弹性力学期末考试复习

合集下载

《弹性力学》复习 学习材料 试题与参考答案

《弹性力学》复习 学习材料 试题与参考答案

《弹性力学》复习学习材料试题与参考答案一、单选题1.利用有限单元法求解弹性力学问题时,不包括哪个步骤(D)A.结构离散化B.单元分析C.整体分析D.应力分析2.如果必须在弹性体上挖空,那么孔的形状应尽可能采用(C)A.正方形B.菱形C.圆形D.椭圆形3.每个单元的位移一般总是包含着(B)部分A.一B.二C.三D.四4.在弹性力学中规定,线应变(C),与正应力的正负号规定相适应。

A.伸长时为负,缩短时为负B.伸长时为正,缩短时为正C.伸长时为正,缩短时为负D.伸长时为负,缩短时为正5.在弹性力学中规定,切应变以直角( C ),与切应力的正负号规定相适应。

A.变小时为正,变大时为正B.变小时为负,变大时为负C.变小时为负,变大时为正D.变小时为正,变大时为负6.物体受外力以后,其内部将发生内力,它的集度称为(C )A应变B应力C变形D切变力7.平面问题分为平面(A)问题和平面( )问题。

A应力,应变B切变、应力C内力、应变D外力,内力8.在弹性力学里分析问题,要建立( C )套方程。

A一B二C三D四9.下列关于几何方程的叙述,没有错误的是(C)A.由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D.几何方程是一点位移与应变分量之间的唯一关系10.用应力分量表示的相容方程等价于(B)A.平衡微分方程B.几何方程和物理方程C.用应变分量表示的相容方程D.平衡微分方程.几何方程和物理方程11.平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为z轴方向)(C)A.xB.yC.zD.x,y,z12.在平面应力问题中(取中面作xy平面)则(C)A.σz=0,w=0B.σz≠0,w≠0C.σz=0,w≠0D.σz≠0,w=013.下面不属于边界条件的是(B)。

弹性力学重点复习题及其答案

弹性力学重点复习题及其答案

弹性力学重点复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学复习题---有答案-知识归纳整理

弹性力学复习题---有答案-知识归纳整理

知识归纳整理一、挑选题1. 下列材料中,( D )属于各向同性材料。

A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。

2 对于弹性力学的正确认识是(A )。

A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。

3. 弹性力学与材料力学的主要不同之处在于( B )。

A. 任务;B. 研究对象;C. 研究想法;D. 基本假设。

4. 所谓“彻底弹性体”是指( A )。

A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时光历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。

5. 所谓“应力状态”是指( B )。

A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,所以应力矢量是不可确定的。

6. 变形协调方程说明( B )。

A. 几何方程是根据运动学关系确定的,所以对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。

7. 下列对于弹性力学基本方程描述正确的是( A )。

A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值延续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最终需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。

A .几何方程B .边界条件C .数值想法D .附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系 ( B )。

简明弹性力学复习资料

简明弹性力学复习资料

简明弹性力学复习资料一、单项选择题1.关于弹性力学的正确认识是(A)计算力学在工程结构设计中的作用日益重要(B)弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题做假设(C)任何弹性变形材料都是弹性力学的研究对象(D)弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析2.下列对象不属于弹性力学研究对象的是(A)(B)板壳(C)块体(D)质点3.下列关于几何方程的叙述,没有错误的是(A)由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移。

(B)几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移。

(C)几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量。

(D)几何方程是一点位移与应变分量之间的唯一关系。

4.应力状态分析是建立在静力学基础上的,这是因为(A)没有考虑面力边界条件;(B)没有讨论多连域的变形;(C)没有涉及材料本构关系;(D)没有考虑材料的变形对于应力状态的影响5.切应力互等定理根据条件成立(A)纯剪切(B)任意应力状态(C)三向应力状态(D)平面应力状态6.下列关于“刚体转动”的描述,认识正确的是(A)刚性转动描述了微分单元体的方位变化,与变形位移一起构成弹性体的变形(B)刚性转动分量描述的是一点的刚体转动位移,因此与弹性体的变形无关(C)刚性转动分量可以确定弹性体的刚体位移(D)刚性转动位移也是位移的导数,因此它描述了一点的变形7.变形协调方程说明(A)几何方程是根据运动学关系确定的,因此关于弹性体的变形描述是不正确的;(B)微分单元体的变形必须受到变形协调条件的约束;(C)变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;(D)变形是由应变分量和转动分量共同组成的。

