弹性力学及有限元法:第1章 弹性力学基本理论

合集下载

弹性力学基本理论

弹性力学基本理论

15
1.1.3 应变的概念
(a) x方向的线应变
(b) y方向的线应变
(c) xy面内的剪应变
图 1-3 单元体应变的几何描述
在图1-3(a)中,单元体在x方向上有一个的伸长量。微分单元 体棱边的相对变化量就是x方向上的正应变。即
x
u x x
y
u y x
(1.9)
u y y
ux y
相应地,y轴方向的正应变为: x-y 平面内的剪应变:
tan 1
(1.10)
; tan 2
(1.11)
16
1.1.3 应变的概念
因此,剪应变 xy 为
xy
u x 1 2 x y u y
(1.12)
应变分量的矩阵型式
x xy ij yx y zx yy
2 2 Tn n n 2

m A
B T
G
P A

n
o
y
图1-1 物体内任意点处的应力
(1.6)
12
1.1.2 应力的概念 应力状态
在物体内的同一点处,不同方向截面上的应力是不同的。只有 同时给出过该点截面的外法向方向,才能确定物体内该点处此截面 上应力的大小和方向,才能表示这一点的应力状态。
x' ' y z'
=
0 1 0 cos 0 sin
0 x1 sin y1 cos z1
(b)
将第一式代入上式,可得
x ' 1 0 0 cos sin 0 x ' y y 0 cos sin = sin cos 0 z' z 0 sin cos 0 0 1

弹性力学及有限元法1

弹性力学及有限元法1
弹性力学及有限元法
Elae Element Method
机械工程与自动化学院
现代设计与分析研究所
张瑞金 Rjzhang@
弹 性 力 学 及 有 限 元 法
第一章 绪论
了解弹性力学的定义;
了解弹性力学研究方法 ; 掌握有限单元法的基本思想; 了解常用有限元计算程序; 课程计划。
绪 论
现有网格基础上,根据有限元计算结果估计计算误差、重新划分网格和 再计算的一个循环过程。 3、由求解线性问题发展到求解非线性问题 许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能 解决,必须进行非线性分析求解,例如薄板成形就要求同时考虑结构的 大位移、大应变(几何非线性)和塑性(材料非线性);而对塑料、橡 胶、陶瓷、混凝土及岩土等材料进行分析,则必须考虑材料非线性。 4、由单一结构场求解发展到耦合场问题的求解 求解线性结构问题,只要离散单元足够小,所得的解就可足够逼近于精 确值。现在发展方向是结构非线性、流体动力学和耦合场问题的求解。 例如由于摩擦接触而产生的热问题,金属成形时由于塑性功而产生的热 问题,需要结构场和温度场的有限元分析结果交叉迭代求解,即“热力耦 合”的问题。 5、程序面向用户的开放性 商业化的提高要求给用户一个开放的环境。
解析法:得出精确的函数解
数值法: 差分法:采用差商代替微商,将弹力中导 出的微分方程及其边界条件化为差分方程 (代数方程)进行求解。 变分法:根据变形体的能量极值原理,导 出弹性力学的变分方程,并进行求解。 有限单元法:离散模型的数值解
绪 论
弹 性 3. 有限元法基本思想 力 学 及 有 将求解区域划分为有限个互不重叠的单元,单元 之间仅依靠节点连接,单元内部点的待求量可由 限 元 单元节点量通过选定的函数关系插值求得,建立 法

弹性力学基础及有限单元法

弹性力学基础及有限单元法

第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。

2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。

实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。

根据这个假设所得的结果与实验结果是符合的。

(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。

这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。

钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。

木材不是各向同性的。

(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。

同时还假定材料服从胡克定律,即应力与形变成正比。

(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。

在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。

在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。

(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。

也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。

物体中初应力的性质及数值与物体形成的历史有关。

若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。

上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。

(同济大学)第1讲_弹性力学及有限元方法概述

(同济大学)第1讲_弹性力学及有限元方法概述

有限元分析
的一般规律物体在空间的位置随时间的改变
对象内容
任务
对象内容
任务
概述
ANSYS 静力分析z起重机械有限元应用
整机模态分析
车辆安全性
工件淬火3.06 min 时的温度、组织分布(NSHT3D)
同济大学
同济大学
金属反挤压成型:温度分布和变化铸造成型:温度变化和气泡
速度
压力导流管分析
超音速飞行压力分布汽车气动分析
高速导弹气动
同济大学
两根热膨胀系数不同的棒焊接在一起,加热后的变形情况
子结构方法分析大型结构的早期应用法
梁单元
建模时充分利用重复性。

