弹性力学---第2章边界条件(6-7)
弹性力学课后答案

弹性力学课后答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设 )。
2-14 见教科书。
2-15 2-16 见教科书。
见教科书。
2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,及转动量,再令 ,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
弹性力学-2-平面问题的基本理论

2015-1-16
4 弹性力学
2.1 平面应力问题与平面应变问题
弹性力学空间问题共有应力、应变和位
移共15个未知函数,且均为 f (x, y, z)。
弹性力学平面问题共有应力、应变和位
移8个未知函数,且均为f (x, y,)。
2015-1-16
5 弹性力学
2.1 平面应力问题与平面应变问题
什么条件下 空间问题可简化为平面问题
px n l l
py n m m
又由于:
px xl xy m p y xyl y m
32 弹性力学
2015-1-16
2.2 平面问题中一点的应力状态 问题3:若经过该点的某一斜面上的切应力为0, 求此斜面上的主应力σ和应力主方向α 从而可得
2015-1-16 25 弹性力学
2.2 平面问题中一点的应力状态 应力是与作用面有关的。σx,σy和τxy作为 基本未知函数,只是表示一点的坐标平面上的 应力分量(左图)。而校核强度时需要知道过 此点的任意斜面上的应力p。斜面上的应力p可 以按坐标轴分解为(px,py),也可沿法向和切 向分解为正应力σn和切应力τn(右图)。
z , zx , zy 0
2015-1-16 10 弹性力学
2.1 平面应力问题与平面应变问题
因此,此类问题的未知量只剩下Oxy面内 的三个应力分量: x , y , xy
所以此类问题称为平面应力问题。 由于板很薄,等厚度,外力和约束沿z 方向不变,因此应力也沿厚度z方向均匀分 布,应力x,y和xy只是坐标x, y的函数。
取如图所示的微分三角板或三棱柱
PAB,当平面AB无限接近于P点时, 该平面上的应力即为所求。
弹性力学-边界条件

xy x, y, z
x, y, x, y, x, y
x
y
xy
独立的(3个)
(3个)
3、位移分量f
ux, y, vx, y, w 独立的(2个) ux, y, vx, y(2个)
二. 平面问题基本方程
平面应力问题 1、平衡微分方程 (2个)
x x
悬臂梁的例子:
边界的积分式
h
2 h
x
xldy 0
2
h
2 h
x
xl ydy M
2
h
2 h
xy
dy 0
xl
2
设中性轴为z
y xdA z 1
自由端边界条件:
y
h
2 h
x
xl dy 0
2h 2 hFra bibliotekh x
2 h
x
xldy
2 h
f x dy
2
2
h
h
y xl f y
2 h
y
dy
xl
2 h
f ydy
2
2
根据圣维南原理,同时还要考虑等效力矩:
h
h
2 h
x
xl ydy
2 h
f x ydy
2
2
平面问题小结
0
左 : (
)
x
s
q, (
)
xy
s
0
上 : (
y)s q, (
y
)
x
s
0
下: (
第二章 弹性力学基础知识

y yz P
yx
dz
e e'
dx o A
zy
dy
zx
z
y y y dy y yx yx dy B y
y
35
z
y
yz
o x
z dz z z zy C yz dz zy zx yz dy z zx z dz y y yy dy yx dz yx e yx y dy
第二章 弹性力学基础知识
教学目的:了解弹性力学问题的研究方法。 教学重点:三大方程、两类平面问题的特点、 应力边界条件。 教学难点:两类平面问题的区分。
1
定义
弹性力学
--研究弹性体由于受外力、边 变和位移。
界约束或温度改变等原因而发生的应力、形
研究弹性体的力学,有材料力学、结构 力学、弹性力学。它们的研究对象分别如下:
x , y , z
xy , yz , zx
应 变 位 外 力
x , y , z
xy , yz , zx
u , v, w
X ,Y, Z
X ,Y , Z
27
O(z)
思考题
1. 试画出平面问题正负 y 面上正的应力和正的面 力。
2.试画出C点正的位移。
O x
x
y
z
·
C y
因此材料力学建立的是近似理论,得 出的是近似的解答。从其精度来看,材料 力学解法只能适用于杆件形状的结构。
5
地位
弹性力学在力学学科和工程学科中,
具有重要的地位: 弹性力学是其他固体力学分支学科的基础。 弹性力学是工程结构分析的重要手段。 尤其对于安全性和经济性要求很高的近代大 型工程结构,须用弹力方法进行分析。
弹性力学第3版王光钦第二章习题解答

