Quasi-static axial compression of thin-walled circular aluminium tubes

合集下载

常用流体力学单词

常用流体力学单词

221
incompressible fluid
inertial coordinate system initial condition input intensity of turbulence
interface internal energy internal friction
inviscid fluid
I
脉动应力 流体 流体动力学 流场 流体机械 流体力学 流体质点 流体静力学 自由表面 摩擦系数 摩擦阻力 无粘性流体
气体常数 气体动力学 表压力 几何压力 几何相似 渐缩 渐扩
调和函数 压头损失 传热 亥姆霍兹方程 非均质流体 均质流体 水平力 水平线 水力直径 紊流光滑管区 流体静力学 流体静压力 流体静应力 高超音速流动 (m>5)
背压 斜压流体 气压计 正压流体 伯努利方程 叶片 质量力 边界条件 边界层,附面层 边界层分离 附面层厚度 体积模量 体积应力 流束 浮力 过渡层
218
C
Cauchy-Reimam condition
center of pressure coefficient coefficient of compressibility coefficient of eddy viscosity coefficient of viscosity cohesive forces combined boundary layer completely rough zone of turbulent pipe flow component velocity compressibility compressible fluid conservation equation of energy conservation equation of mass conservation of mechanical energy conservation of moment of momentum conservation of momentum continuity continuum continuum hypothesis control surface control volume convective acceleration convergent-divergent nozzle converging nozzle correction coefficient critical pressure critical Reynolds number critical speed of sound critical state cross section curvature radius curved shock cylindrical coordinate system

汽车轻量化技术的研究与进展

汽车轻量化技术的研究与进展

汽车轻量化技术的研究与进展作者:范子杰, 桂良进, 苏瑞意, FAN Zijie, GUI Liangjin, SU Ruiyi作者单位:清华大学汽车安全与节能国家重点实验室,北京100084,中国刊名:汽车安全与节能学报英文刊名:JOURNAL OF AUTOMOTIVE SAFETY AND ENGERGY年,卷(期):2014,5(1) Government Printing Office Partnership for a New Generation of Vehicles (PNGV):assessment of programgoals,activities,and priorities 19962.American Iron and Steel Institute UltraLight steel auto body final report 20143.American Iron and Steel Institute ULSAB-AVC overview report 20024.EAA (European Aluminium Association),Aluminium in Cars 20085.杨阳;周谊;桂良进双扭杆双横臂悬架有限元建模与分析 2006(11)6.桂良进;范子杰;陈宗渝“长安之星”微型客车白车身刚度研究 2004(09)7.周长路;范子杰;陈宗渝微型客车白车身模态分析 2004(01)8.郝春鹏;范子杰;桂良进微型客车车身结构正面碰撞特性的数值模拟 2004(05)9.Gobbi M;Haque I;Papalambros P P Y A critical review of optimization methods for road vehicles design 200610.郝琪;张继伟车门结构优化设计的灵敏度分析研究 2010(05)11.桂良进;范子杰;周长路某型载重车车架结构轻量化设计研究 2003(04)12.苏瑞意;桂良进;王旭燃料电池城市客车结构有限元分析与轻量化设计 2008(12)13.刘江;桂良进;王青春全承载式大客车车身结构多目标优化 2008(02)14.丁炜琦;苏瑞意;桂良进基于应力优化的大客车结构多目标优化 2010(04)15.Botkin M E Structural Optimization of Automotive Body Components Based on Parametric Solid Modeling 2002(02)16.Shin J K;Lee K H;Song S I Automotive door design with the ULSAB concept using structural optimization 2002(04)17.XIANG Yujiang;WANG Qian;FAN Zijie Optimal crashworthiness design of a spot-welded thin-walled hat section 2006(10)18.Su Ruiyi;Gui Liangjin;Fan Zijie Multi-objective optimization for bus body with strength and rollover safety constraints based on surrogate models 2011(03)19.朱茂桃;钱洋;顾娅欣基于Kriging模型的车门刚度和模态优化 2013(11)20.Choi W S;Park G J Structural optimization using equivalent static loads at all time intervals 2002(19-20)21.Jeong S;Yi S;Kan C Structural optimization of an automobile roof structure using equivalent static loads 2008(11)22.Shimoda M;Tsuji J Shape optimization for weight reduction of automotive shell structures subject to a strength constraint.SAE Technical Paper,2007-01-372023.方剑光;高云凯;王婧人基于网格变形技术的白车身多目标形状优化 2012(24)24.Bendsφe M P Optimal shape design as a material distribution problem 1989(04)25.Yang R J;Chahande A I Automotive applications of topology optimization 1995(3-4)26.Yang R J;Chuang C;Che X New applications of topology optimization in automotive industry 2000(01)27.Baskin D M;Reed D B;Seel T N A case study in structural optimization of an automotive body-in-white design.SAE Tech Paper,2008-01-088028.SU Ruiyi;GUI Liangjin;FAN Zijie Truss Topology Optimization Using Genetic Algorithm with Individual Identification 200929.SU Ruiyi;GUI Liangjin;FAN Zijie Topology and sizing optimization of truss structures using adaptive genetic algorithm with node matrix encoding 200930.SU Ruiyi;WANG Xu;GUI Liangjin Multi-objective topology and sizing optimization of truss structures based on adaptive multi-island search strategy 2011(02)31.Sobieski J Optimization by decomposition:a step from hierarchic to non-hierarchic systems 198832.Kroo I;Altus S;Braun R Multidisciplinary optimization methods for aircraft preliminary design 199433.Kim H M;Michelena N F;Papalambros P Y Target cascading in optimal system design 2003(03)34.De Weck O;Agte J;Sobieski J State-of-the-art and future trends in multidisciplinary design opti-mization 200735.苏瑞意;桂良进;吴章斌大客车车身骨架多学科协同优化设计 2010(018)36.Michelena N;Louca L;Kokkolaras M Design of an advanced heavy tactical trucks:A target cascading case study.SAE Tech Paper,2001-01-279337.Kim H M;Rideout D G;Papalambros P Y Analytical target cascading in automotive vehicle design 2003(03)38.赵迁;陈潇凯;林逸解析目标分流法在汽车多学科设计优化中的应用 2010(06)39.冯美斌汽车轻量化技术中新材料的发展及应用 2006(03)40.马鸣图;柏建仁汽车轻量化材料及相关技术的研究进展 2006(06)41.王利;陆匠心汽车轻量化及其材料的经济选用 2013(01)42.王广勇;王刚高强度钢在汽车轻量化中的应用 2011(01)43.桂良进;高付海;范子杰双相钢板料的单向拉伸断裂失效研究(Ⅰ)一数字图像相关技术试验 2010(02)44.高付海;桂良进;范子杰双相钢板料的单向拉伸断裂失效研究(Ⅱ)一弧长法非线性有限元分析 2010(03)45.GAO F;GUI L;Fan Z Experimental and Numerical Analysis of an In-Plane Shear Specimen Designed for Ductile Fracture Studies 2011(06)46.桂良进;高付海;范子杰先进高强度钢的断裂失效准则研究 2012(33)47.Sadagopan S Formability characterization of advanced high-strength steels48.Pickett AK;Pyttel T;Payen F Failure prediction for advanced crashworthiness of transportation vehicles 2004(07)49.Ducker Worldwide EAA Aluminium penetration in cars 201250.Hirsch Ju¨ rgen Aluminum in Innovative Light-Weight Car Design 2011(05)51.马鸣图;游江海;路洪洲汽车轻量化以及铝合金汽车板的应用 200952.詹志强铝合金汽车车身板应用现状及需求前景 201253.王丹铝合金汽车板应用及生产现状 2013(03)54.桂良进;范子杰;王青春泡沫填充圆管的轴向压缩能量吸收特性 2003(11)55.桂良进;范子杰;王青春泡沫填充圆管的动态轴向压缩吸能特性 2004(05)56.王青春;范子杰;桂良进泡沫铝填充帽型结构轴向冲击吸能特性的试验研究 2006(04)57.王青春;范子杰;桂良进中等应变率下泡沫铝的吸能特性 2005(06)58.WANG Q;FAN Z;SONG H Experimental and numerical analyses of the axial crushing behaviour of hat sections partially filled with aluminum foam 2005(05)59.WANG Q;FAN Z;GUI L A theoretical analysis for the dynamic axial crushing behaviour of aluminium foamfilled hat sections 2006(7-8)60.WANG Q;FAN Z;GUI L Theoretical analysis for axial crushing behaviour of aluminium foam-filled hat sections2007(04)61.Waurzyniak P Advanced materials in automotive:Newer steels,aluminum,magnesium,and other materials lead to more lightweight,economical vehicles 2009(03)62.Kulekci M K Magnesium and its alloys applications in automotive industry 2008(09)63.吴章斌;桂良进;范子杰AZ31B镁合金挤压板材力学性能的各向异性 2012(02)64.许江菱;钟晓萍;殷荣忠2011-2012年世界塑料工业 进展 2013(03)65.杨挺汽车工业中塑料材料应用的现状及展望 2013(05)66.ZHANG Ping;GUI Liangjin;FAN Zijie Finite element modeling of the quasi-static axial crushing of braided composite tubes 2013(01)67.ZHANG Ping;GUI Liangjin;FAN Zijie Crash energy absorption of braided composite tubes and its application in vehicle passive safety 201368.GUI Liangjin;ZHANG Ping;FAN Zijie Energy absorption properties of braided glass/epoxy tubes subjected to quasi-static axial crushing 2009(01)69.ZHANG Ping;GUI Liangjin;FAN Zijie An analytical model for predicting the elastic properties of triaxially braided composites 2009(15)70.张平;桂良进;范子杰三向编织复合材料弹性性能研究 2009(01)71.康万平;王宇;康蕾管件液压成型技术简述 2010(01)72.王习文;宗长富;郭立书管件液压成形技术及其在汽车零部件制造中的应用 2013(04)73.杨勇;徐峰;苏海波管件液压成形技术及其在副车架上的应用 2010(03) Hydroforming achieves vehicle weight and cost reduction says study 201275.Koca f da A;Sadtowska H Automotive component development by means of hydroforming 2008(03)ngerak N;Rout D K;Verma R Tube hydroforming in automotive applications 201477.陈杰管材内高压成形数值模拟与工艺研究 201378.李泷杲金属薄壁管液压成形应用基础研究 200779.任芝兰汽车用高强度钢的激光焊焊接性研究 2006(01)80.朱久发激光拼焊汽车板的应用现状与发展前景 2011(03)81.ROFIN Lasers in Automotive Industry 201482.Klaus L Laser Applications in the Automotive Industry 201183.Chen H C;Pinkerton J A Mistry,Gap-free fibre laser welding of Zn-coated steel on A1 alloy for light-weight automotive applications 2011(02)84.HYRCZA-MICHALSKA M;GROSMAN F The evaluate of laser welded tailor and tubular blanks formability for automotive vehicle elements stamping 2009(01)85.Sieben M;Brunnecker F Laser-Hybrid welding,an innovative technology to join automotive body parts 201086.Schimek M;Springer A;Kaierle S Laser-welded dissimilar steel-aluminum seams for automotive lightweight construction 201287.Vasilash G S VW Is Hot On Lasers 200488.Bea M;Brockmann R;Havrilla D Remote laser welding in automotive production 2011引用本文格式:范子杰.桂良进.苏瑞意.FAN Zijie.GUI Liangjin.SU Ruiyi汽车轻量化技术的研究与进展[期刊论文]-汽车安全与节能学报 2014(1)。

