第二章 弹性力学基础知识

合集下载

第二讲-弹性力学基础知识

第二讲-弹性力学基础知识

弹性力学及有限元
NORTHEASTERN UNIVERSITY
2.1
弹性力学的基本假设
2. 均匀性假设
•—— 假设弹性物体是由同一类型的均匀材料组成的。 —— 假设弹性物体是由同一类型的均匀材料组成的。 因此物体各个部分的物理性质都是相同的, 因此物体各个部分的物理性质都是相同的,不随坐标位 置的变化而改变。 置的变化而改变。 •—— 物体的弹性性质处处都是相同的。 —— 物体的弹性性质处处都是相同的。 •工程材料,例如混凝土颗粒远远小于物体的的几何形状, 工程材料,例如混凝土颗粒远远小于物体的的几何形状, 工程材料 并且在物体内部均匀分布,从宏观意义上讲, 并且在物体内部均匀分布,从宏观意义上讲,也可以视 为均匀材料。 为均匀材料。 •对于环氧树脂基碳纤维复合材料,不能处理为均匀材料。 对于环氧树脂基碳纤维复合材料,不能处理为均匀材料。 对于环氧树脂基碳纤维复合材料
三 应力的概念
通常将应力沿垂直于截面和平行于截面两个方向分解为
τ
σ
S
正应力σ 切应力τ
弹性力学及有限元
NORTHEASTERN UNIVERSITY
2.2
弹性力学基本概念

应力的概念
应力分量
应力不仅和点的位置有关,和截面的 方位也有关。 描述应力,通常用一点平行于坐标平 面的单元体,各面上的应力沿坐标轴
独立应力分量:
τ xy = τ yx
τ yz = τ zy
τ xz = τ zx
σx σy σz
τ xy τ yz τ zx
弹性力学及有限元
NORTHEASTERN UNIVERSITY 2.2 弹性力学基本概念

应力的概念-举例
例3 已知单元体各面上的应力分量,试在单元上标出方向与数值。

第二章弹性力学基础知识

第二章弹性力学基础知识

19
用矩阵表示:
yxx
xy y
xz yz
z
zx
zy
其中,只有6个量独立 z。x zy z
xy yx yz zy 剪应力互等定理 zx xz
应力符号的意义(P8)
x
z
yx xz
y yz x
zy
yz
xy yx y
zx
O
y z
xy
第1个下标 x 表示τ所在面的法线方向; 第2个下标 y 表示τ的方向.
符号:
X Y Z —— 面力矢量在坐标轴上投影 k
Q
Z
X S Y
单位: 1N/m2 =1Pa (帕)
i Oj
y
x
1MN/m2 = 106Pa = 1MPa (兆帕)
正负号: X Y Z 的正负号由坐标方向确定。
16
例:表示出下图中正的体力和面力
O(z)
x
X
X
Y
Y
y
O(z)
x
Y
X
X
Y
y
17
2. 应力
5
地位
弹性力学在力学学科和工程学科中,具
有重要的地位: 弹性力学是其他固体力学分支学科的基础。
弹性力学是工程结构分析的重要手段。尤 其对于安全性和经济性要求很高的近代大型 工程结构,须用弹力方法进行分析。
6
2.1弹性力学的基本假定 为什么要提出基本假定? 任何学科的研究,都要略去影响很 小的次要因素,抓住主要因素,从而建立 计算模型,并归纳为学科的基本假定。
符号:X、Y、Z为体力矢量在坐标轴上的投影 k X V Y
单位: N/m3
kN/m3
i Oj
y

第二章:弹性力学基本理论及变分原理

第二章:弹性力学基本理论及变分原理

第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。

它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。

本章将介绍弹性力学的基本方程及有关的变分原理。

§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。

现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。

§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。

ansys弹性力学基础知识

ansys弹性力学基础知识

My x Iz
铁木辛柯梁
弹性力学解(单位宽度,矩形截面)
My y y 3 x q (4 2 ) Iz h h 5
4
2
应力集中:材料力学和弹性力学处理的不同