- 7 -第二章 弹性力学的基本方程和一般定理习题2-1 已知矩形截面杆件自由端受力P 的作用而发生横向弯曲,如图所示,梁的高度为h ,力P 的分布规律为)4(222y h J P p --=,不计体力,按材料力学方法求得应力分量为式中J 为截面惯性矩,试检查该应力分量是否满足平衡方程和边界条件。
解:1)将应力分量代入平衡微分方程 (1) (2)(3)考虑体力分量均为零,则由(1)式得左边===+-0JPy J Py 右边 题2-1图- 8 - 将应力分量代入平衡微分微分方程的(2)、(3),显然平衡微分方程满足。
2)应力边界条件 n m l T zx yx x x ττσ++= (4) n m l T zy y xy y τστ++= (5)n m l T z yz xz z σττ++=(6)这里必须注意:应力边界条件必须满足所有的边界,而不是仅仅求出待定常数。
下面考虑上边界 i )上边界0,1,0===n m l ,0,0,0===z y x T T T将上式代入(4)、(5)、(6)式,得0)(2==hy yx τ 0)(2==h y y σ 0)(2==h y yz τ上式就是简化后的边界条件。
必须强调的是:在考察边界条件时,需将已知的边界坐标值代入表达式。
将应力分量代入上面三式,显然三式成立。
ii )下边界0,1,0=-==n m l ,0,0,0===z y x T T T将上式代入(4)、(5)、(6)式,得0)(2=-=hy yx τ 0)(2=-=h y y σ 0)(2=-=h y yz τ将应力分量代入上面三式,显然三式成立。
- 9 -iii )右边界0,0,1===n m l ,,0=x T )4(222y h J P T y --=0,=z T 应注意:所有的面力都是与坐标正向一致为正。
将上式代入(4)、(5)、(6)式,得0)(==l x x σ)4(2)(22y h J P lx xy --==τ0)(==l x xz τ同样,在检验边界条件时,应该将l x =的值代入,显然三式成立。
第二章、变分原理及应用

(2.1.4)
因为 ij 是任意的,所以(2.1.4)成立的充要条件是
0 ij
i (1, 2,...., n), j (1, 2,...., m)
(2.1.5)
(2.1.5)式的方程数量与待定参数 α 的数量相等,用于求解 α 各元素。这种方法称里兹(Litz)法。里兹 法和迦辽金法是连续介质问题中最经典、最常用、最著名的两种数值方法。 如果泛函 中 E 和 F 微分算子对 u 和它导数的最高次方为二次, 则称泛函 为二次泛函, 大量 工程与物理问题泛函都属于二次泛函。对于二次泛函(2.1.1)的近似解是参数 α 的二次多项式,可写成 1 (2.1.6) αT Kα Pα 2 其驻值 其中
利用虚应变
Ω
fi ui dΩ
Γ
pi ui dΓ ij ij dΩ
Ω
(2.3.4)
ij ( ui ' j u j 'i ) / 2
1
(2.3.5)
以及应力张量的对称性、散度定理(Green 公式)和分部积分,对(2.3.4)式的右边积分作如下变换
Ω
而对于非线弹性材料,两者并不相等,只是对全功 W ij ij 是互余关系。
(2.3.3)
3.2 虚位移(虚功)原理
虚功原理或虚位移原理: 外力在虚位移所做的功 (虚功) 等于物体内部应力在虚应变上所做的功, 其中虚位移指的是在物体几何约束所允许位移的任意微小量 ui 。 把虚功原理应用到固体力学中可得
4
所以余应力原理或最小余能原理与几何协调条件和位移边界条件等效。 在以上推导中应用了小变 形假定,从而得出的是小变形条件下的几何方程。如果采用虚应力原理作为数值解法中的等效积分形 式,则平衡方程和应力边界条件是它的约束条件,而几何方程和位移边界条件是近似得到满足。
弹性力学基础(二)

给定作用在物体全部边界或内部的外界作用(包括温度影响、外力等), 求解物体内由此产生的应力场和位移场。
对物体内任意一点,当它处在弹性阶段时,其应力分量、应变分量、 位移分量等15个未知函数要满足平衡方程、几何方程、本构方程,这15个 泛定方程,同时在边界上要满足给定的全部边界条件。
定解条件:
满足基本方程和边界条件的解是存在的,而且在小变形条件下,对于受 一组平衡力系作用的物体,应力和应变的解是唯一的。
7.6 弹性力学问题的基本解法
7.6.1 位移法 以位移作为基本未知量,将泛定方程用位移u,v,w来表示。
sx
2G
x
u 1 2u
sy
2G
y
u 1 2u
sz
2G
z
u 1 2u
t xy 2G xy t yz 2G yz t zx 2G zx
t zx z
Fbx
0
t xy x
s y y
t zy z
Fby
0
t xz x
t yz y
s z z
Fbz
0
将本构关系代入到平衡方程中
x
2u
Fbx
0
y
2v Fby
0
z
2w
Fbz
0
u j, ji ui, jj 0
式中▽2为拉普拉斯(Laplace)算子
2u 2u 2v 2w x2 y 2 z 2
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
w y
zx
w x
u
z
将几何关系代入到本构关系中
弹性力学简明教程 第2章 平面问题的基本理论

