有限元分析第3章弹性力学基础知识2

合集下载

弹性力学基础及有限单元法

弹性力学基础及有限单元法

第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。

2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。

实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。

根据这个假设所得的结果与实验结果是符合的。

(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。

这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。

钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。

木材不是各向同性的。

(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。

同时还假定材料服从胡克定律,即应力与形变成正比。

(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。

在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。

在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。

(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。

也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。

物体中初应力的性质及数值与物体形成的历史有关。

若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。

上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。

有限元法基本原理及应用第3章重庆大学龙雪峰

有限元法基本原理及应用第3章重庆大学龙雪峰

有限元原理及应用
第三章 弹性力学有限元法
• 3.单元分析 • 单元分析包括位移模式选择,单元力学分析两个内容。 • 位移模式也称位移函数或插值函数,在有限元位移法中是 以节点位移为基本未知量,再由这些节点位移插值得到单 元内任意一点的位移值。单元的位移模式一般采用多项式, 因为多项式计算简便,并且随着项数的增加,可以逼近任 何一段光滑的函数曲线。 • 单元力学分析 根据所选单元的节点数和单元材料性质, 应用弹性力学几何方程和物理方程得到单元刚度矩阵。由 于连续体离散化后假定力是通过节点在单元间传递的,因 此要利用插值函数把作用在单元上的体积力、面积力和集 中力按静力等效原则移到节点上。
Hale Waihona Puke 有限元原理及应用第三章 弹性力学有限元法
• 5.结果后处理和分析 • 求解线性方程组得到位移矢量后,由几何和物理关系可以 得到应变和应力。 • 由于应变(应力)来自位移的微分可能导致单元间应力不 连续,这会使应力计算误差较大,要在节点附近进行平均 化处理。 • 通过后处理还可得到位移、应变和应力的最大最小值及其 所在位臵以及主应力、主应变或其它定义的等效应力。 • 结果的输出可以应用图表、动画等各种方式。最后还要对 这些结果进行分析以指导工程设计、产品开发等等。
有限元原理及应用第三章弹性力学有限元法?如果挠度与板厚相比不再为小量如金属板当挠度如果挠度与板厚相比不再为小量如金属板当挠度ww与板厚tt的关系在范围内板的中面应变就不能忽略如图的关系在范围内板的中面应变就不能忽略如图35所示面内的两个自由度也要一并考虑所示面内的两个自由度也要一并考虑导致单元的每个节点上a四边形弯曲单元b三角形弯曲单元图34薄板弯曲单元导致单元的每个节点上就要有五个自由度此类单元一般称为薄板单元
有限元原理及应用

弹性力学与有限元程序设计--第三章

弹性力学与有限元程序设计--第三章

—— 对应于矩形梁的纯弯曲问题。
第三章 平面问题的直角坐标解答
§3-2 矩形梁的纯弯曲
应力函数取三次多项式
ay
3

M
h
M
2 2
对应的应力分量:
x 6ay y 0 xy yx 0

(a)
x
x

y
y
l
h
x
1
h
结论:应力函数(a)能解决 矩形梁受纯弯曲的问题。 如图,取单位宽度的梁来考察,并命每单位宽度上力偶的矩为 M 。这 里 M 的因次是[力][长度]/[长度],即[力]。 边界条件: 上下(主要)边界:
h 2 h 2
h 2 h 2
前一式总能满足,而后一式要求:
a 2M h3
代入式(a),得:
x
12 M y y 0 xy yx 0 3 h
第三章 平面问题的直角坐标解答
§3-3 位移分量的求出
1. 形变分量与位移分量
(1)形变分量 由前节可知,其应力分量为:
x M y
u x l 0, v x l 0
y 0 y 0
v x
x l y 0
0
o
l
x
y
(中点不动)
u0 0
M 2 l l v0 0 2 EI
(轴线在端部不转动)
u0 0
v0 Ml 2 EI
2
代入式(f),有
代回式(f),有
u M (l x) y EI
2 x 2 fx x y
(2-25)
2 y 2 fy y x
(2-24)
(b)边界条件