弹性力学与有限元完整版

弹性力学与有限元完整版
xy、 xz、 yx yz、 zx、 zy
Z面 X面
•②应力符号意义
•正应力: 由法线方向确定
x、 y、 z
•剪应力: xy
作用面
作用方向
•符号规定:
正面上与坐标轴正向一致,为正;
负面上与坐标轴负向一致,为正。
正面 负面
Z面
X面
•③剪应力互等定理
xy yx
相等
yz zy
xz zx
4. 完全弹性假设
应力和应变之间存在一一对应关系,与时间及变形历史无关。满 足胡克定理。
5. 小变形假设
在弹性体的平衡等问题讨论时,不考虑因变形所引起的几何尺寸 变化,使用物体变形前的几何尺寸来替代变形后的尺寸。采用这 一假设,在基本方程中,略去位移、应变和应力分量的高阶小量 ,使基本方程成为线性的偏微分方程组。
大小和方向不同。
体力分量:将体力沿三个坐标轴xyz 分解,用X
、Y、Z表示,称为体力分量。
符号规定:与坐标轴方向一致为正,反之为负
。 应该注意的是:在弹性力学中,体力是指单位
体积的力 。
体力的因次:[力]/[长度]^3
表示:F={X Y Z}
② 面力
与体力相似,在物体表面上任意一点P 所受面力的大小 和方向,在P点区域取微小面积元素△S ,
压力,物体之间的接触力等。
集中力——作用物体一点上的力。(在弹性力学中一
般所受体力的大小和方向,在P点区域取
一微小体积元素△V, 设△V 的体力合力为△F,则
△V 的平均体力为
当△V 趋近于0, 则为P点的体力
体力是矢量:一般情况下,物体每个点体力的
第一篇 弹性力学
第一章 弹性力学基本方程
1.1 绪论 1.2 弹性力学的基本假定 1.3 几个基本概念 1.4 弹性力学基本方程

弹性力学基本理论

弹性力学基本理论

( , )2
可略去
等项,使几何方程成为线性方程。
弹性力学基本假定,确定了弹性力 学的研究范围:
理想弹性体的小变形问题。
第二节 有限元方法概述
分析思路是: 将整个结构看作是由有限个力学小 单元相互连接而形成的集合体,每 个单元的力学特性组合在一起便可 提供整体结构的力学特性。
离散化的组合体与真实弹性体的区别 在于:组合体中单元与单元之间的联 接除了结点之外再无任何关联。但要 满足变形协调条件,单元之间只能通 过结点来传递内力。通过结点来传递 的内力称为结点力,作用在结点上的 荷载称为结点荷载。当连续体受到外 力作用发生变形时,组成它的各个单 元也将发生变形,因而各个结点要产 生不同程度的位移,这种位移称为结 点位移。
面力是指分布在物体表面的力,如
流体的压力和接触力 。
z
fz F
S
fy
fx P
y
x
三、应力分量 内力的平均集度即为平均应力。
z
p在法向和切向的分量,
F
p
A
P
也就是正应力和切应力,
y
如图所示。
x
应力分量如图所示。 应力分量可用矩阵表示为
四、应变分量
应变是指物体在受力后发生变形的 相对量,总的可以归结为长度的改 变和角度的改变。
5、小变形假定 假定位移和形变为很小。
a.位移<<物体尺寸,
例:梁的挠度v<<梁高h。
b. ε,
1.
例:梁的ε 103 1
<<1弧度。
小变形假定的应用:
a.简化平衡条件:考虑微分体的平衡
条件时,可以用变形前的尺寸代替变形
后的尺寸。
b.简化几何方程:在几何方程中,由
于(, ) (, )2 (, )3 ,

第一章 弹性力学的基本理论

第一章 弹性力学的基本理论
机自学院安全断裂分析研究室
学习弹性力学的目的
理解和掌握弹性力学的基本理论、基本概念、基本 方程、基本解法。 能够阅读弹性力学相关文献,并应用已有解法为工 程服务。 能够将所学的弹性力学知识应用于近似解法-变分 法、差分法和有限单元法的理解。 为进一步学习固体力学的其它分支学科打下基础。
v v y dy dy v dy v y dy y
y
同样,可以列出另两个力矩平衡方程。得出
yz zy , zx xz , xy yx
机自学院安全断裂分析研究室
应力张量
是对称的二阶张量
x xy xz yx y yz zx zy z
过一点任意截面上的应力分量,完全由该点的应 力张量唯一地确定。即一点的应力状态是用该点的应 力张量表示的。
机自学院安全断裂分析研究室
弹性力学的发展史 自学
机自学院安全断裂分析研究室
弹性力学中的几个基本概念
外力 体积力:分布在物体体积内的力,如重力和惯性力 表面力:作用在物体表面的力,可以是分布力,也 可以是集中力
z
Q Z V X P
X
z
Q Z F Y P S
F Y
o
Q F V 0 V lim
x
y
o
Q F S 0 S lim
x
y
机自学院安全断裂分析研究室