材料、结构力学名词英文

材料、结构力学名词英文

力学 mechanics 牛顿力学 Newtonian mechanics 经典力学 classical mechanics 静力学 statics 运动学 kinematics 动力学 dynamics子波 wavelet 次级子波 secondary wavele 驻波 standing wave声强 intensity of sound 声强计 phonometer 声调 intonation音色 musical quality 音调 pitch 声级 sound level声压[强] sound pressure 声源 sound source 声阻抗 acoustic impedance声抗 acoustic reactance 声阻 acoustic resistance 声导纳 acoustic admittance声导 acoustic conductance 声纳 acoustic susceptance 声共振 acoustic resonance声波 sound wave 超声波 supersonic wave 声速 sound velocity次声波 infrasonic wave 亚声速 subsonic speed又称“亚音速”。

超声速 supersonic speed又称“超音速”。

声呐 sonar 共鸣 resonance回波 echo 回声 echo 拍 beat 拍频 beat frequency群速 group velocity 相速 phase velocity 能流 energy flux能流密度 energy flux density 材料力学 mechanics of materials, strength of materials 应力 stress 法向应力 normal stress 剪[切]应力 shear stress单轴应力 uniaxial stress 双轴应力 biaxial stress 拉[伸]应力 tensile stress压[缩]应力 compressive stress 周向应力 circumferential stress纵向应力 longitudinal stress 轴向应力 axial stress弯[曲]应力 bending stress, flexural stress 扭[转]应力 torsional stress局部应力 localized stress 残余应力 residual stress 热应力 thermal stress最大法向应力 maximum normal stress 最小法向应力 minimum normal stress最大剪应力 maximum shear stress 主应力 principal stress主剪应力 principal shear stress 工作应力 working stress 许用应力 allowable stress应力集中 stress concentration 应力集中系数 stress concentration factor应力状态 state of stress 应力分析 stress analysis结构[强度]分析 structured analysis 应变 strain 剪[切]应变 shear strain法向应变 normal strain 拉[伸]应变 tensile strain 压[缩]应变 compressive strain 体积应变 volumetric strain 残余应变 residual strain 热应变 thermal strain最大法向应变 maximum normal strain 主应变 principal strain主剪应变 principal shear strain 名义应变 nominal strain应变状态 state of strain 载荷 load又称“荷载”。

流体力学英语词汇翻译.

流体力学英语词汇翻译.

