弹性力学基础知识归纳知识讲解
弹性力学知识点总结

弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
弹性力学基础知识

06
弹性力学的有限元法
有限元法的基本概念
有限元法是一种数值分析方法,通过将复杂的 物理系统离散化为有限个简单元(或称为元素) 的组合,来近似求解复杂的物理问题。
这些简单元在节点处相互连接,形成一个离散 的系统,其行为可以通过物理定律和数学模型 进行描述。
有限元法的核心思想是将连续的求解域离散化, 将复杂的边界条件和应力状态转化为有限个单 元的组合。
弹性力学基础知识
• 弹性力学概述 • 弹性力学的基本假设 • 弹性力学的基本方程 • 弹性力学的基本问题 • 弹性力学的能量原理与变分原理 • 弹性力学的有限元法
01
弹性力学概述
定义与特点
定义
弹性力学是一门研究弹性物体在外力 作用下变形和内力的科学。
特点
弹性力学主要关注物体在受力后发生 的变形,以及这种变形如何影响物体 的内力和应力分布。
在声学领域,有限元法可以用于分析声音的传播、噪音的来源 等。
THANKS
感谢观看
有限元法的求解步骤
单元分析
对每个单元进行受力分析,建 立单元的刚度方程。
求解方程
使用数值方法(如直接法、迭 代法等)求解整体刚度方程, 得到节点的位移和应力。
分析模型建立
首先需要建立待分析系统的数 学模型,包括对系统进行离散 化、定义节点、建立方程等。
系统组装
将所有单元的刚度方程组装成 整体的刚度方程,同时引入边 界条件和载荷。
弹性力学的能量原理与变分原理
弹性力学的能量原理
总结词
弹性力学的能量原理是描述物体在外力 作用下能量变化的重要理论,它为解决 弹性力学问题提供了基础框架。
VS
详细描述
弹性力学的能量原理指出,一个弹性系统 在外力作用下,其能量变化等于外力所做 的功与物体形变所吸收的功之和。这个原 理在解决弹性力学问题时非常有用,因为 它可以将复杂的物理现象转化为数学上的 能量平衡问题。
弹性力学知识点总结

一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。
弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。
1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。
林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。
而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。
二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。
应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。
在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。
2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。
应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。
在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。
2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。
弹性模量是指在正应变下的应力大小,通常用E表示。
弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。
3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。
弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。
3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。
剪切模量描述了材料在受力作用下的形变情况。
3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。
弹性力学基础讲解

一、基本物理量应力张量:在直角坐标系中,过弹性体内任一点取分别平行于三个坐标平面的三个微平面,它们的外法线方向分别为三个坐标轴的方向,将三个剪应力平行于坐标轴的两个分量;由此共得九个应力分量,记为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz zy zx yz yy yx xz xy xx ττττττττττ;每个分量的第一下标表示应力分量所在平面的外法线方向,第二下标表示应力分量的方向。
应力分量的正负号规定为:当应力分量所在平面的外法线方向与某坐标轴同向时,应力分量的方向也与相应坐标轴同向;当应力分量所在平面的外法线方向与某坐标轴反向时,应力分量的方向也与相应坐标轴反向。
3、应变弹性体内某一点的正应变(线应变):设P 为弹性体内任意点,过P 点某一微元线段变形前的长度为l ∆,变形后的长度为'l ∆,定义P 点l 方向的正应变为:lll l ll ∆∆-∆=→∆'lim 0ε。
即正应变表示单位长度线段的伸长或缩短。
弹性体内某一点的剪应变(角应变):设r l ∆和s l ∆为过P 点的两微元线段,变形前两线段相互垂直,定义变形后两线段间夹角的改变量(弧度)为角应变,夹角减小则角应变为正。
应变张量:在直角坐标系中,过弹性体内任一点取分别平行三个坐标轴的线段,按上述原则定义各应变分量,得:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz zy zx yz yy yx xz xy xx εεεεεεεεεε;两个下标相同的分量为正应变,其它为剪应变。
关于主应变和主应变方向的讨论与主应力基本相同,可以证明,主应变方向与主应力方向重合。
4、外力体积力:作用于弹性体内部每一点上,如重力、电磁力、惯性力等。
设V ∆为包含P 点的微元体,作用于该微元体上的体积力为V F ∆,则定义P 点的体积力为:{}Tz y x V V f f f V=∆∆=→∆F f 0lim。
表面力:作用于弹性体表面,如压力,约束力等。
设S ∆为包含P 点的微元面,作用于该微元面上的表面力为S F ∆,则定义P 点的表面力为:{}Tz y x S S s s s S=∆∆=→∆F s 0lim 。
弹性力学知识基础

上述6个方程称几何方程
u v w
唯一确定
{ε }
{f}
但
{ε }
不唯一确定
原因:刚体位移不能确定。
第三节 物理方程
当材料是均匀、连续、各向同性,应力与应变成正比 (小变形),即广义虎克定律
ε x = [σ x − µ (σ y + σ z )] E ε y = [σ y − µ (σ z + σ x )] E ε z = [σ z − µ (σ x + σ y )] E = τ xy G , γ yz = τ yz G , γ zx = τ zx G
T
(1-2)
2、平衡微分方程 、
∂σ x τ yx τ zx + + + ∂y ∂z ∂x ∂ σ y τ xy τ zy + + + ∂x ∂z ∂y ∂ σ z + τ yz + τ xz + ∂y ∂x ∂z
F F F
Vx
=0 =0 =0
Vy
Vz
反映了物体内的应力场所须满足的静力关系, 或者应力分量的关系。
(1-9)
γ xy
其中: E
G
弹性模量 切变模量 泊松比
µ
G = E [2(1 + µ )]
解(1-9)式, 得物理方程:
{σ } = [D]{ε }
{σ } = σ xσ yσ zτ xyτ yzτ zx
T
(1-10)
{ε } = ε xε yε zγ xyγ yzγ zx
a、正应力虚功: 正应力 虚位移 虚功 b、切应力虚功
x方向
弹性力学基础知识归纳

