基于ANSYS的圣维南原理数值验证(DOC)
圣维南原理及其证明

圣维南原理及其证明圣维南原理又称为中值定理,是微积分中一个重要的定理。
它是由法国数学家约瑟夫·路易·圣维南于1690年发现并提出的。
该原理主要用于描述实函数的连续性与导数之间的关系,并说明在一定条件下函数在其中一区间上的平均变化率与其中一点上的瞬时变化率之间存在关系。
1.第一中值定理:设函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导(注意不一定连续),则在开区间(a,b)内存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。
即函数在区间[a,b]上有一点的导数等于该区间上函数值的平均变化率。
2.第二中值定理:设函数f(x)在闭区间[a,b]上连续且在开区间(a,b)上可微,且f(a)≠f(b),则在开区间(a,b)内存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。
即函数在区间[a,b]上其中一点的导数等于该区间上函数值的平均变化率。
3.第三中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续且在开区间(a,b)上可微,且g'(x)≠0且g(a)≠g(b),则在开区间(a,b)内存在一个点c,使得[f(b)-f(a)]/g(b)-g(a)]=f'(c)/g'(c)。
即两个函数在区间[a,b]上的斜率之比等于它们在开区间(a,b)内其中一点的导数之比。
对于圣维南原理的证明,需要运用微积分的基本概念和定理。
以下以第一中值定理为例进行证明。
证明:设函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导。
我们定义一个新的函数g(x)=f(x)-[(f(b)-f(a))/(b-a)](x-a)。
1.首先验证函数g(x)在闭区间[a,b]上连续。
由于f(x)在[a,b]上连续,那么f(x)-[(f(b)-f(a))/(b-a)](x-a)也是连续函数。
2.再来验证函数g(x)在开区间(a,b)上可导。
圣维南原理

几何方程
应变
协调条件
位移
位移求解: 位移
几何方程
应变
物理方程
应力
应力解法
未知数3个σx、σy、τxy,须联立平衡方程与 变形协调条件,以平面应力问题为例, 将虎克定律代入应变协调条件得到:
xy ( x y ) 2 ( y x ) 2(1 ) 2 y x xy
X Y x y x 2 y 2 ( x y ) (1 )
2 2
(1)
平面应力情形
控制方程
μ
μ/1-μ
平面应变情形
控制方程
1 X Y ( ) x y x 2 y 2 1 x y
i
这种等效只是从平衡的观点而言的,对刚体来而言完全正 确,但对变形体而言一般是不等效的。
2.圣维南原理
(Saint-Venant Principle)
原理: 若把物体的一小部分边界上的面力,变换为分布 不同但静力等效的面力,则近处的应力分布将有 显著改变,而远处所受的影响可忽略不计。 P P/2
P A
h( yx )y Nhomakorabea0dx P cos
可见,与前面结果相同。
§2-8 平面问题应力解法
上节回顾 应力解法 应力函数
上节回顾
平衡方程 基本方程 几何方程 物理方程 位移边界 边界条件 应力边界 混合边界 弹性力学问题的解
基本方程
1、平衡方程
xy x X 0 x y xy y Y 0 x y
P P/2
P A P A
P
3.圣维南原理的应用
圣维南原理的有限元模拟

圣维南原理的有限元模拟圣维南原理是电子学中的一项基本原理,用于描述电导体中电流分布情况的方法,常用于有限元模拟中来解决电磁场问题。
有限元模拟是一种基于数值方法的工程分析技术,通过将连续的物理问题离散化为有限数量的元素,再利用数值计算方法对这些元素进行求解,以模拟实际问题的行为和物理特性。
以下是关于圣维南原理在有限元模拟中的详细介绍。
圣维南原理(Saint-Venant’s Principle)主要用于描述电导体中的电流分布情况。
它是基于电流连续性方程和欧姆定律的基本原理,即电流在导体内部的分布是均匀且沿导体表面方向渐变。
根据这个原理,在有限元模拟中可以通过离散化导体为一系列有限元素来近似描述电流的分布情况。
在有限元模拟中,首先需要将导体区域划分为小块,称为有限元。
每个有限元都有一组自由度,用于描述电场强度或电势的分布情况。
在圣维南原理的约束下,任意两个相邻的有限元之间,在其界面上,电场强度或电势需要满足一定的连续性条件。