流体力学英语词汇翻译(1)流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质 medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程 Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowski condition 布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid质量守恒 conservation of mass动量守恒 conservation of momentum能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure涡量拟能 enstrophy压差 differential pressure流[动] flow流线 stream line流面 stream surface流管 stream tube迹线 path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge涡旋 vortex涡量 vorticity涡丝 vortex filament涡线 vortex line涡面 vortex surface涡层 vortex layer涡环 vortex ring涡对 vortex pair涡管 vortex tube涡街 vortex street卡门涡街 Karman vortex street马蹄涡 horseshoe vortex对流涡胞 convective cell卷筒涡胞 roll cell涡 eddy涡粘性 eddy viscosity环流 circulation环量 circulation速度环量 velocity circulation偶极子 doublet, dipole驻点 stagnation point总压[力] total pressure总压头 total head静压头 static head总焓 total enthalpy能量输运 energy transport速度剖面 velocity profile库埃特流 Couette flow单相流 single phase flow单组份流 single-component flow均匀流 uniform flow非均匀流 nonuniform flow二维流 two-dimensional flow三维流 three-dimensional flow准定常流 quasi-steady flow非定常流 unsteady flow, non-steady flow 暂态流 transient flow周期流 periodic flow振荡流 oscillatory flow分层流 stratified flow无旋流 irrotational flow有旋流 rotational flow轴对称流 axisymmetric flow不可压缩性 incompressibility不可压缩流[动] incompressible flow浮体 floating body定倾中心 metacenter阻力 drag, resistance减阻 drag reduction表面力 surface force表面张力 surface tension毛细[管]作用 capillarity来流 incoming flow自由流 free stream自由流线 free stream line外流 external flow进口 entrance, inlet出口 exit, outlet扰动 disturbance, perturbation分布 distribution传播 propagation色散 dispersion弥散 dispersion附加质量 added mass ,associated mass 收缩 contraction镜象法 image method无量纲参数 dimensionless parameter几何相似 geometric similarity运动相似 kinematic similarity动力相似[性] dynamic similarity平面流 plane flow势 potential势流 potential flow速度势 velocity potential复势 complex potential复速度 complex velocity流函数 stream function源 source汇 sink速度[水]头 velocity head拐角流 corner flow空泡流 cavity flow超空泡 supercavity超空泡流 supercavity flow空气动力学 aerodynamics低速空气动力学 low-speed aerodynamics高速空气动力学 high-speed aerodynamics 气动热力学 aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流 conical flow楔流 wedge flow叶栅流 cascade flow非平衡流[动] non-equilibrium flow细长体 slender body细长度 slenderness钝头体 bluff body钝体 blunt body翼型 airfoil翼弦 chord薄翼理论 thin-airfoil theory构型 configuration后缘 trailing edge迎角 angle of attack失速 stall脱体激波 detached shock wave波阻 wave drag诱导阻力 induced drag诱导速度 induced velocity临界雷诺数 critical Reynolds number前缘涡 leading edge vortex附着涡 bound vortex约束涡 confined vortex气动中心 aerodynamic center气动力 aerodynamic force气动噪声 aerodynamic noise气动加热 aerodynamic heating离解 dissociation地面效应 ground effect气体动力学 gas dynamics稀疏波 rarefaction wave热状态方程 thermal equation of state 喷管 Nozzle普朗特-迈耶流 Prandtl-Meyer flow瑞利流 Rayleigh flow可压缩流[动] compressible flow可压缩流体 compressible fluid绝热流 adiabatic flow非绝热流 diabatic flow未扰动流 undisturbed flow等熵流 isentropic flow匀熵流 homoentropic flow兰金-于戈尼奥条件 Rankine-Hugoniot condition 状态方程 equation of state量热状态方程 caloric equation of state完全气体 perfect gas拉瓦尔喷管 Laval nozzle马赫角 Mach angle马赫锥 Mach cone马赫线 Mach line马赫数 Mach number马赫波 Mach wave当地马赫数 local Mach number冲击波 shock wave激波 shock wave正激波 normal shock wave斜激波 oblique shock wave头波 bow wave附体激波 attached shock wave激波阵面 shock front激波层 shock layer压缩波 compression wave反射 reflection折射 refraction散射 scattering衍射 diffraction绕射 diffraction出口压力 exit pressure超压[强] over pressure反压 back pressure爆炸 explosion爆轰 detonation缓燃 deflagration水动力学 hydrodynamics液体动力学 hydrodynamics泰勒不稳定性 Taylor instability盖斯特纳波 Gerstner wave斯托克斯波 Stokes wave瑞利数 Rayleigh number自由面 free surface波速 wave speed, wave velocity波高 wave height波列 wave train波群 wave group波能 wave energy表面波 surface wave表面张力波 capillary wave规则波 regular wave不规则波 irregular wave浅水波 shallow water wave深水波 deep water wave重力波 gravity wave椭圆余弦波 cnoidal wave潮波 tidal wave涌波 surge wave破碎波 breaking wave船波 ship wave非线性波 nonlinear wave孤立子 soliton水动[力]噪声 hydrodynamic noise 水击 water hammer空化 cavitation空化数 cavitation number空蚀 cavitation damage超空化流 supercavitating flow水翼 hydrofoil水力学 hydraulics洪水波 flood wave涟漪 ripple消能 energy dissipation海洋水动力学 marine hydrodynamics 谢齐公式 Chezy formula欧拉数 Euler number弗劳德数 Froude number水力半径 hydraulic radius水力坡度 hvdraulic slope高度水头 elevating head水头损失 head loss水位 water level水跃 hydraulic jump含水层 aquifer排水 drainage排放量 discharge壅水曲线 back water curve压[强水]头 pressure head过水断面 flow cross-section明槽流 open channel flow孔流 orifice flow无压流 free surface flow有压流 pressure flow缓流 subcritical flow急流 supercritical flow渐变流 gradually varied flow急变流 rapidly varied flow临界流 critical flow异重流 density current, gravity flow堰流 weir flow掺气流 aerated flow含沙流 sediment-laden stream降水曲线 dropdown curve沉积物 sediment, deposit沉[降堆]积 sedimentation, deposition沉降速度 settling velocity流动稳定性 flow stability不稳定性 instability奥尔-索末菲方程 Orr-Sommerfeld equation 涡量方程 vorticity equation泊肃叶流 Poiseuille flow奥辛流 Oseen flow剪切流 shear flow粘性流[动] viscous flow层流 laminar flow分离流 separated flow二次流 secondary flow近场流 near field flow远场流 far field flow滞止流 stagnation flow尾流 wake [flow]回流 back flow反流 reverse flow射流 jet自由射流 free jet管流 pipe flow, tube flow内流 internal flow拟序结构 coherent structure猝发过程 bursting process表观粘度 apparent viscosity运动粘性 kinematic viscosity动力粘性 dynamic viscosity泊 poise厘泊 centipoise厘沱 centistoke剪切层 shear layer次层 sublayer流动分离 flow separation层流分离 laminar separation湍流分离 turbulent separation分离点 separation point附着点 attachment point再附 reattachment再层流化 relaminarization起动涡 starting vortex驻涡 standing vortex涡旋破碎 vortex breakdown涡旋脱落 vortex shedding压[力]降 pressure drop压差阻力 pressure drag压力能 pressure energy型阻 profile drag滑移速度 slip velocity无滑移条件 non-slip condition壁剪应力 skin friction, frictional drag 壁剪切速度 friction velocity磨擦损失 friction loss磨擦因子 friction factor耗散 dissipation滞后 lag相似性解 similar solution局域相似 local similarity气体润滑 gas lubrication液体动力润滑 hydrodynamic lubrication浆体 slurry泰勒数 Taylor number纳维-斯托克斯方程 Navier-Stokes equation 牛顿流体 Newtonian fluid边界层理论 boundary later theory边界层方程 boundary layer equation边界层 boundary layer附面层 boundary layer层流边界层 laminar boundary layer湍流边界层 turbulent boundary layer温度边界层 thermal boundary layer边界层转捩 boundary layer transition边界层分离 boundary layer separation边界层厚度 boundary layer thickness位移厚度 displacement thickness流体力学英语词汇翻译(2)动量厚度 momentum thickness能量厚度 energy thickness焓厚度 enthalpy thickness注入 injection吸出 suction泰勒涡 Taylor vortex速度亏损律 velocity defect law形状因子 shape factor测速法 anemometry粘度测定法 visco[si] metry流动显示 flow visualization油烟显示 oil smoke visualization孔板流量计 orifice meter频率响应 frequency response油膜显示 oil film visualization阴影法 shadow method纹影法 schlieren method烟丝法 smoke wire method丝线法 tuft method氢泡法 nydrogen bubble method相似理论 similarity theory相似律 similarity law部分相似 partial similarity定理 pi theorem, Buckingham theorem 静[态]校准 static calibration动态校准 dynamic calibration风洞 wind tunnel激波管 shock tube激波管风洞 shock tube wind tunnel 水洞 water tunnel拖曳水池 towing tank旋臂水池 rotating arm basin扩散段 diffuser测压孔 pressure tap皮托管 pitot tube普雷斯顿管 preston tube斯坦顿管 Stanton tube文丘里管 Venturi tubeU形管 U-tube压强计 manometer微压计 micromanometer多管压强计 multiple manometer静压管 static [pressure]tube流速计 anemometer风速管 Pitot- static tube激光多普勒测速计 laser Doppler anemometer, laser Doppler velocimeter 热线流速计 hot-wire anemometer热膜流速计 hot- film anemometer流量计 flow meter粘度计 visco[si] meter涡量计 vorticity meter传感器 transducer, sensor压强传感器 pressure transducer热敏电阻 thermistor示踪物 tracer时间线 time