一 、求AB面上的正应力σn和切应力τn
设px、py为斜面AB的应力p在x、y 轴上的投影。斜面 AB的长度为 ds, 则AB=ds, PB=lds, PA=mds 。 由平衡条件∑Fx=0 得:
l ds m d s p x ds x l ds xy m ds f x 0 2
除以ds ,然后令ds→0, 得:
B'
一、位移与形变
刚体位移
如果各点(或部分点)间的相对距离发生变化, 则物体发生了变形。这种变形一方面表现在微 线段长度的变化,称为线应变;一方面表现在 微线段间夹角的变化,称为切应变。
O
A
O
A'
B
B'
二、几何方程
几何方程——描述任一点的微线段上形变分量 与位移分量之间的关系。 P点的形变分量与位移分量的关系?
0 l 1
当 l2 = 1 时,
0 l 2 1
n nmax 1 ( 1 2 ) 2 1
当 l2 = 0 时,
n n min 2
可见:两个主应力就是最大与最小的正应力。
五、求最大与最小的切应力
任意斜面上的切应力 n lm( y x ) (l 2 m 2 ) xy
y
二、几何方程
PA的线应变在小变形
时是由x 方向的位移 引起的,因此PA的线 应变为
P' A' PA x PA
o u
P
x
u
dx
v
P'
A
u dx x
A'
v
v dx x
y
u (u dx) u AA' PP' u x dx PA x v (v dx) v v x PA的转角为 dx x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二. 圣维南原理的应用条件
1、必须用等效力系代替。
2、载荷区域必须比物体的最小尺寸为小(小边界上)
举例 P
P 图(a)
q P A
q
图(b)
P
(1)以(b)代(a)应力边界条件可以近似满足。 (2)以(b)代(c)应力边界条件可以近似满足,但
位移边界条件不能完全满足。
图(c)
圣维南原理的应用
• 所得到的应力分量必须在所有边界上各点处严 格满足应力边界条件,才是所论问题的解答。
边界条件有三类:位移、应力、混合边界条件
一.位移边界条件
在位移边界问题中,物体在全部边界上的位移
分量是已知的,即: 式中:
us
u , vs
v (2~14)
us、vs —是位移的边界值;
u、v — 边界上坐标的已知函数或边界上
已知的位移分量。
二、应力边界条件
边界上面力分量为已知。建立边界上微元体的应 力分量与面力分量的关系
yx
s
f
x
o
x
上面:l=0,m=-1
左面:
右面:
l=-1
l=1
m=0
m=0
下面:l=0,m=1 y
知识回顾 Knowledge Review
祝您成功!
2 h
x
xl ydy
2 h
f x ydy
2
2
平面问题小结
一. 平面问题基本未知量
平面应力问题
1、应力分量
平面应变问题
x x, y, y (x, y),
x, y
xy
x x, y, y x, y, xy x, y, z
(3个)
2、应变分量
独立的(3个)
x, y, x
x, y,
y
xy x, y, z
x, y, x, y, x, y
x
y
xy
独立的(3个)
(3个)
3、位移分量f
ux, y, vx, y, w 独立的(2个) ux, y, vx, y(2个)
二. 平面问题基本方程
平面应力问题
1、平衡微分方程 (2个)
x x
yx
y
fx
0
xy x
l
(
x
)
y
s
f y
(
)
x
s
、(
)
yx
s
为应力的边界值
2.特例--边界面与坐标轴平行时
x yx
xy y
s
l m
f f
x y
(1).左右两面:
l 1 ( x)s fx
m
0 (
xy)s
f
y
(2).在上下两面:
l 0 ( y)s f y
m
1 (
)
xy
fy
0
y
(
x)s fx 0
vs v 0
例1:小锥度杆承受轴向拉力。利用边界条件证明,横截面上,
除与正应y力的关y 系外。,(还假有设剪任应何力界面 x上y 。y方并向确的定正边应界力上均匀 分x 、布) xy
o
y
解:
y
P A( y)
y
yx
l cosn, x cos
m cosn, y sin
h
2 h
x
xldy 0
2
h
2 h
x
xl ydy M
2
h
2 h
xy
dy
xl
0
2
设中性轴为z
y xdA z 1
自由端边界条件:
y
h
2 h
x