8.各向异性材料的弹性常数为(A)9个(B)21个(C)3个(D)13个9.弹性力学的解的唯一性定理在条件成立(A)具有相同体力和面力边界条件;(B)具有相同位移约束;(C)相同材料;(D)上述3条同时成立10.关于弹性力学的叠加原理,应用的基本条件不包括(A)小变形条件;(B)材料变形满足完全弹性条件;(C)材料的本构关系满足线性弹性条件(D)应力应变关系是线性完全弹性体二、填空题1.在弹性力学中规定:切应变以直角时为正,时为负,与的正负号规定相适应。

弹性力学复习

弹性力学复习

弹性力学复习指导一、问答题1. 试叙述弹性力学的基本假设及这些基本假定在建立弹性力学基本方程时的作用。

(1)连续性,所有的物理量均可以用连续函数,从而可以应用数学分析的工具(2)完全弹性,物体中的应力及应变之间的物理关系可以用胡克定律来表示(3)均匀性,物体的弹性常数等不随位置坐标而变化(4)各向同性,弹性常数等也不随方向而变化(5)小变形假定,简化几何方程,简化平衡微分方程2. 叙述平面应力问题在结构形状、所受外力和约束有何特点。

答:平面应力问题一般对于等厚度薄板(z方向尺寸远小于板面尺寸的等厚度薄板)。

外力平行于板面作用在板边,且沿板厚不变,版面上无面力,z方向的分力为0。

约束只作用于板边,其方向平行于中面(x0y面),且沿厚度(z向)不变,只有作用于板边的x,y向的边界约束存在。

3. 叙述平面应变问题在结构形状、所受外力和约束有何特点。

答:平面应变问题一般对于常截面长柱体(z方向尺寸远大于截面尺寸的等截面柱体)。

外力垂直柱体轴线,且沿长度方向不变,z方向分力为0。

约束只作用于柱面,其方向平行于中面(x0y面),且沿厚度(z向)不变,只有作用于板边的x,y向的边界约束存在。

4.试叙述在大边界上不能应用圣维南原理。

答:圣维南原理是基于静力等效原理,当将面力的等效变换范围应用到大边界上,则必然使整个物体的应力状态都改变,所以大边界不能应用静力等效,在大边界上不能应用圣维南原理。

5. 试叙述弹性力学中解的叠加定理。

答:在线弹性和小变形假定下,作用于弹性体上几组荷载产生的总效应(应力和变形),等于每组荷载产生的效应之和,且及加载顺序无关(p135)6. 试叙述弹性力学中虚位移原理。

答:假定处于平衡状态的弹性体在虚位移过程中,没有温度的改变,也没有速度的改变,既没有热能和动能的改变,则按照能量守恒定理,形变势能的增加,等于外力势能的减少,也就等于外力所做的功,即所谓虚功。

(p135)7. 有限元方法中,每个单元都是一个连续体。

弹性力学期末考试复习题

弹性力学期末考试复习题

弹性力学期末考试复习题
一、选择题
1. 弹性力学的基本假设是什么?
A. 材料是均匀的
B. 材料是各向同性的
C. 材料是线弹性的
D. 所有选项都是
2. 弹性模量和泊松比之间有什么关系?
A. 它们是独立的
B. 它们之间存在数学关系
C. 弹性模量总是大于泊松比
D. 泊松比总是小于0.5
二、简答题
1. 简述胡克定律的基本内容及其适用范围。

2. 解释什么是平面应力问题和平面应变问题,并给出它们的区别。

三、计算题
1. 给定一个矩形板,尺寸为2米×1米,厚度为0.1米,材料的弹性
模量为200 GPa,泊松比为0.3。

若在板的一侧施加均匀压力为1 MPa,求板的中心点的位移。

2. 一个圆柱形压力容器,内径为2米,外径为2.05米,材料的弹性
模量为210 GPa,泊松比为0.3。

求在内部压力为10 MPa时,容器壁
的最大应力。

四、论述题
1. 论述弹性力学在工程实际中的应用及其重要性。

2. 讨论材料的非线性行为对弹性力学分析的影响。

五、案例分析题
分析一个实际工程问题,如桥梁、大坝或高层建筑的结构设计,说明
在设计过程中如何应用弹性力学的原理来确保结构的稳定性和安全性。

结束语
弹性力学是一门理论性和实践性都很强的学科,希望同学们能够通过
本次复习,加深对弹性力学基本原理的理解和应用能力,为解决实际
工程问题打下坚实的基础。

祝大家考试顺利!。

《弹性力学及有限单元法》期末考试试卷

《弹性力学及有限单元法》期末考试试卷

《弹性力学及有限元基础》期末考试班级: 姓名: 学号:一.填空题(37分)1(9分). 杆件在竖向体力分量f (常量)的作用下,其应力分量为:x C x 1=σ;32C y C y +=σ;0=xy τ。