line脉线 streak line尺度效应 scale effect壁效应 wall effect堵塞 blockage堵寒效应 blockage effect动态响应 dynamic response响应频率 response frequency底压 base pressure菲克定律 Fick law巴塞特力 Basset force埃克特数 Eckert number格拉斯霍夫数 Grashof number努塞特数 Nusselt number普朗特数 prandtl number雷诺比拟 Reynolds analogy施密特数 schmidt number斯坦顿数 Stanton number对流 convection自由对流 natural convection, free convec-tion强迫对流 forced convection热对流 heat convection质量传递 mass transfer传质系数 mass transfer coefficient热量传递 heat transfer传热系数 heat transfer coefficient对流传热 convective heat transfer辐射传热 radiative heat transfer动量交换 momentum transfer能量传递 energy transfer传导 conduction热传导 conductive heat transfer热交换 heat exchange临界热通量 critical heat flux浓度 concentration扩散 diffusion扩散性 diffusivity扩散率 diffusivity扩散速度 diffusion velocity分子扩散 molecular diffusion沸腾 boiling蒸发 evaporation气化 gasification凝结 condensation成核 nucleation计算流体力学 computational fluid mechanics多重尺度问题 multiple scale problem伯格斯方程 Burgers equation对流扩散方程 convection diffusion equationKDU方程 KDV equation修正微分方程 modified differential equation拉克斯等价定理 Lax equivalence theorem数值模拟 numerical simulation大涡模拟 large eddy simulation数值粘性 numerical viscosity非线性不稳定性 nonlinear instability希尔特稳定性分析 Hirt stability analysis相容条件 consistency conditionCFL条件 Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件 Dirichlet boundary condition熵条件 entropy condition远场边界条件 far field boundary condition流入边界条件 inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件 numerical boundary condition流出边界条件 outflow boundary condition冯.诺伊曼条件 von Neumann condition近似因子分解法 approximate factorization method人工压缩 artificial compression人工粘性 artificial viscosity边界元法 boundary element method配置方法 collocation method能量法 energy method有限体积法 finite volume method流体网格法 fluid in cell method, FLIC method通量校正传输法 flux-corrected transport method通量矢量分解法 flux vector splitting method伽辽金法 Galerkin method积分方法 integral method标记网格法 marker and cell method, MAC method特征线法 method of characteristics直线法 method of lines矩量法 moment method多重网格法 multi- grid method板块法 panel method质点网格法 particle in cell method, PIC method质点法 particle method预估校正法 predictor-corrector method投影法 projection method准谱法 pseudo-spectral method随机选取法 random choice method激波捕捉法 shock-capturing method激波拟合法 shock-fitting method谱方法 spectral method稀疏矩阵分解法 split coefficient matrix method不定常法 time-dependent method时间分步法 time splitting method变分法 variational method涡方法 vortex method隐格式 implicit scheme显格式 explicit scheme交替方向隐格式 alternating direction implicit scheme, ADI scheme 反扩散差分格式 anti-diffusion difference scheme紧差分格式 compact difference scheme守恒差分格式 conservation difference scheme克兰克-尼科尔森格式 Crank-Nicolson scheme杜福特-弗兰克尔格式 Dufort-Frankel scheme指数格式 exponential scheme戈本诺夫格式 Godunov scheme高分辨率格式 high resolution scheme拉克斯-温德罗夫格式 Lax-Wendroff scheme蛙跳格式 leap-frog scheme单调差分格式 monotone difference scheme保单调差分格式 monotonicity preserving difference scheme穆曼-科尔格式 Murman-Cole scheme半隐格式 semi-implicit scheme斜迎风格式 skew-upstream scheme全变差下降格式 total variation decreasing scheme TVD scheme 迎风格式 upstream scheme , upwind scheme计算区域 computational domain物理区域 physical domain影响域 domain of influence依赖域 domain of dependence区域分解 domain decomposition维数分解 dimensional split物理解 physical solution弱解 weak solution黎曼解算子 Riemann solver守恒型 conservation form弱守恒型 weak conservation form强守恒型 strong conservation form散度型 divergence form贴体曲线坐标 body- fitted curvilinear coordi-nates[自]适应网格 [self-] adaptive mesh适应网格生成 adaptive grid generation自动网格生成 automatic grid generation数值网格生成 numerical grid generation交错网格 staggered mesh网格雷诺数 cell Reynolds number数植扩散 numerical diffusion数值耗散 numerical dissipation数值色散 numerical dispersion数值通量 numerical flux放大因子 amplification factor放大矩阵 amplification matrix阻尼误差 damping error离散涡 discrete vortex熵通量 entropy flux熵函数 entropy function分步法 fractional step method广义连续统力学 generalized continuum mechanics简单物质 simple material纯力学物质 purely mechanical material微分型物质 material of differential type积分型物质 material of integral type混合物组份 constituents of a mixture非协调理论 incompatibility theory微极理论 micropolar theory决定性原理 principle of determinism等存在原理 principle of equipresence局部作用原理 principle of objectivity客观性原理 principle of objectivity电磁连续统理论 theory of electromagnetic continuum内时理论 endochronic theory非局部理论 nonlocal theory混合物理论 theory of mixtures里夫林-矣里克森张量 Rivlin-Ericksen tensor声张量 acoustic tensor半向同性张量 hemitropic tensor各向同性张量 isotropic tensor应变张量 strain tensor伸缩张量 stretch tensor连续旋错 continuous dislination连续位错 continuous dislocation动量矩平衡 angular momentum balance余本构关系 complementary constitutive relations共旋导数 co-rotational derivative, Jaumann derivative 非完整分量 anholonomic component爬升效应 climbing effect协调条件 compatibility condition错综度 complexity当时构形 current configuration能量平衡 energy balance变形梯度 deformation gradient有限弹性 finite elasticity熵增 entropy production标架无差异性 frame indifference弹性势 elastic potential熵不等式 entropy inequality极分解 polar decomposition低弹性 hypoelasticity参考构形 reference configuration响应泛函 response functional动量平衡 momentum balance奇异面 singular surface贮能函数 stored-energy function内部约束 internal constraint物理分量 physical components本原元 primitive element普适变形 universal deformation速度梯度 velocity gradient测粘流动 viscometric flow当地导数 local derivative岩石力学 rock mechanics原始岩体应力 virgin rock stress构造应力 tectonic stress三轴压缩试验 three-axial compression test 三轴拉伸试验 three-axial tensile test三轴试验 triaxial test岩层静态应力 lithostatic stress吕荣 lugeon地压强 geostatic pressure水力劈裂 hydraulic fracture咬合[作用] interlocking内禀抗剪强度 intrinsic shear strength循环抗剪强度 cyclic shear strength残余抗剪强度 residual shear strength土力学 soil mechanics孔隙比 void ratio内磨擦角 angle of internal friction休止角 angle of repose孔隙率 porosity围压 ambient pressure渗透系数 coefficient of permeability [抗]剪切角 angle of shear resistance渗流力 seepage force表观粘聚力 apparent cohesion粘聚力 cohesion稠度 consistency固结 consolidation主固结 primary consolidation次固结 secondary consolidation固结仪 consolidometer浮升力 uplift扩容 dilatancy有效应力 effective stress絮凝[作用] flocculation主动土压力 active earth pressure被动土压力 passive earth pressure土动力学 soil dynamics应力解除 stress relief次时间效应 secondary time effect贯入阻力 penetration resistance沙土液化 liquefaction of sand泥流 mud flow多相流 multiphase flow马格努斯效应 Magnus effect韦伯数 Weber number环状流 annular flow泡状流 bubble flow层状流 stratified flow平衡流 equilibrium flow二组份流 two-component flow冻结流 frozen flow均质流 homogeneous flow二相流 two-phase flow气-液流 gas-liquid flow气-固流 gas-solid flow液-气流 liquid-gas flow液-固流 liquid-solid flow液体-蒸气流 liquid-vapor flow浓相 dense phase稀相 dilute phase连续相 continuous phase离散相 dispersed phase悬浮 suspension气力输运 pneumatic transport气泡形成 bubble formation体密度 bulk density壅塞 choking微滴 droplet挟带 entrainment流型 flow pattern流[态]化 fluidization界面 interface跃动速度 saltation velocity非牛顿流体力学 non-Newtonian fluid mechanics 非牛顿流体 non-Newtonian fluid幂律流体 power law fluid拟塑性流体 pseudoplastic fluid触稠流体 rheopectic fluid触变流体 thixotropic fluid粘弹性流体 viscoelastic fluid流变测量学 rheometry震凝性 rheopexy体[积]粘性 bulk viscosity魏森贝格效应 Weissenberg effect流变仪 rheometer稀薄气体动力学 rarefied gas dynamics物理化学流体力学 physico-chemical hydrodynamics 空气热化学 aerothermochemistry绝对压强 absolute pressure绝对反应速率 absolute reaction rate绝对温度 absolute temperature吸收系数 absorption coefficient活化分子 activated molecule活化能 activation energy绝热压缩 adiabatic compression绝热膨胀 adiabatic expansion绝热火焰温度 adiabatic flame temperature电弧风洞 arc tunnel原子热 atomic heat雾化 atomization自燃 auto-ignition自动氧化 auto-oxidation可用能量 available energy缓冲作用 buffer action松密度 bulk density燃烧率 burning rate燃烧速度 burning velocity接触面 contact surface烧蚀 ablation。