这些连续性条件可以通过将不同有限元之间的界面进行连接,构建整个导体区域的有限元模型。
有限元模型构建完成后,利用数值方法求解模型中的电场强度或电势分布。
通常采用有限元法的变分形式,通过求解最小化电场强度或电势的能量泛函来得到电场方程的离散形式。
然后,通过数值求解方法(如有限差分法等)对离散的电场方程进行求解,得到电场强度或电势分布的近似解。
由于圣维南原理的应用,有限元模拟能够较准确地描述导体中电流的分布情况。
采用有限元模拟方法,可以更好地理解和分析各种电磁场问题,如电磁传感器中的电流分布、电源线中的电压降等。
有限元模拟结果可以帮助工程师优化设计和制造过程,提高电子设备的性能和可靠性。
总之,圣维南原理作为电导体中电流分布的基本原理,在有限元模拟中扮演着关键的角色。
通过有限元模拟,可以准确地描述电流在导体中的分布情况,帮助工程师解决电磁场问题,从而优化设计和制造过程,提高电子设备的性能和可靠性。
圣维南原理在有限元分析中的应用

圣维南原理在有限元分析中的应用弹性力学中一个说明局部效应的原理,是法国力学家A.J.C.B.de 圣维南于1855年提出的。
其内容是:分布于弹性体上一小块面积(或体积)内的载荷所引起的物体中的应力,在离载荷作用区稍远的地方,基本上只同载荷的合力和合力矩有关;载荷的具体分布只影响载荷作用区附近的应力分布。
圣维南原理在实用上和理论上都有重要意义。
在解决具体问题时,如果只关心远离载荷处的应力,就可视计算或实验的方便,改变载荷的分布情况,不过须保持它们的合力和合力矩等于原先给定的值。
圣维南原理是定性地说明弹性力学中一大批局部效应的第一个原理有限元法基本原理(Basic Theory of FEM)有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。
根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。
这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体结构的离散化结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。
将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。
离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。
所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。
这样,用有限元分析计算所获得的结果是近似的。
显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。
有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑结构的离散化分析是依据圣维南原理而在的,没有圣维南原理就没有离散化分析的根据圣维南原理在有限元分析中的是骨架,整个分析在其中。
静电场数值仿真实验-ANSYS常用选项说明文档

静电场数值仿真实验-ANSYS常用选项说明文档ANSYS软件常用选项中、英文对照及功能说明英文译文功能说明File文件用于对ANSYS的各种文件进行操作处理Select选择选择模型的点,线,面等元素List列表列表显示模型的元素编号,坐标,属性等相关内容Plot图形显示控制图形窗口中的显示内容Replot刷新图形刷新图形显示PlotCtrls图形控制控制图形的显示大小,方向,颜色,数量等内容Numbering…编号显示显示模型中点,线,面等元素的编号Style样式对图形的颜色,大小等进行控制显示Capture Image抓图以BMP格式显示图形窗口中的图形Restore Image保存图形以BMP格式保存图形窗口中的图形Parameters参数设置输入,输出模型中的相关参数MenuCtrls菜单设置显示或者隐藏主要工作界面Graphic Window图形窗口ANSYS各种图形的输出显示窗口Help帮助提供ANSYS软件的原理及操作手册Preferences预处理过滤仿真模块及选择计算方法Preprocessor前处理进行定义单元类型、材料属性、实常数及建立实体模型与网格划分等相关操作Element Type单元类型定义单元类型Real Constants实常数定义实常数Material Props材料属性定义材料属性Modeling建模包含创建实体模型中的相关操作Create创建创建点,线,面等模型元素Partial