5
4、弹性力学的基本假定
(1) 连续性(Continuity)
用途:应力、应变、位移等等才可以用坐标 的连续函数来表示。 (2) 线弹性(Linear elasticity) 用途:符合胡克定律。 (3) 均匀性(Homogeneity) 用途:弹性常数不随位置坐标而变。 (4)各向同性(Isotropy) 用途:弹性常数不随方向而变。 符合以上假定称为理想弹性体。
z 0, zx zy 0
结论:
平面应变问题只有三个应变分量:
x x ( x, y)
y y ( x, y)
xy yx xy ( x, y)
应力分量、位移分量也仅为 x、y 的函数,与 z 无关。
19
例2 如图所示三种情形,是否都属平面问题?是平 面应力问题还是平面应变问题?
平面应力问题
平面应变问题
非平面问题
思考:黑板和甲板力学模型各属于弹性力学那类问题?
20
2-4
平衡微分方程
PA dx PB dy
O
P
取微元体PABC(P点附近),
Z 方向取单位长度。
y
x
x
yx A
X
y
AC面:
2
xy
D
x x dx x
Y
C
B
y y x 1 x y dy x dx (dx) 2 y x 2! x 2 x x dx x 2 xy xy 1 xy 2 dx xy dx (dx) xy 2 x 2! x x y y dy y BC面: 注: 这里用了小变形假定。 yx yx dy y

第二章 弹性力学基础知识

第二章 弹性力学基础知识
返回
3. 均匀性假定 假定整个物体是由同一材料组成的。 假定整个物体是由同一材料组成的。这样,整个物体的 所有各部分才具有相同的弹性,因而物体的弹性常数才不会 随位置坐标而变,可以取出该物体的任意一小部分来加以分 析,然后把分析所得的结果应用于整个物体。如果物体是由 多种材料组成的,但是只要每一种材料的颗粒远远小于物体 而且在物体内是均匀分布的,那么整个物体也就可以假定为 均匀的。 4. 各向同性假定 假定物体的弹性在各方向都是相同的。 假定物体的弹性在各方向都是相同的。即物体的弹性常 数不随方向而变化。对于非晶体材料,是完全符合这一假定 的。而由木材、竹材等作成的构件,就不能当作各向同性体 来研究。至于钢材构件,虽然其内部含有各向异性的晶体, 但由于晶体非常微小,并且是随机排列的,所以从统计平均 意义上讲,钢材构件的弹性基本上是各向同性的。
τ
P ΔA
ΔQ
n
σ
(法线 法线) 法线
应力分量 单位: 单位:
应力的法向分量 应力的切向分量
σ
—— 正应力 —— 剪应力
τ
与面力相同
MPa (兆帕)
应力关于坐标连续分布的
σ = σ (x, y, z) τ =τ (x, y, z)
(2) 一点的应力状态
通过一点P 通过一点 的各个面上应力状况的集合 —— 称为一点的应力状态 x面的应力: 面的应力: 面的应力 σ x ,τ xy ,τ xz y面的应力: 面的应力: 面的应力 z面的应力: 面的应力: 面的应力
一 平衡微分方程 • 从弹性体内任一点取出微元体,建立弹性 从弹性体内任一点取出微元体, 体内一点的应力分量与体力分量之间的关 系。
对于平面问题, 对于平面问题,分析平衡方程
取微元体PABC(P点附近), ( 取微元体