第3讲—弹性力学问题的有限单元法

第3讲—弹性力学问题的有限单元法

1 T U d Kd 2
u1 d u 2 u 3
有限单元法
崔向阳
Step 3: 单元集成
单元集成——外力功
整体节点 位移列阵
整体等效节 点力列阵
u1 d u2 u 3
f1 R1 f f 2 0 f F 3
有限单元法
崔向阳
Step 2.单元特征分析
xi
单元节点位移列阵: 单元节点坐标列阵: 单元等效节点力列阵:
II=0
有限单元法 崔向阳
真实位移
6
最小势能原理
1 II ij ij dV bi ui dV pi ui dA 2 Sp 1 II Dijkl ij kl dV bi ui dV pi ui dA Sp 2

ij
ij
dV biui dV piui dA
Sp
弹性问题中等价于最小势能原理!
有限单元法 崔向阳
比较:虚功原理和能量变分原理
虚功原理是理论力学上的一个根本性原理,可以用于
一切非线性力学问题。
最小势能原理只是虚功原理对弹性体导出的一种表述
形式,但是对于线弹性问题,最小势能原理的应用非 常方便。
ij ui ij ui Dijkl ij kl dV bi ui dV pi ui dA Sp ij ij dV bi ui dV pi ui dA Sp
V= – W
弹性势能—弹性体变形后,产生弹性内力,这种力也具有对外作 功的能力,称为弹性势能,或弹性应变能。

弹性力学理论基础

弹性力学理论基础

2.1 基本假设和基本概念
(2)弹性力学的基本概念 2)应力 物体受外力作用后,在其内部将要产生 应力。 六面体称为微元体:从物体中取出一 个无限小的平行六面体,它的棱边平行于 坐标轴。 将微元体每一个面上的应力分解成为一 个正应力和两个剪应力,分别与三个坐标轴 平行,并称为该面的三个应力分量
2.1 基本假设和基本概念
1)分析各点的位移
2.2 弹性力学的基本方程
(2)几何方程 2)求正应变
根据弹性力学的基本假设,限定位移是微小 的。
正应变的定义有:
u dx
x
dx
u dx x
dx
u x
同理:
y
PB2 PB
PB
v y
2.2 弹性力学的基本方程
(2)几何方程 3)求剪应变
在弹性力学里假想把物体分成无限多个微小六面体(在物 体边界处可能是微小四面体),称为微元体。
考虑任一微元体的平衡(或运动),可写出一组平衡(或运 动)微分方程及边界条件。
2.1 基本假设和基本概念
(3)弹性力学问题求解的基本方法 弹性力学问题都是超静定的,必须同时再考虑微元体
的变形条件以及应力和应变的关系,它们在弹性力学中相 应地称为几何方程和物理方程。平衡(或运动)方程、几何方 程和物理方程以及边界条件称为弹性力学的基本方程。
2 x
x 2
dx 2
略去二阶及二阶以上的微量后:
x
x
x
dx
同样设左面的剪应力是 xy
右面的剪应力将是
xy
xy x
dx
2.2 弹性力学的基本方程
(1)平衡方程
各个面上所受的应力可以假设为均匀分
布,并作用在对应面的中心。六面体所受的 体力,也可假设为均匀分布,并作用在它的 体积的中心。