内力、应力及应力张量
物体在外力的作用下,伴随变形而同时在物体内
产生抵抗变形的力,称为内力。

F2
F1 — Ⅱ部分物体对Ⅰ部分物体的作用力
F1
F2 — Ⅰ部分物体对Ⅱ部分物体的作用力 F1 和F2 大小相等,方向相反。

弹性力学第一章

弹性力学第一章

第二节
弹性力学中的几个基本概念
体力─(定义)作用于物体的体积内的力
(表示)单位体积内所受的力来量度
fx, fy, fz
(量纲)[力][长度]-3 (符号)坐标正向为正。
第二节
弹性力学中的几个基本概念
面力─(定义)作用于物体表面上的力 (表示)以单位面积所受的力来量 度 fx, f y , fz (量纲) [力][长度]-2 (符号)坐标正向为正
第一章教学参考资料
二、本章内容提要 1、弹性力学的内容─弹性力学研究弹性 体由于受外力作用、边界约束或温度改变 等原因而发生的应力、形变和位移。 2、弹性力学中的几个基本物理量 体力—分布在物体体积内的力、记号为
fx 、fy 、fz ,量纲为L-2MT-2,以坐标
正向为正。
第一章教学参考资料
面力— 分布在物体表面上的力,记号为 f x , f y , f z 。量纲为L-1MT-2 ,以坐 标正向为正。
第二节
弹性力学中的几个基本概念
例:表示出下图中正的体力和面力
O(z )
fx
fx
fy
x
O(z )
fy fx
fx
fy
x
fy
y
y
第二节
弹性力学中的几个基本概念
内力─假想切开物体,截面两边互相作用 的力(合力和合力矩),称为内力。
第二节
弹性力学中的几个基本概念
应力─截面上某一点处,单位截面面积上的
内力值。
O(z )
x
x
fx
fy
xy
xy
x
fy fx
y
第二节
弹性力学中的几个基本概念
弹力与材力相比,正应力符号,相同 切应力符号,不同
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
1.1.2 外力与内力
(1)外力
作用于物体的外力通常可分为两类: 面力(Surface Force) 体力(Body Force)
9
1.1.2 外力与内力
面力是指分布在物体表面上的外力,包括分布力(Distributed Force)和集中力(Concentrated Force),如压力容器所受到的内压、 水坝所受的静水压力、物体和物体之间的接触压力等等。通常情 况下,面力是物体表面各点的位置坐标的函数。
1
第一章 弹性力学基础理论
2
第1章 弹性力学基础理论
本章概述
本章主要介绍弹性力学的基本理论,主要包括:线弹性问 题的几个假设;应力、应变的定义和性质;应力平衡方程、几 何方程和物理方程等弹性力学基本方程的推导。这些是进行机 械结构有限元分析的重要力学理论基础。
要求: 学习并掌握应力、应变基本概念和主要性质,掌握 弹性力学基本方程、应力边界条件、协调方程等。
也就是说,物体的弹性常数不随方向而变化。正交各向异性
(5)小位移和小变形的假定。假定物体受力以后,物体所有
各点的位移都远远小于物体原来的尺寸,并且其应变和转角都 小于1。保证在建立变形体的平衡方程时,可以用物体变形前的 尺寸来代替变形后的尺寸,而不致引起显著的误差,在考察物 体的变形及位移时,对于转角和应变的二次幂或其乘积都可以 略去不计。几何非线性
(1.5)
B
m A P
G T n
T就是P点处的应力。
通常将应力沿截面A的法向和
o
A
切向进行分解,相应的分量就是常用
y
的正应力和剪应力。它们满足
x 图1-1 物体内任意点处的应力
Tn
2
2 n
2 n
(1.6)
13
1.1.3 应力
应力状态
在物体内的同一点处,不同方向截面上的应力是不同的。只有
同时给出过该点截面的外法向方向,才能确定物体内该点处此截面
法和变分法等,特别是随着计算机的广泛应用而不断发展的有
限单元法,为解决工程实际问题开辟了广阔的前景。
解析 法
数值算法
6
1.1.1 弹性力学及其基本假设
五个基本假设——理想弹性体 弹性力学的研究对象是理想弹性体,所谓理想弹性体应符
合下述的五个假定。