弹性力学第二章

弹性力学第二章

(2)平面应变问题的物理方程 由于平面应力问题中:εz = γ zx = γ zy = 0
µ 1− µ2 σx − εx = σy 1− µ E 1− µ2 µ σy − εy = σy E 1− µ
——平面应变问题 ——平面应变问题 物理方程
第三节
平面问题中一点的应力状态
一点的应力
2. 一点的主应力与应力主向 (1)主应力 若某一斜面上τn = 0 ,则该斜面上的正应力σn 称为该点一个主应力σ; 当τn = 0 时,有 σn =σ = p
px =lσ py = m σ
lσx +m xy =lσ τ m y +lτxy = m σ σ
γ xy =
2(1+ µ) τ xy E
在z方向,εz = 0, σz = µ(σx +σy )
变换关系 : 平面应力物理方程 →平面应变物理方程:
E µ E→ , → µ 2 1− µ 1− µ
平面应变物理方程 →平面应力物理方程:
E→
E(1+ 2µ)
(1+ µ)2
, → µ 1+ µ
µ
思考题 1. 试证:由主应力可以求出主应变,且两者方 向一致。 2. 试证:三个主应力均为压应力,有时可以产 生拉裂现象。 3. 试证:在自重作用下,圆环(平面应力问题) 比圆筒(平面应变问题)的变形大。
E
µ
2.平面应变问题 2.平面应变问题 条件是:⑴很长的常截面柱体 ; ⑵体力、面力、约束平行于柱面横截面, 沿长度方向不变。 应力:
σz = µ(σx +σy )
τ zx =τ zy = 0
应变:
εz = 0 γ zx = 0 γ zy = 0

第二章 弹性力学的基本理论

第二章 弹性力学的基本理论

2
0 0 0
0 0 0
0
0
0
x (2-18)
y
0 0 0
0
0
z
yz
0 0
0
0
66
zx xy
61
弹性力学简明教程
二、平面问题
平面问题{ 平面应力问题 平面应变问题 1、平面应力问题:
z zx zy 0
xz yz 0
由(2-15)式知:
z
fy
0
(2-4)
xz
x
yz
y
z
z
fz
0
x
0
0
0
y 0
0
0 z
0
z y
z
0
x
x
y x
0
36
y
z yz
zx xy
61
fx fy fz
31
0 31
H P 0
36
61
31
31
(2-6)
弹性力学简明教程
二、空间问题的平衡微分方程
弹性力学简明教程
§2 平衡微分方程
一、平面问题的平衡微分方程
y
y
y
dy
x
fy
yx
yx
y
dy
xy
xy
x
dx
y
xy
dy c dx
fx
yx
x
x
x
dx
o(z)
x y
平衡微分方程:
Fx 0 Fy 0
微元体:厚度为1
平面问题的特点:
一切现象都看作是在一个平面内发生的
Fx 0 Fy 0
Mc 0

弹性力学基础(二)