第2章 弹性力学的基本知识

第2章 弹性力学的基本知识

(2)均匀性假设:假定物体内各点处材料均相同。
(3)各向同性假设:假定物体内各点处各个方向上的物理性质相同。
(4)完全弹性假设:胡可定律
(5)几何假设——小变形假设: 变形产生的位移与物体的尺 寸相比 ,是微小的。
关于外力、应力、应变和位移的定义
1.外力
体力 (定义)分布在物体体积内的力,如重力、惯性力等。 分为体积力(体力)和表面力(面力)两类。 有限元分析也使用集中力这一概念。
以通过一点的沿坐标正向微分线段的 正应变ε和 切(剪)应变 γ 来表示。 正应变εx ,εy , εz 以伸长为正。
切应变γxy , γyz ,γzx 以直角减小为正, 用弧度表示。 正应变和切应变都是无因次的量 应变列阵 x y z xy yz zx
Tຫໍສະໝຸດ 4. 位移材力研究方法
也考虑这几方面的条件,但不是十分严格的:常常引用近 似的计算假设(如平面 截面假设)来简化问题,并在许多 方面进行了近似的处理。 因此材料力学建立的是近似理论,得出的是近似的解答。 从其精度来看,材力解法只能 适用于杆件形状的结构。
★ 弹塑性力学研究问题的基本方法
在受力物体 内任取一点 (单元体)为 研究对象。
写成矩阵形式:
ε=
σ
ε=φσ 显然: φ=D-1
三、平衡方程
弹性体中任一点满足平衡方程, 在给定边界上满 足应力边界条件。
弹力的研究方法
在体积V内 由微分体的平衡条件,建立平衡微分方程; 由微分线段上应变与位移的几何关系,建立几何方程; 由应力与形变之间的物理关系,建立物理方程; 在边界 S 面上
x
二、物理方程
若弹性体只有单向拉伸或压缩时,根据材料 力学胡克定律:

弹性力学与有限元分析

弹性力学与有限元分析

m α 式中: = ∑i , α1,α2 ,⋯ 2m 为待定系数。把位移函
i=1
n+1
数的这种描述形式称为广义坐标形式。 在确定二维多项式的项数时,需参照二维帕斯卡三 角形,即在二维多项式中,若包含帕斯卡三角形对称轴 一侧的任意一项,则必须同时包含它在对称轴另一侧的 对应项。
1 x x2 x3 x4 y xy y2 y3
1、结构的离散化——单元划分 2、假设单元的位移插值函数和形函数 3、计算单元刚度矩阵 4、载荷移置——把非节点载荷等效地移置 到节点上 5、计算结构刚度矩阵,形成结构刚度方程 6、引入位移边界条件,求解方程 7、计算应力与应变
三、两种平面问题
平面问题分为平面应力问题和平面应变问题两大类。 体力——指分布于物体体积内的外力,它作用于 物体内部的各个质点上,如重力、磁力 和运动时的惯性力等。 面力——指均布于物体表面上的外力,它作用于 物体表面的各个质点上,如物体间的接 触力和气体压力等。
f (x, y),把位移函数的这种描述形式称为插值函数形
式。 形函数具有以下两个性质: 1、形函数 Ni在节点 处的值为0。 2、在单元中任意一点,3个形函数之和为1,即:
i处的值为1,而在其余两个节点
Ni (x, y) + N j (x, y) + Nm (x, y) = 1
六、计算单元刚度矩阵
U(x, y) Ni f (x, y) = = V(x, y) 0
0 Ni
Nj 0
0 Nj
Nm 0
Ui V i 0 U j Nm Vj Um Vm
其中 Ni , N j , Nm 称为单元位移的形状函数,简称形函 数,其值为:
1、用单元节点位移表示单元中任一点的应变,得