工程热力学第1章-基本概念

工程热力学第1章-基本概念

两者关系:
v

1

河北理工大学
1-4 平衡状态
工程热力学
一、平衡状态(thermodynamic equilibrium state)
1.定义:无外界影响系统保持状态参数不随时间而改变的状态
热平衡(thermal equilibrium) : 在无外界作用的条件下,系统内部、系统与外界 处处温
度相等。
河北理工大学
四、逆向循环(reverse cycle)
▲制冷循环(refrigeration cycle) ▲热泵循环(heat-pump cycle)
工程热力学
一般地讲:输入净功; 在状态参数图逆时针运行; 吸热小于放热。
河北理工大学
五、循环经济性指标:
收益 代价
动力循环: 热效率(thermal efficiency)
河北理工大学
三、热量(heat)
1.定义:仅仅由于温差而 通过边界传递的能量。
2.符号约定:系统吸热“+”; 放热“-”
3.单位: J kJ
4.计算式及状态参数图
(T-s图上)表示
2
Q TdS
(可逆过程)
1
δQ TdS
热量是过程量
河北理工大学
工程热力学
四、热量与功的异同:
1.均为通过边界传递的能量;
热力学温标单位:开尔文,K。水的三相 点的温度,即固相、液相和气相平衡共 存状态的温度作为基准点,并规定为 273.16K。
t T 273.15
C
K
河北理工大学
河北理工大学
工程热力学
工程热力学
华氏温标和摄氏温标
{t} ℃=5/9[{t} ℉-32] {t} ℉ =9/5{t} ℃ +32

螺旋挤压条件下连续泡沫金属制备1

螺旋挤压条件下连续泡沫金属制备1

螺旋挤压条件下连续泡沫金属制备作者:张楠,梁朝燕,李娜指导教师:高玉周(大连海事大学交通运输装备与海洋工程学院,辽宁省大连市 116026)摘要:本设计采用螺旋挤压机构,靠挤压螺杆的推动使物料被迫曲折前进,经过混合、压缩,在推进力和摩擦力机械作用下受压变热,在腔体内达到高温(150-200ºC)、高压状态(106N/m2),此状态下金属物料中积蓄的大量能量,在膨化的瞬间,由高压变为常压,同时有巨大的能量释放,使物料中的起泡剂蒸发膨胀并冷却,金属物料的体积也随之膨胀。

挤压膨化后,凝固结晶,形成泡沫多孔金属。

关键词:螺旋挤压、泡沫金属、膨化the form of metal foam under the conditions of screw extrusionAbstract:This design using the screw extrusion mechanism, the material is forced to go forward relying on extrusion screw drive. After mixing, compression, it gets hot under the action of the propulsive force and friction force , and the body cavity gets high temperature (150-200 ºC)), and high pressure (106N/m2).Under the condition, the metal material saving a great deal of energy, in bulking moment,a large energy release by high pressure to atmospheric pressure, making the material of the foaming agent evaporation expansion and cooling, then the volume of the metal material inflate. After extrusion bulking, solidification, it forms foam porous metal.Key words:screw extrusion,foam porous metal,inflation一、引言多孔金属材料由连续的固相骨架和孔隙所组成的,在近些年来发展非常迅速,业已成为一种兼具功能和结构双重属性的性能优异的工程材料。