弹性力学基础(二)
边值问题的提法:
给定作用在物体全部边界或内部的外界作用(包括温度影响、外力等), 求解物体内由此产生的应力场和位移场。
对物体内任意一点,当它处在弹性阶段时,其应力分量、应变分量、 位移分量等15个未知函数要满足平衡方程、几何方程、本构方程,这15个 泛定方程,同时在边界上要满足给定的全部边界条件。
定解条件:
满足基本方程和边界条件的解是存在的,而且在小变形条件下,对于受 一组平衡力系作用的物体,应力和应变的解是唯一的。
7.6 弹性力学问题的基本解法
7.6.1 位移法 以位移作为基本未知量,将泛定方程用位移u,v,w来表示。
sx
2G
x
u 1 2u
sy
2G
y
u 1 2u
sz
2G
z
u 1 2u
t xy 2G xy t yz 2G yz t zx 2G zx
t zx z
Fbx
0
t xy x
s y y
t zy z
Fby
0
t xz x
t yz y
s z z
Fbz
0
将本构关系代入到平衡方程中
x
2u
Fbx
0
y
2v Fby
0
z
2w
Fbz
0
u j, ji ui, jj 0
式中▽2为拉普拉斯(Laplace)算子
2u 2u 2v 2w x2 y 2 z 2
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
w y
zx
w x
u
z
将几何关系代入到本构关系中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y yz P
yx
dz
e e'
dx o A
zy
dy
zx
z
y y y dy y yx yx dy B y
y
35
z
y
yz
o x
z dz z z zy C yz dz zy zx yz dy z zx z dz y y yy dy yx dz yx e yx y dy
第二章 弹性力学基础知识
教学目的:了解弹性力学问题的研究方法。 教学重点:三大方程、两类平面问题的特点、 应力边界条件。 教学难点:两类平面问题的区分。
1
定义
弹性力学
--研究弹性体由于受外力、边 变和位移。
界约束或温度改变等原因而发生的应力、形
研究弹性体的力学,有材料力学、结构 力学、弹性力学。它们的研究对象分别如下:
x , y , z
xy , yz , zx
应 变 位 外 力
x , y , z
xy , yz , zx
u , v, w
X ,Y, Z
X ,Y , Z
27
O(z)
思考题
1. 试画出平面问题正负 y 面上正的应力和正的面 力。
2.试画出C点正的位移。
O x
x
y
z
·
C y
因此材料力学建立的是近似理论,得 出的是近似的解答。从其精度来看,材料 力学解法只能适用于杆件形状的结构。
5
地位
弹性力学在力学学科和工程学科中,
具有重要的地位: 弹性力学是其他固体力学分支学科的基础。 弹性力学是工程结构分析的重要手段。 尤其对于安全性和经济性要求很高的近代大 型工程结构,须用弹力方法进行分析。
静力学、几何学和物理学三方面条件,建立
三套方程; 在边界s上考虑受力或约束条
件,建立边界条件; 并在边界条件下求解上
述方程,得出较精确的解答。
4
第一节 弹性力学的内容
研究方法
材力 也考虑这几方面的条件,但不
是十分严格的:常常引用近似的计算假设 (如平面截面假设)来简化问题,并在许
多方面进行了近似的处理。
2
研究对象
材料力学--研究杆件(如梁、柱和轴) 的拉压、弯曲、剪切、扭转和组 合变形等问题。 结构力学--在材料力学基础上研究杆系结构 (如 桁架、刚架等)。
弹性力学--研究各种形状的弹性体,如杆 件、平面体、空间体、板壳、薄壁 结构等问题。
3
研究方法
在研究方法上,弹力和材力也有区别: 弹力研究方法 :在区域V内严格考虑
符号:
z
Q
Z
X Y Z —— 面力矢量在坐标轴上投影
单位: 1N/m2 =1Pa (帕) 1MN/m2 = 106Pa = 1MPa (兆帕)
k i
x O j
X
S Y
y
正负号: X Y Z 的正负号由坐标方向确定。
16
例:表示出下图中正的体力和面力
O(z)
X
X
Y
x
O(z)
X
Y
x
X
Y
Y
y
y
17
2. 应力
6
2.1弹性力学的基本假定 为什么要提出基本假定? 任何学科的研究,都要略去影响很
小的次要因素,抓住主要因素,从而建立
计算模型,并归纳为学科的基本假定。
7
弹性力学中的五个基本假定。
关于材料性质的假定及其在建立弹 性力学理论中的作用: (1)连续性--假定物体是连续的。 因此,各物理量可用连续函数表示。
z C
z
A
O
应变的正负: 正应变: 伸长时为正,缩短时为负;
剪应变: 以直角变小时为正,变大时为负; x
x P
y
B y
25
(2) 一点应变状态
—— 代表一点 P 的邻域内线段与线段间夹角的改变
x yx zx
xy xz y yz zy z
(1) 物体内部分子或原子间的相互作用力; 内力
(不考虑)
(2) 由于外力作用引起的相互作用力.
Q (1) P点的内力面分布集度 ----P点的应力 s lim A0 A (2) 应力矢量. Q 的极限方向
由外力引起的在 P点的某一面上内力分布集度 应力的法向分量 应力的切向分量

w
u
O
x P v
P
S
y
26
表 1-2
基本量 应力 正应力 剪应力 正应变 剪应变 移 体力 面力 符号
直角坐标表示的基本量
量纲 [力][长度]-2 [力][长度]-2 无量纲 无量纲 [长度] [力][长度]-3 [力][长度]-2 沿坐标轴正向为正 正负号规定 正面上沿坐标轴正向为正 负面上沿坐标轴负向为正 线段伸长为正 线段间直夹角变小为正
P ΔA
ΔQ
n