弹性力学有限元法详解

弹性力学有限元法详解

x
4
i1 4
Ni ( ,)xi
y
i1
Ni ( ,) yi
总体坐标系适用于整体结构,局部坐标系只适用于具体某个 单元。
常用的对于平面问题还有八节点等参元,空间问题有八节 点空间等参元,二十节点等参元等 。
第18页,共40页。
3.2 连续体离散化
5.轴对称单元
对于回转结构,如果约束条件和载荷都对称于回转轴,其 应力、应变和位移也都对称于回转轴线,这类应力应变问题称 为轴对称问题 ,通常用柱坐标来描述应力、应变和位移,单元 为实心圆环体,仅截面不同
1
2
ai
(1
0
)
ai (1 0 ) ai (1 0 )
1
2
ai
(1
0
)
(i, j,l,m)
对于平面应变问题:
E
E 1 2
1
第29页,共40页。
3.3 单元分析
2. 单元分析
由虚功原理得:
Fe
K e BT DBdxdyt A
BT DBdxdyt δe
A
Fe Keδe
单元刚度矩阵可分块表示为:
第10页,共40页。
3.2 连续体离散化
3. 薄板弯曲单元和薄板单元
A. 薄板弯曲单元
l
θxi
i
θyi
wi
m
j
四边形弯 曲单元
四边形单元有四个节点,每个节点有三个自由度,主要承 受横向载荷和绕水平轴的弯矩。
第11页,共40页。
3.2 连续体离散化
3.薄板弯曲单元和薄板单元
A. 薄板弯曲单元
m
θxi
对于平面应变问题:
E
E 1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y z x y z
二、弹性力学中的能量表述
2. 弹性力学中的应变能(strain energy)
怎么 求?
设加载缓慢,系统功能可忽略,同时略去其它能量(如热 能等)的消耗,则所做的功全部以应变能的形式储存于内部。 对应于微元体的两种变形:线应变和切应变,亦有两种形 式的应变能: Part 1:对应于正应力与正应变的应变能
x z y
T
w (x,y,z) dz v dx u
Sp
dy
Ω
Su
一、弹性力学的边界条件
1、位移边界条件
T 边界上已知位移时,应建 立物体边界上点的位移与 给定位移相等的条件
w (x,y,z) dz v dx u dy
Sp
u u v v w w
on Su
z y x
Ω
Su
一、弹性力学的边界条件
上节回顾
应力张量 (stress tensor)
x xy xz y yz yx zx zy z
弹性力学基本变量
应变张量 (strain tensor)
w (x,y,z) dz v dx u dy
上节回顾
x
dx
x
du x dx
应变能密度的性质
U0 1 x x y y z z xy xy yz yz zx zx 2 1 1 2 2 2 2 2 2 U 0 ij x y z x y y z z x xy yz zx 2E E 2G 1 2 2 2 2 2 2 2 U 0 ij e 2 G G x y z xy yz zx 2
Part 2:对应于切应力与切应变的应变能
Part 1:对应于正应力与正应变的应变能
微元体的变形能:
整个物体Ω上σx,εx 所产生的变形能:
Part 2:对应于剪应力与剪应变的应变能
微元体的 变形能:
整个物体Ω上τxy,γxy 所产生的变形能:
二、弹性力学中的能量表述
2. 弹性力学中的应变能(strain energy)
nx 0 0
0 ny 0
0 0 nz
ny nx 0
0 nz ny
n p
on S p
二、弹性力学中的能量表述
功能原理的两个基本概念:
功(work):外力功; 能量(energy):如动能、势能、热能等 弹性问题中的功和能量: 外力功:施加外力在可能位移上所做的功
应变能:变形体由于变形而储存的能量
2、力的边界条件
边界上给定面力时,则物体边界上的应 力应满足与面力相平衡的力的平衡条件
X 0
以二维问题为例
Hale Waihona Puke 注意ds为边界斜边的长度,边界外法 线n的方向余弦l=dy/ds,m=dx/ds
有:
一、弹性力学的边界条件
以二维问题为例
同理:
Y 0
M 0
一、弹性力学的边界条件
以二维问题为例
0 y 0
0 0 z
0 z y
A:微分算子
A b 0
A L
T
上节回顾
物理方程
1 x x y z E 1 y y z x E 1 z z x y E
由叠加原理,将所有方向正应力正应变、剪应力剪应变所产生的 变形能叠加
应变能密度