xl dy 0
2
h
h
2 h
x
2 h
x
xl ydy 0
2
2
h
L
P
2 h
xy
dy P
x l
2
y
用积分表达的边界条件
h
x
xy
fx
由
x
s
m xy
s
fx
P
n
xy s m y s f y
y
fy
x s
cos
yx
s in
s
0
xy
cos
s
y
s in
s
0
x
s
ytg 2
p
A y
tg
2
xy
s
ytg
p
Ay
tg
[例] 写出应力边界条件。设液体比重为
解:1)右边界(x=0) x x0 y
fYyn
注意:以上在推导时,斜 面上的应力px,py采用矢量 符号规定-与面力相同。
应力边界条件的写法是:左端为边界上微元体的 应力分量;右端为面力分量。可以各自采用各 自的符号规定。但需要用边界的方向余弦
特例--边界面与坐标轴平行时 (1).左右两面
x yx
xy y
s
l m
f f
§2-6.边界条件
对于上述所谈及的两种平面问题:
平衡方程(2~2) ——2个
几何方程(2~8) ——3个
八个方程
物理方程(2~12)——3个
含 、 、 、 、 、 、u、v
x
y
xy
x
y
xy
共计八个未知函数
注:虽然八个方程可解八个未知函数,但由于求解时会 产生待定函数(常数);所以要想得出具体的解答还 必需利用边界条件来确定待定函数。
2
悬臂梁的例子:
y
y
h
2 h
y
2
x
h
2 h
x
2
L
L
P
对边界条件的积分为: (P.23 (b)):
h
h
x xl fx
2 h
x
xldy
2 h
f x dy
2
2
h
h
y xl f y
2 h
y
dy
xl
2 h
f ydy
2
2
根据圣维南原理,同时还要考虑等效力矩:
h
h
x
O
xy x0 0
n
y
2)左边界(x=y×tg)
cosn, x cos
y
m cosn, y cos( )
2
sin
y
f x 0, f y 0
由:
x n
x
s
m xy
s
fx
xy s m y s f y
O
y
y
l cos m sin
x yx
• 证明概要:只要证明在体力和面力都为零的情况 下,边值问题只可能有零解(应力、应变和位移 全为零)。后者则需要用到应变能的概念。
• 据此,任何一组应力应变和位移,如果它们确能 满满足方程和边界条件,就肯定是该问题的解。
叠加原理
• 叠加原理:两组外力同时作用在物体上 所产生的结果等于他们分别作用产生的 结果之和。
)
x
2(1 )
xy
E
xy
(213)
x
E 2(
x
)
y
1
y
E 2(
y
) (2 ~ 12a)
x
1
E
xy 2(1 )
xy
用下式代换:
E
ห้องสมุดไป่ตู้
E
1
2
,
1
1、在边界上取楔形研究(单位厚度)
如图所示:
y yx
D
B
由 Fx 0 :
X 1 ds x 1l ds yx 1 m ds
)
xy
s
0
左 : (
)
x
s
q, (
)
xy
s
0
上 : (
y)s q, (
y
)
x
s
0
下: (
)
y
s
q, (
y
)
x
s
0
三、混合边界条件 1、在一部分边界上的位移分量为已知,另一
部分边界上应力分量已知。 2、在同一边界上,已知一个位移分量和一个
应力分量。 图(b)
图(a)
o
x
x
y
us u 0
• 证明概要:只需注意方程都是线性的, 同时边界条件也是线性的即可。
• 推广:以上两组外力可以推广到n组外力。 • 分解原理:根据叠加原理,可以把原问
题分解成几个简单的问题单独求解。
§2-7.圣维南原理(局部性原理)
一.圣维南原理的叙述
描述-1、如果把物体的一小部分边界上 的面力以等效力系(主矢及主矩均为相同) 代换,则在加载附近的的应力发生显著变 化,而在稍远处的影响可忽略不计,亦即 与载荷在边界上的作用形式无关。 描述-2、如果物体在一小部分边界上的 面力是一个平衡力系(主矢及主矩均为 零),则面力就只会使近处产生显著的应 力,远处的应力可忽略不计。
X 1 l ds m ds=0
x
fx
xy
fy
C
A
fy
fx
n
2
化简得:
xl
yxm
fx
fx
lm 2
ds
AB ds
DA DB
lm d ds s lm ccoos(sn(n, x, )y)
namely
l (
x)s m(
)
yx
s
fx (2 15)
m(
)
y
s
y y f y 0
2、几何方程(3个)