(法线)
应力分量 单位:

—— 正应力 —— 剪应力

与面力相同
MPa (兆帕)
应力关于坐标连续分布的
( x, y, z ) ( x, y, z )
18
(2) 一点的应力状态
通过一点P 的各个面上应力状况的集合 —— 称为一点的应力状态 x面的应力: x , xy , xz

体,棱边的长度分别为PA=dx,PB=dy,PC=dz。
33
z
y
zy zy dz zx yz zx z dz x yz dy z y yx xy e y y dy dz xz y yx e' yx B dy yz P dy y zx
其中
xy yx yz zy
z
C
z
A
zx xz
x P
y
B
注:
应变无量纲; 应变分量均为位置坐标的函数,即
x
O
z
y
x x ( x, y, z ), ; xy xy ( x, y, z ),
4. 位移
一点的位移 —— 矢量S 量纲:m 或 mm u —— x方向的位移 分量; 位移分量: v —— y方向的位移 分量; w—— z方向的位移 分量。
21
例:正的应力
O(z)
yx
xy
x
y
x
x
xy
y
y
yx
22
应力与面力
在正面上,两者正方向一致, 在负面上,两者正方向相反。
O(z)
x
x
f yxy
xy
x
fy fx
fx
y
23
弹力与材力 相比,正应力符号,相同 切应力符号,不同
O(z)
x
O(z)
x
x
y
x
y
材力:顺时针向为正
dx
C
z z dz
z
zy
A
o
z
x x dx x
xz xz dx x x
xy
xy x
y
dx
首先,以连接六面体前后两面中心的直线 ee ' 为矩轴,列出 力矩的平衡方程
M
ee '
0
z
z z dz z C zy zy dz zx z yz zx dz dy z yz
x , y , z , xy , yz , xz u, v, w
(1)应力边界条件; 建立边界条件: (2)位移边界条件;
31

平衡微分方程
• 从弹性体内任一点取出微元体,建立弹性 体内一点的应力分量与体力分量之间的关 系。
32

平衡微分方程
在物体内的任意一点P,割取一个微小的平行六面
剪应力互等定理
O x
xz xy y y yx yz x zy zx z
y
yx
zx
zy yz
应力符号的意义(P8)
第2个下标 y 表示τ的方向. 应力正负号的规定(P8) 正应力—— 拉为正,压为负。 剪应力—— 坐标正面上,与坐标正向一致时为正; 坐标负面上,与坐标正向相反时为正。 20
条件时,可以用变形前的尺寸代替变形后
的尺寸。 b.简化几何方程:在几何方程中,由于
( , ) ( , ) ( , ) 可略去 ,
2 3
( , )
2
等项,使几何方程成为线性方程。
12
弹性力学基本假定,确定了弹性 力学的研究范围:
理想弹性体的小变形问题。
xy
第1个下标 x 表示τ所在面的法线方向;
z
与材力中剪应力τ正负号规定的区别:
规定使得单元体顺时的剪应力τ为 正,反之为负。
z
xy yx
x
O
xz xy y y yx yz x zx
在用应力莫尔圆时必须按材料力学的规定求解问题
材力:以拉为正
24
3. 形变 (1) 一点形变的度量
形变 —— 物体形状的改变 (1)线段长度的改变 ——用正(线)应变ε度量 (2)两线段间夹角的改变。 ——用剪应变γ度量 (剪应变——两垂直线段夹角(直角)的改变量)
三个方向的线应变:
三个平面内的剪应变:
x , y , z xy , yz , zx
8
(2)完全弹性 -- 假定物体是, a.完全弹性—外力取消,变形恢复,无 残余变形。 b.线性弹性—应力与应变成正比。
因此,即应力与应变关系可用胡克定律表示 (物理线性)。
相关文档
最新文档