Annulus部分圆环创建部分圆环Operate操作对模型中的元素进行拓展、布尔操作等相关操作Booleans布尔操作对图形元素进行交,加等布尔操作Overlap搭接除了保留了各图元的边界外,其它与加运算类似Delete删除删除一些图元MeshTool网格工具网格划分工具,包括了定义单元属性,单元尺寸控制,执行网格划分及细化网格属性等网格划分操作Solution求解求解器,包含施加载荷并求解模型选项Loads载荷提供了对载荷的设置,删除等操作Apply施加载荷为模型施加激励,边界条件,无线区域标志等内容Boundary边界为模型加载边界条件Excitation激励为模型加载激励Flag标志为模型提供无线区域及麦克斯韦标志Current LS当前载荷求解当前载荷模型General Postproc通用后处理通用后处理器,用于检查分析的结果Plot Results图像结果图像显示分析的结果Contour plot云图用颜色代表相关变量的大小而绘制出来的变量图像Nodal Solution节点结果分析结果为网格节点处的值DOF solution自由度结果分析结果为自由度的值Flux & gradient梯度对求解结果进行取梯度操作Element Solution单元结果显示单元变量的结果Vector Solution矢量图形矢量显示模型中的矢量List Results列表结果以列表的形式显示相关变量的结果OK确定确定相关操作,并关闭类似操作对话框Apply应用应用相关操作,接下来可继续进行类似操作Cancel取消取消相关操作Reset重置重置相关操作Pick All全选选择模型中的所有元素Help帮助调用帮助文档,对相关操作进行详细说明。
圣维南原理及其证

圣维南原理及其证明:历史与评述赵建中云南大学资源、环境与地球科学学院地球物理系,昆明650091 摘要圣维南原理(Saint-V enant’s Principle)是弹性力学的基础性原理,圣维南原理的证明一直是弹性力学重要的研究课题。
本文以圣维南原理研究中最重要的事件为线索,对圣维南原理的发展历史作了综述,对重要的研究工作和结果进行了评论;发表和论证了图平定理不是圣维南原理的数学表达、一般的圣维南原理不成立、修正的圣维南原理可以证明为真等观点;介绍了建立修正的圣维南原理的数学方法;阐述了研究圣维南原理证明问题的意义;目的在于引起对这些有关圣维南原理的基本问题的关注和讨论,促进圣维南原理研究的繁荣和发展。
关键词圣维南原理,历史,图平定理,证明,否证,数学表达,修正,意义中图分类号:0343.2AMS Subject Classifications: 74G50引言弹性力学的圣维南原理已经有一百多年的历史了[1,2]。
早期有关原理有重要的文章[39] 。
波西涅克(Boussinesq)[3]于1885年、勒夫(Love)[4]于1927 年分别发表了圣维南原理的一般性陈述。
然而Mises[5]认为勒夫陈述不清楚并提出修改的陈述,其后的论证既可以看作是对一般的Mises 陈述的否证,又可以看作是对具有特殊条件的Mises 陈述的证明。
Sternberg [6]赞同Mises的修改,他的论证也可以既看作是对Mises 陈述(Sternberg称为圣维南原理的传统陈述)的一般性的否证,又看作是对附加了条件的Mises 陈述的证明。
Truesdell[10]于1959年断言,如果关于等效载荷的圣维南原理为真,它“必须是”线性弹性力学“一般方程的数学推论”。
这就从理性力学的角度提出了圣维南原理的证明问题,圣维南原理被视为一个数学命题,其真理性需要证明。
毫无疑问,圣维南原理的数学证明成了一个学术热点。
为了揭示原理隐秘的内涵,或者说破解原理之谜,学者们花费了巨大的努力。
圣维南原理验证过程

圣维南原理验证过程课程:有限元方法及CAE软件班级:姓名学号:圣维南原理验证过程一、圣维南原理简介圣维南原理属于弹性力学中一个局部效应原理,是由法国力学家圣维南于1855年提出。
意在表述:分布于弹性体上一小块面积(或者体积)内的载荷所引起的物体中的应力,在离载荷作用区域较远的地方,基本只同载荷的合力和合力矩有关,载荷的具体分布只影响载荷作用区域附近的应力分布。
(弹性力学一般原理-圣维南原理)二、圣维南原理验证实验的前提条件1.载荷作用于弹性体。
2.满足静力学等效条件。
3.只能在边界上用圣维南原理,在主要边界上不能使用。
三、圣维南实验验证的准备工作此次实验验证使用的零件是一根梁,长为800mm,截面宽为50mm,截面高为30mm,材料属性为弹性模量为2.07E11Pa,泊松比为0.29。
分析软件为ANSYS15.0。
图1 梁二维图四、圣维南原理有限元分析过程4.1 模型建立使用ANSYS建模工具,建立三维模型图,如图2。
