI-C1020(钢)。
采用映射网格划分,如图3所示。
图3 网格划分对模型一端施加全约束,另一端施加集中力1500000N,如图4所示。
图4 载荷施加4.3 有限元求解对已经前置处理好的模型进行求解,求解成功后,如图5所示。
图5 求解图4.4 有限元后处理通过GUI显示,施加载荷后模型的应力分布情况,如图6所示。
图6 应力分布情况4.5 等效载荷的分析mm,重复以上步骤,将集中力改为等效的均布载荷分布力,大小为1000N/2得到模型的载荷分布及应力分布如图7、图8所示。
图7 均布载荷分布情况图8 等效均布载荷五、圣维南原理有限元分析结论由上述分析可知,两次不同的加载,远离作用区域的应力几乎不发生变化,集中载荷作用时在梁上最小值为1117.42N,均布载荷作用时在梁上最小值为1087.21N,二者几乎相等,且此值分布在远离作用域的大部分区域中,变化较大的只集中在作用区域附近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.8 圣维南原理
2.圣维南原理(Saint-Venant Principle)
圣维南原理可以有效 解决无法严格满足的边界 条件问题。 圣维南原理是法国力 学家圣维南于1855年关于 柱体扭转的论文中提出的, 并得到了工程的检验。但 至今没有严格的证明。
圣维南(Adhemar Jean Claude Barre de SaintVenant,1797~1886), 法国力学家。主要研究 弹性力学,注重理论研 究成果应用于工程实际。
第二章 平面问题的基本理论
第8讲 圣维南原理
第二章 平面问题的基本理论
上一讲回顾
弹性力学平面问题的基本方程共有8个,需 要在相应的边界条件才能求解,弹性力学的边 界条件有:位移边界条件、应力边界条件和混 合边界条件。
在Su上:
(u )s (v )s
u (s ) v (s )
在S上:
(l (l
x xy
解:① 在主要边界(上、 下表面处),应精确满 MF S O 足下列边界条件: FN ( yx )y h ( y )y h 0;
q h h l
x
(
yx )y
h
0, (
h h
y )y
h
q.
y
h h h h h h
(l
ቤተ መጻሕፍቲ ባይዱh)
② 左、右端面为次要边界,分别列出三个积分的应力边界条件:
(
x )x 0dy xy )x 0dy
3.圣维南原理的几种推广
如果物体一小部分边界上的面力是一 个平衡力系(主矢量及主矩都等于零), 那么这个面力就只会使近处产生显著的应 力,而远处的应力可以不计。
2.8 圣维南原理
4.圣维南原理的注意事项
仅适用于小边界;
只要求边界上应力的合力与原面力静力等 效;
例1:试列出图示问题的边界条件。
本讲结束!
2.圣维南原理(Saint-Venant Principle)
F O
x
F/2 O F/2
x
F/ A
y
y
O
x
y
2.8 圣维南原理
3.圣维南原理的几种推广
如果物体一小部分边界上的面力是一 个平衡力系(主矢量及主矩都等于零), 那么这个面力就只会使近处产生显著的应 力,而远处的应力可以不计。
F
F
2.8 圣维南原理
2.8 圣维南原理
2.圣维南原理(Saint-Venant Principle)
如果把物体的一小部分边界上的面力变换为分布 不同但静力等效的面力,那么近处的应力分布将有显 著的改变,但是远处所受的影响可以不计。
F
F
F/ 2 F/ 2 F/ A
F
F/ 2 F/ 2 F/ 2 F/ 2 F/ A
F
F
2.8 圣维南原理
0, ql ,
2 1 ql . 2
(
x )x l dy xy )x l dy x )x l ydy
0, 0, 0.
h h h h
(
(
(
x )x 0 ydy
(
2.8 圣维南原理
5.本讲小结
圣维南原理解决了小边界条件不能完全满 足的情况。从形式上完善了边界条件。 弹性力学问题的基本数学模型已经完全建 立: 所有的弹性力学问题都可以简单描述为:平 衡方程、几何方程、物理方程共8个基本方程 (也叫控制方程),在边界条件下的解。而 长边界上边界条件应完全满足,小边界上可 使用圣维南原理放松要求。
m m
yx ) s y) s
fx (s ) fy (s )
2.8 圣维南原理
1.问题的提出
求解弹性力学问题时,使应力分量、应变分量、 位移分量完全满足8个基本方程并不困难,但要使 边界条件完全满足,往往很困难。 如图所示,在力的作用点处边界条件无法列出。
P P P P P
不仅如此,实际工程中的约束条件通常也无法严格满足。