(1) 连续性假定。也就是假定整个物体的体积都被组成该
上应力的大小和方向,才能表示这一点的应力状态。(不方便)
(用三维直角坐标系下的应力分量)如
C
z
图1-2所示,正方体各面上的应力可按坐标轴
方向分解为一个正应力和两个剪应力,即每
个面上的应力都用三个应力分量来表示。这 y
4
1.1.1 弹性力学及其基本假设
弹性力学与材料力学的区别
弹性力学与材料力学(Strengths of Materials)在研究对象、研究 内容和基本任务方面有许多是相同的,但是二者的研究方法有较大 差别。
研究对象几何形状
描述方程 求解难易程度
适用范围
材料力学
杆状构件
常微分方程 容易 窄
弹性力学
体积V,假定其上作用有体力R,则P点所受的体力可定义为
QV
lim R V 0 V
(1.3)
一般也是用各坐标方向上的分量来表示体力,即
X
QV
Y
X
,
Y,
ZT
Z
(1.4)
11
1.1.2 外力与内力
(2)内力
物体在外力作用下,其内部 将产生抵抗变形的“附加”内力 。若假想用一经过物体内P点的截 面mn将物体分为两部分A和B,移 去其中的一部分B。显然,在截面 mn上必定有某种力存在使A平衡 x ,这种力就称为内力,实际上也 就是物体内部的相互作用力。
3
1.1 弹性力学的基本概念
1.1.1 弹性力学及其基本假设
弹性力学(Elastic Theory)
弹 性 力 学 是 一 门 基 础 学 科 , 弹 性 力 学 是 固 体 力 学 (solid
mechanics)的一个分支,其基本任务是针对各种具体情况,确 定弹性体内应力与应变的分布规律。也就是说,当已知弹性体 的形状、物理性质、受力情况和边界条件时,确定其任一点的应 力、应变状态和位移(所要求解的量值15个)。在机械、航空、 航天、土建和水利等领域的结构分析中,都需要应用弹性力学的 基本理论。
z
B
G
T
m A P
n
A
o y
图1-1 物体内任意点处的应力
12
1.1.3 应力
1.1.3 应力 所谓一点处某个截面上的应力(Stress)
就是指该截面上的“附加内力”,即应力是
内力在该点处的集度。如图1-1所示,在截面
mn上P点处取一微小面积A,假设作用于
A上的内力为G,则
z
T lim G A0 A
物体的介质所填满,不存在任何空隙。保证物体内一些物理 量(应力、应变、位移等)的连续性,从而可以用坐标的连 续函数来描述。
(2)完全弹性假定。这是假定物体服从胡克定律,即应变
与引起该应变的应力成正比。保证物体在任意瞬时的应变将 完全取决于该瞬时物体所受到的外力或温度变化等因素,而 与加载的历史和加载顺序无关。
杆、板、壳、块、 三维体
偏微分方程 困难 宽
5
1.1.1 弹性力学及其基本假设
弹性力学是一门基础理论,把弹性力学理论直接用于工程
问题分析具有很大的困难,其主要原因主要是在于它的基本方
程即偏微分方程边值问题求解通常比较困难。由于经典的解析
方法很难用于工程构件分析,因此探讨近似解法是弹性力学发
展中的一个重要任务。弹性力学问题的近似求解方法,如差分
7
1.1.1 弹性力学及其基本假设
五个基本假设——理想弹性体
(3) 均匀性假定。假定整个物体由同一材料组成。保证整个
物体的所有各部分具有相同的弹性,因而物体的弹性常数才不 会随位置坐标而变,可以取出该物体的任意一小部分来加以分 析,然后把分析所得的结果应用于整个物体。
(4)各向同性假定。假定物体的弹性在所有各方向上都相同。
在物体表面P点处取一微小面积S,假设其上作用有表面力
F,则P点所受的表面力定义为
QS
lim
S 0
F S
(1.1)
通常用各坐标方向上的分量来表示面力,即
X
QS
Y
X,
Y,TZZFra bibliotek(1.2)
10
1.1.2 外力与内力
体力(Body Force)一般是指分布在物体体积内的外力,作用 于弹性体内每一个体积单元。通常与物体的质量成正比、且是各 质点位置的函数,如重力、惯性力、磁场力等。作用在物体内P 点上的体力,可按面力定义方式进行定义,即在P点处取一微小
相关文档
最新文档