图2 三维模型4.2 有限元分析前置处理前处理包括:单元选取、常数设置、材料属性定义、网格划分和载荷施加等。
单元选取为solid 8nodes185。
常数不需设定。
材料选取为stl_AISI-C1020(钢)。
采用映射网格划分,如图3所示。
图3 网格划分对模型一端施加全约束,另一端施加集中力1500000N,如图4所示。
图4 载荷施加4.3 有限元求解对已经前置处理好的模型进行求解,求解成功后,如图5所示。
图5 求解图4.4 有限元后处理通过GUI显示,施加载荷后模型的应力分布情况,如图6所示。
图6 应力分布情况4.5 等效载荷的分析mm,重复以上步骤,将集中力改为等效的均布载荷分布力,大小为1000N/2得到模型的载荷分布及应力分布如图7、图8所示。
图7 均布载荷分布情况图8 等效均布载荷五、圣维南原理有限元分析结论由上述分析可知,两次不同的加载,远离作用区域的应力几乎不发生变化,集中载荷作用时在梁上最小值为1117.42N,均布载荷作用时在梁上最小值为1087.21N,二者几乎相等,且此值分布在远离作用域的大部分区域中,变化较大的只集中在作用区域附近。
圣维南原理的有限元模拟

圣维南原理的有限元模拟一、引言1.1 背景介绍圣维南原理(Saint-Venant principle)是结构力学中的一个重要原理,用于描述材料在载荷作用下的变形和应力分布规律。
有限元模拟是一种数值计算方法,可以通过将材料划分成多个小区域,近似求解对应的微分方程,得到材料的应力和变形信息。
本文将探讨圣维南原理在有限元模拟中的应用。
1.2 本文结构本文将按照以下结构对圣维南原理的有限元模拟进行全面、详细、完整且深入地探讨。
1.圣维南原理简介2.有限元方法概述3.圣维南原理的有限元建模步骤4.圣维南原理的有限元模拟实例分析5.结论与展望二、圣维南原理简介2.1 原理概述圣维南原理是由法国的物理学家圣维南(Barré de Saint-Venant)提出的。
原理表明,当材料受到外部载荷作用时,在远离载荷集中区域的地方,材料的应变和应力分布几乎不受载荷的具体形状和大小影响,只受载荷的总体效果影响。
也就是说,当材料足够远离载荷区域时,可以将载荷看作是完全分布在材料上的,而不再考虑具体的载荷形状。
2.2 适用范围圣维南原理适用于线弹性材料受到小应变、小变形和小应力情况下的力学分析。
对于非线性材料、大应变和大变形的情况,圣维南原理的适用性将受到限制。
三、有限元方法概述3.1 什么是有限元方法有限元方法是一种将连续介质离散化的数值计算方法,将连续的材料划分成多个小单元,通过对每个单元进行有限元分析,近似求解材料的应力、应变等物理量。
有限元方法通过求解以下微分方程来描述材料的行为:其中,σ为应力张量,ε为应变张量,C为弹性模量矩阵,F为外力矢量。
3.2 有限元方法的步骤有限元方法可以分为以下几个步骤:1.几何建模:对要分析的结构进行几何建模,选择合适的坐标系和节点。
2.选择适当的有限元类型和形状函数。
3.网格划分:将结构划分成多个小单元,构建有限元网格。
4.建立节点位移和约束:确定各个节点的位移和约束条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于ANSYS 的圣维南原理数值验证谢友增(航空工程学院 航空宇航制造工程 1201041)一 引言在轴向拉伸或压缩时,可以假设:变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。
根据这一平面假设,可以推断,杆件所有纵向纤维的伸长或压缩是相等的,因此各纵向纤维的受力是一样的。
我们得到,横截面上各点应力σ相等,于是得到N A Fσ= (1.1)式中:N F —轴力 A —横截面积若以集中力作用于杆件端面上,则集中力作用点附近区域内的应力分布比较复杂,公式(1.1)只能计算这个区域内横截面上的平均应力,不能描述作用点附近的真实情况。
这就引出,端截面上外力作用方式不同,将有多大影响的问题。
实际上,在外力作用区域内,外力分布方式有各种可能。
例如在图1a 和b 中,钢索和拉伸试样上的拉力作用方式就是不同的。
不过,如用与外力系静力等效的合力来代替原力系。
则除在原力系作用区域内有明显差别外,在离外力系作用区域略远处(例如,距离约等于截面尺寸处),上述代替的影响就非常微小,可以不计。
这就是圣维南原理。
根据这一原理,图1a 和b 所示杆件虽上端外力的作用方式不同,但可用其合力代替,这就简化成相同的计算简图(图1c )。
在距离端截面略远处都可以用公式(1.1)计算应力。