室温下TC11钛合金准静态拉伸力学性能实验研究

室温下TC11钛合金准静态拉伸力学性能实验研究

室温下TC11钛合金准静态拉伸力学性能实验研究牛秋林;陈明;明伟伟【摘要】针对典型航空材料TC11钛合金的拉伸性能,采用准静态拉伸实验对不同应变率条件下的TC11钛合金的应力-应变关系进行了研究,利用扫描电镜分析了其拉伸断口形貌.实验结果表明:TC11钛合金具有一定的应变率敏感性,抗拉强度和屈服强度均会受到应变率的影响;准静态拉伸时TC11钛合金试样出现了颈缩现象,试样截面形状为杯锥状,试样断口存在光滑的剪切唇区和灰色的纤维区,其断裂属于韧性断裂,但是其韧性较差;TC11钛合金拉伸断口形貌主要为大小不一的韧窝,随着应变率的增大,试样拉伸断口韧窝的大小和深度均变小,同时出现了少量的撕裂棱和准解理面,试样的断裂机制为以韧性断裂为主和伴有准解理断裂.因此,在准静态拉伸条件下,TC11钛合金的力学行为与应变率有关.%According to the tensile properties of typical aerospace material TC11 titanium alloy, the stress-strain relationship is studied using the quasi-static tensile test at different strain rates, and the tensile fracture morphology is analyzed with SEM.The experimental results show that TC11 titanium alloy has certain strain rate sensitivity, and both tensile strength and yield strength are affected by strain rate.During quasi-static tension test, TC11 titanium alloy specimen has the phenomenon of neck shrinkage.The section of the specimen is cuppy, and there is smooth shear lip zone and grey fiber area in the sample fracture.The fracture of the samples belongs to ductile fracture, but its toughness is poor.The tensile fracture morphology of TC11 titanium alloy is mainly the dimple with different sizes, but with the increase of strain rate, the size and the depth of dimple at the tensile fracture aresmaller, and the fracture surface produces a small number of tearing edges and quasi-cleavage plane, and the fracture mechanism of the specimen is mainly ductile fracture and quasi-cleavage fracture.Therefore, the mechanical behavior of TC11 titanium alloy is related to strain rate under quasi-static tensile condition.【期刊名称】《河北科技大学学报》【年(卷),期】2017(038)004【总页数】5页(P320-324)【关键词】材料力学;TC11钛合金;准静态拉伸;力学性能;断口形貌【作者】牛秋林;陈明;明伟伟【作者单位】湖南科技大学机电工程学院,湖南湘潭 411201;上海交通大学机械与动力工程学院,上海 200240;上海交通大学机械与动力工程学院,上海 200240【正文语种】中文【中图分类】TG146.2钛合金由于具有优良的机械性能而受到广泛关注[1-2]。

Yoshimura折纸管轴向压溃吸能特性分析

Yoshimura折纸管轴向压溃吸能特性分析
图,表1为吸能特性评价指标。初始压溃峰值载荷 Fr”x代表初始峰值力,反映碰撞的激烈程度,数值过 大会产生较大的加速度,易造成人员损伤;平均压溃 载荷Fman、总吸能%反应吸收能量的多少;载荷效 率CE反映能量吸收过程的均匀性 ,数值越大,在碰 撞冲击过程中吸能均匀性越好,越有利于保护乘员 安全。
圆形直管和六边形直管相比:圆形直管初始压 溃峰值载荷、平均压溃载荷、总吸能高但载荷效率 低,说明圆形直管初始峰值力大,吸能多但吸能均匀 性差;六边形直管初始峰值力较小,吸能少但吸能均 匀性好。三种构型的吸能管相比:Yoshimura折纸 管初始压溃峰值载荷最小,平均压溃载荷、总吸能、 载荷效率最高,说明Yoshimura折纸管初始峰值力 最小、吸能最多且吸能均匀性最好;同时,从压溃载 荷一位移曲线中可以看出Yoshimura折纸管后期 呈上扬趋势,说明其吸能潜力更高。数值分析结果 表明 ,Yoshimura 折纸管吸能效果最好, 圆 形 直管吸 能多于六边形直管, 六边 形 直管 吸 能均匀 性 优于 圆 形直管。
为了研究吸能管结构形状对吸能效果的影响 ,
本文采用传统的圆形直管、六边形直管与Yoshimura 折纸管作为研究对象。 如图)所示, 三种形状吸
能管的外接圆半径R = 50mm,总高度Hh = 240mm,壁厚t = 2mm。材料选用弹塑性材料,弹性 模量为205GPa,泊松比为0. 3,屈服强度为 235MPa,极限强度为375MPa。本文采用S3R壳单 元对吸能管进行网格划分,考虑到求解精度与效率, 网格尺寸约为6mm。
(d)
(b)正视图
(c)俯视图
图1 Yoshimura折纸管
(d)平面镶嵌图
3有限元分析
有限元方法将结构离散为有限个单元,单元之间 通过节点连接。通过建立平衡方程,可以求解节点的 位移和应力等物理量。通用有限元软件ABAQUS在 解决大变形、强非线性问题方面有较强的稳定性和较 高的精度,因此本文选用ABAQUS进行数值分析闪。 3. 1有限元模型的建立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