U0 1 x x y y z z xy xy yz yz zx zx 2 1 1 2 2 2 2 2 2 U 0 ij x y z x y y z z x xy yz zx 2E E 2G 1 2 2 2 2 2 2 2 U 0 ij e 2 G G x y z xy yz zx 2
二维情形的力的边界条件
nx 0
0 ny
x ny px y nx py xy
其中:nx=l;ny=m
一、弹性力学的边界条件
扩展到三维情形的力的边界条件
x nz y px z 0 py xy nx pz yz zx
二、弹性力学中的能量表述
1. 弹性力学中的外力功(work by force)
弹性力学中的外力包括:面力和体力,故外力功包括: Part 1:面力pi在对应位移上ui上的功(on Sp) Part 2:体力bi在对应位移上ui上的功(in Ω)
外力总功为:
W
Sp
p u p v p w dS b u b v b w d
L:微分算子
Lu
上节回顾
平 衡 方 程
弹性力学基本方程
yx x zx bx 0 x y z xy y zy by 0 x y z yz xz z bz 0 x y z
x 0 0 y x 0 x z y bx 0 z by 0 yx b z zy x xz
基本方程组,普遍规律
(2)在物体边界:应力分量、应变分量和位移分量满足:
位移边界条件 力的边界条件
定解条件,特定规律。
每一个具体 问题反映在 各自的边界 条件上
三、弹性力学边值问题
弹性力学边值问题提法:
求u,σ,ε,满足:
A b 0 Lu D
u u v v w w
dz v dx dy
位移(displacement) 是指位置的移动。它 在 x, y 和 z 轴上的投 影用 u, v 和w。
z
u
Ω
y x
Su
弹性力学基本变量
T
w
上节回顾
微元体
( Representative volume )
(x,y,z)
dz v dx u dy
Sp
Ω
z
y x
Su
弹性力学基本变量
fx
fy
FN
FS
关于弹性力学解的唯一性的讨论 ——圣维南原理
有限元分析
Finite Element Analysis
李建宇
天津科技大学
内容 弹性力学基础知识 2
1. 边界条件 2. 弹性力学中的能量表示 3. 弹性力学边值问题
要求 理解: 弹性力学边界条件的提法 了解: 弹性力学边值问题的内涵 掌握: 弹性力学中的能量表述
课后作业 继续检索、阅读弹性力学基本文献
1
1
1 1
1 0 0 0
0 0 0 1 2 2 1 0 0
0 0 0 0 1 2 2 1 0
1
0 0 0
xy yz zx
xy
G
yz
G
0 x 0 y z 0 xy yz 0 zx 1 2 2 1 0
zx
G
D:弹性矩阵
D
上节回顾
弹性力学三大方程
弹性力学基本方程
T
w (x,y,z) dz v dx dy
A b 0 Lu D
z
Sp
u
Ω
in
x
y
Su
边界上呢?
一、弹性力学的边界条件 (Boundary condition)
两类边界条件: Sp:力的边界
Su:位移边界
圣维南原理:
如作用在弹性体表面某一 不大的局部面积上的力系, 为作用在同一局部面积上 的另一静力等效力系所代 替,则荷载的这种重新分 布只在力荷载作用处很近 的地方才是应力的分布发 生显著变化,在离荷载较 远处只有极小的影响。
关于弹性力学解的唯一性的讨论 ——圣维南原理
圣维南原理的应用:可将边界条件简化, 将不容易积分的方程变成近似 的容易积分的边界条件方程.
u +du
u
x yx zx
xy xz y yz zy z
α
γ=α+β
τ
β
上节回顾
位 应 应 移
弹性力学的基本方程
几何方程
变 力 物理方程 弹性力学 三大方程
平衡方程
上节回顾
几 何 方 程
u x x v y y w z z u v xy y x v w yz z y w u zx x z
上节回顾
弹性力学的 “三个基本”
1、基本假定
2、基本变量 3、基本方程
上节回顾
弹性力学的基本假定
五个基本假定: 1、连续性(Continuity) 2、线弹性(Linear elastic) 3、均匀性(Homogeneity) 4、各向同性(Isotropy) 5、小变形假定(Small deformation)
上节回顾
弹性力学基本变量
变形体的描述:
在外部力和约束作用下的变形体
位移的描述 形状改变的描述
力的描述
材料的描述
上节回顾
弹性力学基本变量
描述变形体的三类变量:
位 应 应 移 变 力 物体变形后的位置 物体的变形程度
物体的受力状态
物体的材料特性
材料参数
弹性力学基本变量
w (x,y,z)
相关文档
最新文档