支承条件如图所示,C 1 =______ ;C 2=______; C 3=______。

2(12分). 一无限长双箱管道,深埋在地下,如图2所示,两箱中输送的气体压强均为σ0,设中间隔板AB (图中阴影所示)的位移分量为:u = Cx , v = 0,隔板材料模量为E 和μ。

计算隔板上各点的应力分量:σx = _______, σy ,= ______, σz =______。

3(9分). 圆环的内半径为r ,外半径为R ,受内压力q 1及外压力q 2的作用。

若内表面的环向应力为0,则内外压力的关系是:_________________。

4(10分).等截面实心直杆受扭矩的作用,假设应力函数为:()()222222y bx a by x a k -++-=Φ,扭矩引起的单位长度扭转角测得为θ,材料的剪切弹性模量为G ,a 、b 均为常数,则k = _____ 二.分析题5.(20分)一宽度为b 的单向薄板,两长边简支,横向荷载为⎪⎭⎫⎝⎛=b y p p πsin 0,计算板的挠度方程。

(设材料的弹性模量为E ,泊松比为μ,薄板的弯曲刚度为D )6.(20分)如图,一长度为l 的简支梁,在距右端为c 的位置作用一集中荷载P ,请用里兹法计算梁的挠度曲线。

(设挠度曲线为)(x l ax w -=,a 为代求系数)7.(23分)1cm 厚的三角形悬臂梁,长4m ,高2m 。

其三个顶点i , j , k 及内部点m 的面积坐标如图所示。

在面积坐标(1/8,1/2,3/8)处和j 节点处受到10kN 的集中力的作用,在jk 边受到垂直于斜边的线性分布力的作用。

用一个4节点的三角形单元对此题1图 题2图 x 题5图悬臂梁进行有限元分析,域内任一点的位移都表示成⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++=+++=m m k k j j i i m m k k j j i i v N v N v N v N v u N u N u N u N u 。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。

A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。

A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。

答案:内2. 弹性力学的基本假设之一是______连续性假设。

答案:材料3. 弹性力学中,应变的量纲是______。

答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。

答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。

答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。

2. 解释弹性力学中的杨氏模量和剪切模量。

答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。

3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。

四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。

如何确定它们的正负号答:弹性体任意一点的应力状态由6个应力分量决定,它们是:?x、?y、?z、?xy、?yz、、?zx。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

(5)假定位移和变形是微小的。

符合(1)~(4)条假定的物体称为“理想弹性体”。

一般混凝土构件、一般土质地基可近似视为“理想弹性体”。

5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。

答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。

如工程中的深梁以及平板坝的平板支墩就属于此类。

平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作用都不沿长度而变化。

6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。

平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问题的平衡微分方程。

平面问题的几何学方面主要考虑的是形变分量与位移分量之间的关系,也就是平面问题中的几何方程。

平面问题的物理学方面主要反映的是形变分量与应力分量之间的关系,也就是平面问题中的物理方程。

7.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明答:按照边界条件的不同,弹性力学问题可分为两类边界问题:(1)平面应力问题:很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。

这一类问题可以简化为平面应力问题。

例如深梁在横向力作用下的受力分析问题。

在该种问题中只存在yx xy y x ττσσ=、、三个应力分量。

(2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力也平行于横截面且不沿长度变化。

这一类问题可以简化为平面应变问题。

例如挡土墙和重力坝的受力分析。

该种问题 并不等于零。

而一般z zy yz zx xz σττττ0;0====8.什么是圣维南原理其在弹性力学的问题求解中有什么实际意义圣维南原理可表述为:如果把物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那麽近处的应力分布将有显着的改变,但远处所受的影响可以不计.弹性力学的问题求解中可利用圣维南原理将面力分布不明确的情况转化为静力等效但分布表达明确的情况而将问题解决。

还可解决边界条件不完全满足的问题的求解。

9.什么是平面应力问题其受力特点如何,试举例予以说明。

答:平面应力问题 是指很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力,这一类问题可以简化为平面应力问题。