International Journal of Mechanical Sciences 43(2001)2103–2123Quasi-static axial compression of thin-walled circular aluminium tubesS.R.Guillow a ,G.Lu a ;∗,R.H.Grzebieta ba School of Engineering and Science,Swinburne University of Technology,PO Box 218,Hawthorn,Victoria 3122,Australiab Department of Civil Engineering,Monash University,Clayton,Victoria 3168,AustraliaReceived5October 2000;receivedin revisedform 26March 2001AbstractThis paper presents further experimental investigations into axial compression of thin-walledcircular tubes,a classical problem studied for several decades.A total of 70quasi-static tests were conducted on circular 6060aluminium tubes in the T5,as-receivedcond ition.The range of D=t considered was expanded over previous studies to D=t =10–450.Collapse modes were observed for L=D 610anda mod e classiÿcation chart developed.The average crush force,F AV ,was non-d imensionalisedandan empirical formula establishedas F AV =M P =72:3(D=t )0:32.It was foundthat test results for both axi-symmetric and non-symmetric modes lie on a single prehensive comparisons have been made between existing theories andour test results for F AV .This has revealedsome shortcomings,suggesting that further theoretical work may be required.It was found that the ratio of F MAX =F AV increasedsubstantially with an increase in the D=t ratio.The e ect of ÿlling aluminium tubes with di erent density polyurethane foam was also brie y examined.?2001Elsevier Science Ltd.All rights reserved.Keywords:Axial compression;Circular tube;Foam;Plastic collapse;Thin-walledtubes0.IntroductionThe behaviour of thin-walledmetal tubes subjectedto axial compression has been stud iedfor many years.Such tubes are frequently usedas impact energy absorbers andReid[1]has pre-sented a general review of deformation mechanisms.Fig.1shows a typical force–displacement curve for quasi-static loading.Generally speaking,the axial load rises until a ÿrst buckle is formedat a characteristic maximum force value,F MAX .This initial buckling behaviour is well ∗Corresponding author.Fax:+61-3-9214-8264.E-mail address:glu@.au (G.Lu).0020-7403/01/$-see front matter ?2001Elsevier Science Ltd.All rights reserved.PII:S 0020-7403(01)00031-52104S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–2123NomenclatureD average diameterF AV average axial forceF MAX maximum axial force forÿrst peakg acceleration due to gravityH half-wavelength of foldL lengthM P full plastic bending moment of tube wall per unit lengthm geometric eccentricity factor—i.e.ratio of outward s foldlength to total foldlength N number of circumferential lobes(or corners)in non-symmetrical bucklingR average radiust wall thickness of tubeV Vickers hardness number(kg=mm2)e e ective crushing distancef density of foam0 ow stress0:20.2%proof stressult ultimate tensile stressFig.1.Typical load–de ection curve for an axially loaded thin-walled metal tube which collapsed by progressive folding.S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–21232105Fig.2.Examples of various collapse modes for thin-walled circular6060-T5aluminium tubes under axial load-ing(more examples shown in Fig.11):(a)axi-symmetric mode(D=97:9mm;t=1:9mm;L=196mm);(b)non-symmetric mode(D=96:5mm;t=0:54mm;L=386mm);(c)mixedmod e(D=97:5mm; t=1:5mm;L=350mm).known and will not be studied in depth here.Thereafter,depending on geometrical parameters such as the ratios of D=t(diameter=thickness)and L=D(length=diameter)and also on material properties,there are a variety of possible modes of collapse.Generally,collapse involves plastic2106S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–2123Fig.3.Schematic axial view of non-symmetric or diamond collapse mode.Two cases are shown,N=3and4 circumferential lobes.buckling andthe formation of progressive fold s(whether axi-symmetric or non-symmetric).The formation of these folds causes the characteristic uctuation in the axial force shown in Fig.1. This plastic collapse behaviour is of primary interest in this paper.Experimentally the following modes of collapse have been observed and Fig.2shows some typical examples:(i)axi-symmetric concertina bellowing,(ii)non-symmetric buckling(also known as diamond or Yoshimura mode),with a variable number of circumferential lobes or corners(refer to Fig.3),(iii)mixed mode(combination of the two previous modes),(iv)Euler or global buckling;and(v)other(simple compression,single fold s,etc.).Research on circular tubes in the past has generally concentratedon annealedaluminium or steel tubes with D=t ratios between10and150.It is common ind ustrial practice to use aluminium alloys in the heat treatedas-receivedcond ition,but little research appears to have addressed this particular case.Moreover,Gupta and Gupta[2]have identiÿed metal temper as one of the signiÿcant factors in determining behaviour.Hence,it was decided to undertake an experimental program to extendthe range of research up to approximately D=t=450andto test aluminium alloy tubes which were in the heat treatedas-receivedcond ition.This work is of potential application in civil,mechanical,marine andaeronautical engineeringÿeld s.1.Review of previous studiesThe following section summarises the available literature on the plastic collapse behaviour of thin-walledcircular metal tubes subject to quasi-static axial load ing.It is arrangedbroad ly in a chronological order.Theÿrst signiÿcant work to address the mechanics underlying the observed behaviour of axially load edthin-walledtubes was by Alexand er[3].He proposeda simple mod el for the axi-symmetric foldpattern(refer to Fig.4)basedon experiments with metal tubes of D=t= 29–89.At a global level,external work done was equated with internal work from bending at three stationary plastic hinges andcircumferential stretching of the metal between the hinges.S.R.Guillow et al./International Journal of Mechanical Sciences 43(2001)2103–21232107Fig.4.Axi-symmetric collapse mechanism assumedby Alexand er [3].Thus the following theoretical equation was obtainedfor average crush force (axi-symmetric folds):F AV =K o t1:5√D;(1)where K is a constant and o is the ow stress.Also,plastic half-wavelength,H (refer to Fig.4)was determined as follows:H =C √Dt;(2)where C is a constant.The experimental results observedby Alexand er were generally in agreement with the above two equations.Although simple,this model seems to re ect the und erlying physical processes involvedandmany subsequent researchers have usedit as a starting point.Pugsley andMacaulay [4]were among the ÿrst researchers to consid er the non-symmetric folding mode,their study being largely empirical.Johnson et al.[5]attempted to develop a theory for the non-symmetric mode based on the actual geometry of folding,with the tube material at the mid-surface being considered inextensional.Hence they were able to develop equations to predict average axial crush force,F AV .However,agreement between their model andtest results for P.V.C.tubes was not particularly good .In 1978Magee andThornton [6]cond ucteda review of previous work by researchers who hadcond uctedaxial crushing tests on circular metal tubes.By consid ering these collectedd ata they d evelopeda number of empirical equations which involvedthe speciÿc ultimate tensile strength of the metal.Andrews et al.[7]conducted a comprehensive series of tests on annealed aluminium alloy tubes covering a wide range of D=t (4–60)and L=D (0:2–8:8).Consequently,they developed a collapse mode classiÿcation chart which predicted the mode of collapse for any given D=t and L=D combination.2108S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–2123Fig.5.Axi-symmetric mod el usedby Abramowicz andJones[8,9].H is the half-wavelength of the fold. Abramowicz andJones[8,9]cond uctedaxial compression tests on a range of thin-walledcir-cular andsquare steel tubes.They analytically consid eredboth axi-symmetric andnon-symmetric modes.Abramowicz introduced the important concept of e ective crushing distance, e(refer to Fig.5),where a foldconsistedof two equal rad ii segments of length H,curvedin opposite d irections andthe material hadÿnite thickness.For axi-symmetric folds,Abramowicz and Jones[9]developed the following equation in1986 (anda similar one in1984[8]):F AV M P =[25:23D=t+15:09][0:86−0:568t=D];(3)where M P= o(t2=4):For non-symmetric fold s,in1984[8]and1986[9]Abramowicz andJones commencedwith two di erent starting relationships.Taking into account e ective crushing distance,material strain rate,etc.,resultedin two d i erent equations for average crush force.The simple relation-ship d evelopedin1984[8]appliedregard less of the number of lobes:F AV M P =86:14Dt0:33:(4)However,thisÿnding appears to have developed from work carried out by Wierzbicki and Abramowicz[10]on rectangular rather than circular tubes.On the other hand,the relationshipS.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–21232109Fig.6.Collapse mechanism assumedby Grzebieta[12]for axi-symmetric mod e. Abramowicz andJones d erivedin1986[9]was of the formF AV M P =A N1Dt+A N2;(5)where A N1and A N2are constants which were a function of the number of lobes.For further details the reader is directed to this reference.In Refs.[8,9],Abramowicz andJones observedthat reasonable agreement existedbetween pred ictions of average crush load s basedon the above notedequations andtheir experimental results for steel tubes with D=t=9–65.In a subsequent work,Abramowicz andJones[11] reportedon further tests andsummarisedtheirÿnd ings for both static andd ynamic load ing cases in two failure mode maps,adding to the previous work by Andrews et al.