图1 外力作用方式不同的杆件圣维南原理提出至今已有一百多年的历史,虽然还没有确切的数学表示和严格的理论证明,但无数的实际计算和实验测量都证实了它的正确性。
本文将利用ANSYS 软件,通过对实例模型的数值分析计算,证明圣维南原理。
选择建立一个二维平面模型作为研究对象,然后对此模型进行数值证明。
分别对平面模型两端施加均布载荷,以及与此集中力静力等效的集中力载荷。
绘制应力图以及路径图,比较两种情况下其所受的平均应力分布情况,从而利用此结果证明圣维南原理。
运用ANSYS软件可以简单直观的证明圣维南原理,从而可以更加深刻的理解圣维南原理。
二 ANSYS软件简介ANSYS公司是由美国著名力学专家、美国匹兹堡大学力学教授John Swanson 博士于1970年创建并发展起来的,总部设在美国宾夕法尼亚州的匹兹堡,是目前世界CAE行业中最大的公司。
ANSYS软件是集结构、热、流体、电磁场、声场和耦合场分析于一体的大型通用有限元软件。
可广泛用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等一般工业及科学研究。
该软件可在大多数计算机及操作系统中运行,从PC机到工作站直至巨型计算机,ANSYS文件在其所有的产品系列和工作平台上均兼容。
ANSYS软件多物理场耦合的功能,允许在统一模型上进行各式各样的耦合计算,如:热—流体耦合,磁—电耦合,以及电—磁—流体—热耦合,确保了所有的ANSYS用户的多领域多变工程问题的求解。
ANSYS基于Motif的菜单系统是用户能够通过对话框、下拉菜单和子菜单进行数据输入和功能选择,为用户使用ANSYS提供“导航”。
ANSYS软件提供了一个不断改进的功能清单,具体包括:1.结构高度非线性仿真ANSYS采用了牛顿-拉普森迭代求解,并为了增强问题的收敛性,提供了自适应下降、线性搜索、自动载荷步、二分法及弧长法等一系列命令。
可以计算由大的位移、应变及有限转动引起的结构几何非线性问题、与时间有关的材料非线性问题以及接触引起的状态非线性问题。
2.热分析ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
包括热传导、热对流及热辐射三种传导方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
热分析用于计算一个系统或部件的温度分布,如热量获取或损失、热梯度、热流密度等。
3.电磁分析ANSYS可分析电磁场的多方面问题,如电感、电容、磁通量密度、涡流、电场分布、磁力线、力、运动效应、电路和能量损失等。
可用于有效地分析下面所列的各类设备:电力发电机、变压器、螺线管传动器、电动机、磁成像系统、图象显示设备传感器、磁悬浮装置、波导、开关等。
4.设计优化ANSYS提供了两种优化方法,它们可以处理大多数的优化问题。
零阶方法是一个很完美的处理方法,可以很有效的处理大多数的工程问题。
一阶方法基于目标函数对设计变量的敏感程度,因此更加适合于精确的优化分析。
优化中ANSYS 采用一系列的分析-评估-修正的循环过程,这个过程重复进行直到所有设计满足要求为止。
5.计算流体动力学分析ANSYS程序中的FLOTRAN CFD分析功能是一个用于分析二维及三维流体流动场的先进的工具,可解决如下的问题:•作用于气动翼型上的升力和阻力;•超音速喷管中的流场;•弯管中流体的复杂的三维流动;•计算发动机排气系统中气体压力及温度分布;•研究管路系统中热的层化及分离;•使用混合流研究来估计热冲击的可能性;•用自然对流分析估计电子封装芯片的热性能;•对含有多种流体的热交换器进行研究。
6.利用ANSYS参数设计语言(APDL)的扩展宏命令功能APDL有参数、数组参数、表达式和函数、分支和循环、重复和缩写、宏以及用户程序等功能。
ANSYS有限元典型分析大致分为3个步骤:①建立有限元模型;②加载和求解;③结果后处理和结果查看。
三利用ANSYS软件验证圣维南原理根据ANSYS有限元典型分析的3个步骤进行圣维南原理的数值验证。
1 建立有限元模型〈1〉设置单元属性ANSYS中,常用的单元属性包括单元类型、单元实常数、材料属性。
①在这里为了获得较好的计算精度,采用四节点四边形板单元(plane42)。
②单元实常数的确定依赖于单元类型的特性,实常数的目的是用于补充必要的几何信息和据算参数,这里无需定义。
③材料属性,定义材料弹性模量为2.7e11Pa,泊松比为0.3〈2〉建立实体模型平面可以表示二维实体,为简化计算,建立二维平面模型。
模型尺寸为长20CM宽6CM。
〈3〉为实体模型分配单元属性根据有限元理论,最终的有限元计算利用的是有限元模型,实体模型是不能进行有限元计算的。
在对实体模型进行网格划分前,要为实体模型分配单元属性。