一.填空题1.最小势能原理等价于平衡微分方程和应力边界条件2.一组可能的应力分量应满足平衡微分方程和相容方程。
二.简答题1.简述圣维南原理并说明它在弹性力学中的作用。
如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。
作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。
(2)将次要的位移边界条件做应力边界条件处理。
2.写出弹性力学的平面问题的基本方程。
应用这些方程时,应注意什么问题?(1).平衡微分方程:决定应力分量的问题是超静定的。
(2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。
(3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。
但是形变分量完全确定时,位移分量不完全确定。
3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。
4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?由六个分量决定。
在确定方向的时候,正面上的应力沿正方向为正,负方向为负。
负面上的应力沿负方向为正,正方向为负。
5.什么叫平面应力问题和平面应变问题?举出工程实例。
平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。
例如工程中的深梁和平板坝的平板支墩。
平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。
例如6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。
(1)完全弹性假定。
(2)均匀性假定。
(3)连续性假定。
(4)各向同性假定。
(5)小变形假定。
满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。
一般混凝土构件和一般土质地基可以看做为理想弹性体。
7.什么是差分法?写出基本差分公式?差分法是把基本方程和边界条件近似地看改用差分方程(代数方程)来表示。
弹性力学基本概念和考点汇总

弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。
它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。
在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。
1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。
而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。
2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。
第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。
3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。
而应变能是指物体在受力过程中,由于形变而转换成的能量。
4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。
它可以表示为应力等于弹性模量乘以应变。
5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。
在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。
6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。
在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。
7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。
在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。
8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。
在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。
9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。
在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。
以上是弹性力学中的一些基本概念和考点的汇总。
掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。
ansys弹性力学基础知识

My x Iz
铁木辛柯梁
弹性力学解(单位宽度,矩形截面)
My y y 3 x q (4 2 ) Iz h h 5
4
2
应力集中:材料力学和弹性力学处理的不同
○
○
5
4、弹性力学的基本假定
(1) 连续性(Continuity)
用途:应力、应变、位移等等才可以用坐标 的连续函数来表示。 (2) 线弹性(Linear elasticity) 用途:符合胡克定律。 (3) 均匀性(Homogeneity) 用途:弹性常数不随位置坐标而变。 (4)各向同性(Isotropy) 用途:弹性常数不随方向而变。 符合以上假定称为理想弹性体。
z 0, zx zy 0
结论:
平面应变问题只有三个应变分量:
x x ( x, y)
y y ( x, y)
xy yx xy ( x, y)
应力分量、位移分量也仅为 x、y 的函数,与 z 无关。
19
例2 如图所示三种情形,是否都属平面问题?是平 面应力问题还是平面应变问题?
平面应力问题
平面应变问题
非平面问题
思考:黑板和甲板力学模型各属于弹性力学那类问题?
20
2-4
平衡微分方程
PA dx PB dy
O
P
取微元体PABC(P点附近),
Z 方向取单位长度。
y
x
x
yx A
X
y
AC面:
2
xy
D
x x dx x
Y
C
B
y y x 1 x y dy x dx (dx) 2 y x 2! x 2 x x dx x 2 xy xy 1 xy 2 dx xy dx (dx) xy 2 x 2! x x y y dy y BC面: 注: 这里用了小变形假定。 yx yx dy y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学基础知识归
一.填空题
1.最小势能原理等价于平衡微分方程和应力边界条件
2.—组可能的应力分量应满足平衡微分方程和相容方程。
二.简答题
1.简述圣维南原理并说明它在弹性力学中的作用。
如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。
作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。
(2)将次要的位移边界条件做应力边界条件处理。
2.写出弹性力学的平面问题的基本方程。
应用这些方程时,应注意什么问题?
(1).平衡微分方程:决定应力分量的问题是超静定的。
(2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。
(3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。
但是形变分量完全确定时,位移分量不完全确定。
3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。
4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?
由六个分量决定。
在确定方向的时候,正面上的应力沿正方向为正,负方向为负。
负面上的应力沿负方向为正,正方向为负。
5.什么叫平面应力问题和平面应变问题?举出工程实例。
平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。
例如工程中的深梁和平板坝的平板支墩。
平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。
例如
6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。
(1 )完全弹性假定。
(2)均匀性假定。
(3)连续性假定。
(4 )各向同性假定。
(5)小变形假定。
满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。
一般混凝土构件和一般土质地基可以看做为理想
弹性体。
7.什么是差分法?写出基本差分公式?
差分法是把基本方程和边界条件近似地看改用差分方程(代数方程)来表示。
把求解微分方程的问题变为求解代
1f l f3
2 h
x
2 f f l f
3 2 f o
2
X 0h2
f f 2 f4
2 h
数方程问题。
y
2 f f2f4 2 f o
2.2
y h。