例如深梁在横向力作用下的受力分析问题。

在该种问题中只存在yx xy y x ττσσ=、、三个应力分量。

10.什么是“差分法”试写出基本差分公式。

答;所谓差分法,是把基本方程和边界条件(一般为微分方程)近似地改用差分方程(代数方程)来表示,把求解微分方程的问题改换成为求解代数方程的问题。

基本差分公式如下:204202242020310223102222h f f f y f h f f y f h f f f x fh f f x f -+=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-+=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂二、计算题1.已知过P 点的应力分量,15Mpa x =σ,25Mpa y=σMpa xy 20=τ。

求过P 点,0060cos 30cos ==m l 、斜面上的N N N N Y X τσ、、、。

解:Mpa m l X xy x N 99.222060cos 1530cos 0=⨯+⨯=+=τσMpa l m Y xy y N 82.292030cos 2560cos 00=⨯+⨯=+=τσMpalm m l xyy x N 82.34 2060cos 30cos 22560cos 1530cos 200020222=⨯⨯⨯+⨯+⨯=++=τσσσ Mpam l lm xyx y N 33.14 20)60cos 30(cos )1525(60cos 30cos )()(02020022=⨯-+-⨯⨯=-+-=τσστ2.在物体内的任一点取一六面体,x 、y 、z 方向的尺寸分别为dx 、dy 、dz 。

试依据下图证明:0=+∂∂+∂+∂∂Y xz y xyzy y ττσ 。

dyyy y ∂∂+σσ证明:∑=:0yF)()()()()()(=+⨯⨯-⨯⨯∂∂++⨯⨯-⨯⨯∂∂++⨯⨯-⨯⨯∂∂+Ydxdydz dz dy dz dy dx xdy dx dy dx dz z dz dx dz dx dy yxy xyxy zy zy zy y y y ττττττσσσ化简并整理上式,得:0=+∂∂+∂+∂∂Y xzyxy zyy ττσ3.图示三角形截面水坝,材料的比重为 ?,承受比重为 ? 液体的压力,已求得应力解为⎪⎩⎪⎨⎧--=-+=+=aydx gy dy cx by ax xy y x τρσσ,试写出直边及斜边上的边界条件 。

解:由边界条件Y)l(τ)m(σ X )m(τ)l(σs xy s y s yx s x ⎪⎩⎪⎨⎧=+=+ 左边界:ββsin ,cos -==m lay)dx gy)dy (cx ay)dx (by)(ax s s s s 0(cos sin 0sin cos ⎩⎨⎧=--+-+-=---+βρβββ 右边界:0,1=-=m lay)dx gy by)(ax s s 0( ⎩⎨⎧=+=+-γ4.已知一点处的应力分量,30Mpa x =σ,25Mpa y -=σMpa xy 50=τ,试求主应力 21σσ、以及1σ与x 轴的夹角。

解:Mpa τσσxy yx yx 56.59)50(2253022530 2222221=+⎪⎭⎫ ⎝⎛++-=+⎪⎪⎭⎫ ⎝⎛-++=σσσMpa τσσxy yx yx 06.5522222-=+⎪⎪⎭⎫ ⎝⎛--+=σσσ0111159.3050)30(56.59=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-=--tg τσtg xy xσα5.在物体内的任一点取一六面体,x 、y 、z 方向的尺寸分别为dx 、dy 、dz 。

试依据下图证明:0=+∂∂+∂+∂∂z yx z yzxz z ττσ 。

dyyy y ∂∂+σσ证明:∑=:0zF)()()()()()(=+⨯⨯-⨯⨯∂∂++⨯⨯-⨯⨯∂∂++⨯⨯-⨯⨯∂∂+Zdxdydz dxdz dx dz dy ydzdy dz dy dx xdy dx dy dx dz z yz yzyz xz xzxz z zz ττττττσσσ 化简并整理上式:0=+∂∂+∂+∂∂Z yx z yzxz z ττσ 6. 图示悬臂梁只受重力作用,而梁的密度为?,设应力函数 3223Dy Cxy y Bx Ax +++=φ恒能满足双调和方程。

试求应力分量并写出边界条件。

解:所设应力函数。

相应的应力分量为: 22y x ∂∂=ϕσ=2Cx +6D ypy By x py x y -+=-=∂∂2622A ϕσCy Bx y x xy 222--=-=∂∂∂ϕτ 边界条件为: 上表面(y =0),要求X N =(0)0=-=y y x τ, B = 00)(0=-==y y Y σN , A = 0斜边界:,cos ,sin ,αα=-==m l a x y tg 边界条件得: 0cos 2sin )62(=-+-ααCy Dy Cx 0cos sin 2=-ααpy Cy。

相关文档
最新文档