将前面定义的单元属性赋予实体模型。
〈4〉对实体模型进行网格划分ANSYS有两种方式对实体模型进行网格划分。
①自由网格划分该操作对实体模型无特殊要求、任何几何模型,即使是不规则的,也可以进行网格划分。
②映射网格划分映射网格划分要求被划分的对象如面或体必须形状规则。
在这里由于模型简单,采用自由网格划分的方式对实体模型进行网格划分。
建立的有限元模型如图2所示图2 建立的有限元模型通过实用菜单List可以查看在建立的有限元模型中生成的节点以及单元的数量和属性,图3为列表显示的节点和单元的相关信息,包括单元属性以及该单元包含哪些节点。
图3 单元以及节点列表从列表中可以看出一共生成1216个单元和1300个节点。
2 加载和求解〈1〉施加载荷及约束有限元模型建立完毕后,要为模型施加一定的激励,并根据问题的要求设置一定的边界条件。
先在模型边界施加面力167N,绘制模型施加面力的应力分布图和路径图,然后给模型施加与之等效的集中力载荷(主矢量相同,对于同一点的主矩也相同)1000N,绘制模型施加面力的应力分布图和路径图,进行比较。
本次求解设置的集中力为载荷对称载荷,因此可以对模型中间线上的所有节点设置边界条件,设置节点所有的自由度为0。
施加完集中力载荷以及约束后的有限元模型如图4.图4施加载荷及约束后的有限元模型〈2〉求解定义分析类型为静态分析,单击求解命令,ANSYS就可以进行分析计算。
求解之前ANSYS会弹出状态文本框和求解确认对话框(列举本次分析的相关信息:问题维数、分析类型、载荷步和子步的设置等)如图5所示,确认无误后,便可进行求解。
图5状态文本框和求解确认对话框3 结果后处理和结果查看有限元模型建立并求解后,ANSYS工作目录中会生成一个结果记录文件,要使用通用后处理器进行结果分析。
ANSYS可以通过图形方式显示计算结果,可以绘制变形图、等值图、矢量图等。
〈1〉绘制应力等值图通过绘制节点的应力等值图,可以查看模型内部应力具体分布形式及其大小,图6为施加均布载荷节点解的应力等值图,图7为施加集中力载荷节点解的应力等值图。
图6施加均布载荷节点解的应力等值图图7施加集中力载荷的节点解应力等值图〈2〉绘制路径图为了验证圣维南原理,采取路径操纵的方式,通过绘制特定的路径,查看路径上的应力分布情况,从而验证圣维南原理。
①定义路径(9,3)到(9,-3),将要查看的结果数据映射到该路径上,绘制路径图。
图8为施加集中力载荷模型,路径(9,3)到(9,-3)的路径等值图。
图8点(9,3)到(9,-3)应力分布路径图原图较小,可放大后进行查看,从图中可以看出,在距离端截面很近的地方,应力分布差别是非常大的,而且应力分布复杂,因此不能采用计算平均应力的方法来计算该区域的应力。
②定义路径(4,3)到(4,-3),将要查看的结果数据映射到该路径上,绘制路径图。
图9为施加集中力载荷模型,路径(4,3)到(4,-3)的路径等值图,图10为路径曲线图。
图9点(4,3)到(4,-3)应力分布路径图图10点(4,3)到(4,-3)应力分布路径图③定义路径(9,3)到(9,-3),将要查看的结果数据映射到该路径上,绘制路径图。
图11为施加均布载荷模型,路径(9,3)到(9,-3)的路径等值图。
图11点(9,3)到(9,-3)应力分布路径图④定义路径(4,3)到(4,-3),将要查看的结果数据映射到该路径上,绘制路径图。
图12为施加均布载荷模型,路径(4,3)到(4,-3)的路径等值图,图13为路径曲线图。
图12点(4,3)到(4,-3)应力分布路径图图13点(4,3)到(4,-3)应力分布路径图比较图8和图11可以看出在与均布载荷等效的集中力载荷作用下,近处的应力分布明显改变;从图9和图10可以看出,在作用与均布载荷等效的集中力载荷下,在距离端截面一定距离(距离约等于截面尺寸处),应力分布相对均匀,最大应力与最小应力之差与最大应力之比约为6%;比较图9和图11以及图10和图13可以看出施加均布载荷与施加集中力载荷在距端面一定距离处作用效果相似,同一路径上应力分布相差不大,从而利用公式(1.1)就可以计算该区域的平均应力,这样计算的结果影响较小可忽略不计。
这说明用与面力等效的集中力载荷代替分布载荷时,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。
因此,从应力分布图可以验证圣维南原理。
4 结论通过ANSYS数值验算可以表面:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的集中力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。