[7].Gupta andGupta[2]performeda series of quasi-static axial compression tests on thin-walled aluminium andmildsteel circular tubes in both the annealedandas-receivedcond itions.They combinedall results andd evelopedempirical equations for the average crushing force in terms of the Vickers hardness and D=t.Grzebieta[12–14]useda strip methodto analyse both axi-symmetric andnon-symmetric folding modes.He equated external work done with internal energy from horizontal,inclined and travelling plastic hinges as well as stretching of the metal,to produce equations for determining the instantaneous forces involved.Unfortunately,these equations do not yield simple expressions for determining the average crush force.Grzebieta’s collapse mechanism model for axi-symmetric mode(refer to Fig.6)was a mod-iÿcation of Alexand er’s.A foldconsistedof three equal lengths,two of which were curves of equal rad ius andthe thirda straight line segment.For the non-symmetric mod e Grzebieta analysedthe fold s as a half-d iamondmechanism.Grzebieta carriedout static andd ynamic tests on steel tubes with D=t=30–300.2110S.R.Guillow et al./International Journal of Mechanical Sciences 43(2001)2103–2123Fig.7.Axi-symmetric mod el usedby Wierzbicki [15]andSingace et al.[16,17].Wierzbicki et al.[15]introduced a new model for the axi-symmetric collapse mechanism (shown simpliÿed in Fig.7)which allows for both inwards and outwards radial displacement.The geometry is governedby an arbitrary geometric eccentricity factor,m ,which is deÿned as the ratio of outwardfoldlength to total foldlength.By consid ering energy rate equations Wierzbicki et al.[15]were able to develop equations for not only determining average crush load but also a representative load–de ection history.The latter helped explain the experi-mental observation that sometimes there are two force peaks during the formation of a single fold.Singace et al.[16,17]extended upon the previous work by Wierzbicki et al..For the axi-symmetric mode,they considered a global energy balance leading to an implicit equation for m ,which when solvedgave a theoretical constant value of m =0:65.In their secondpa-per [17],Singace et al.reportedgoodexperimental agreement with the pred ictedvalue of 0:ter,Singace et al.[18]re-considered the eccentricity factor,m ,for the non-symmetric mode case.From the results of experiments on a small range of circular metal tubes they de-duced that the factor m was (surprisingly)approximately constant at m =0:65for this mode also.The equations developed by Singace et al.[17,18]for calculating average axial crush force are as follows.For axi-symmetric mode:F AV M P =22:27 D t+5:632:(6)For non-symmetric mode:F AV M P =− 3N +2 2N tan 2N D t :(7)One particular problem of interpretation arises with most theoretical equations developed for non-symmetric mode collapse,for example Eq.(7).They require a knowledge of the number of lobes,N ,at a given D=t ratio.We have not foundany publishedequation entirely satisfactory in determining N .S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–21232111Fig.8.Experimental set-up.With regardto energy absorption,it has been suggestedthatÿlling metal tubes with low-density polyurethane foam(to provide wall stability)may be preferable to increasing the wall thickness.Early investigations into the e ectiveness of this foamÿlling methodwere cond ucted by Thornton[19]and Lampinen and Jeryan[20].Reid,Reddy and Gray[21]have conducted experiments on the axial compression of thin-walledrectangular metal tubes which hadbeen ÿlledwith foam.Red d y andWall[22]subsequently testedfoamÿlledcircular aluminium alloy cans.Academic opinion appears to be divided about the relative beneÿts of foamÿlling versus increasing the wall thickness.2.Test procedure and material propertiesA series of approximately70axial compression tests were conducted under quasi-static condi-tions.Tests were carriedout on a SHIMAD ZU universal testing machine which appliedthe axial loadthrough at endplatens(refer to Fig.8).Cross-headspeedwas approximately5mm=min.A LABTECH data-logger recorded the data digitally for later analysis.The tubes tested were made from commercial quality extruded6060aluminium alloy in the as-received,heat treated T5condition.Mechanical properties were determined from tensile testing of coupons cut from several tubes.Fig.9shows a stress–strain curve for a typical tensile test specimen which hada0.2%proof stress, 0:2,of180MPa,an ultimate stress, ult, of212MPa anda Vickers hard ness,V,of73kg=mm2.By averaging results from several tensile tests we were able to determine an empirical relation between the0.2%proof stress and Vickers hardness for this particular type of alloy as follows:Vg= 0:2=3:92,where g=9:81m=s2is the gravitational acceleration.2112S.R.Guillow et al./International Journal of Mechanical Sciences43(2001)2103–2123Fig.9.Typical tensile stress–strain curve for6060-T5aluminium.Fig.10.Stress–strain curves for polyurethane foams of three di erent densities.The variety of commercial tubes available was insu cient to achieve the full range of D=t values we required.To produce tubes with very large D=t ratios,the outside surface of stock tubes was machined to produce the wall thickness desired.Theÿnal thickness,mean diameter and Vickers hardness were measured for each compression testpiece.Vickers hardness read-ings were usedto quantify the mechanical properties of each tube testpiece through the above equation.A representative sample of these tube properties andthe results of our testing may be foundin the append ix.Most tests involvedempty aluminium alloy tubes.However,some tests were carriedout on aluminium alloy tubes which hadbeenÿlledwith polyurethane foam.This polyurethane foam usually comes as a two part mix(base andaccelerator)andwe usedthree d i erent d ensities (35,60and140kg=m3)during testing.Fig.10shows typical compressive stress–strain curvesfor the three di erent density foams,which were obtained from axial compression tests on 96mm diameter cylindrical foam blanks unrestrained laterally.3.Experimental results and discussionOur experimental results are summarisedon the following pages in terms of the collapse mode,average force F AV,force ratio F MAX=F AV,eccentricity factor m andthe e ect of foam ÿlling.3.1.Collapse modeFurther examples of collapse modes are shown in Fig.11,in addition to those shown in Fig.2.Of particular interest was the non-symmetric mode(refer to Fig.2b)which has multiple corners(or lobes).We observedthat for tubes with an increasing D=t ratio,the number ofFig.11.Further examples of collapse modes for axially loaded thin-walled6060-T5aluminium tubes: (a)mixedmod e(D=57:1mm;t=1:15mm;L=628mm);(b)three sided non-symmetric folding (D=57:1mm;t=1:15mm;L=628mm);(c)Euler buckling(D=58mm;t=2:0mm;L=566mm).Fig.12.Schematic axial view of spiralling non-symmetric folding with N=312lobes,from Grzebieta[13].Fig.13.Mode classiÿcation chart for circular6060-T5aluminium tubes. circumferential lobes also increasedfrom2up to5or6.At high values of D=t(¿200),the number of lobes often variedd uring testing(in one case erratically between3,4and5lobes). The number of lobes,N,was not always an integer—for example,in some cases we observed a relatively stable pattern with312lobes in a spiralling arrangement(refer to Fig.12).In other cases the lobes were simply incompletely formed.From our test results for as-received6060-T5aluminium tubes a mod e classiÿcation chart was produced,see Fig.13.This chart is divided up into areas which correspond,approximately, to the di erent modes of collapse.The general shape of our chart is similar to that produced by And rews et al.[7],who testedannealedaluminium tubes.However,there are noticeable di erences in the location of the lines delineating the various areas.For example,consider analuminium tube with D=t=50and L=D=10.From our chart we wouldexpect a mixedmod eFig.14.Plot of non-dimensional experimental average force F AV=M P versus D=t.collapse but from Andrews et al.chart an Euler collapse is indicated.Note that a logarithmic scale is usedfor D=t on our chart in order to cover the wider range of D=t values considered.It may be observed broadly from our chart that non-symmetric mode is present when D=t¿100, while axi-symmetric mode occurs when D=t¡50and L=D¡2.3.2.Average crush forceOne of the most signiÿcant parameters for quantifying the behaviour of axially compressed tubes is the average crush force F AV.This is usually expressednon-d imensionally as a ratio F AV=M P.When calculating the plastic moment,M P,di erent researchers have used various di erent measures for the ow stress, 0.Since our tests involvedonly aluminium we chose to take the value of0.2%proof stress, 0:2,as the ow stress.Thus e ectively:M P= 0:2(t2=4):Fig.14shows our test results for non-dimensionalised average axial force,F AV=M P,plotted logarithmically versus D=t.There is only a relatively small amount of experimental scatter(some points shown represent more than one test result).Note that when calculating the average axial force,F AV,results for the initial peak have been ignored.From Fig.14it can be seen that when plottedlogarithmically,all the results(whether axi-symmetric,non-symmetric or mixed modes)approximately form a straight line.Hence,we obtained the following empirical relation for6060-T5aluminium alloy tubes:F AV M P =72:3Dt0:32:(8)This equation is of similar form to Eq.(4)proposedby Abramowicz andJones in1984[8] for non-symmetric mode but quite di erent from the corresponding equation proposed by Gupta andGupta[2].parison of present experimental results for average crush force with empirical equations of Gupta and Gupta[2].parison of experiment and theory for average forceThe following paragraphs are a subjective comparison between our experimental results for average crush force,F AV,andvarious theories andempirical relationships.Fig.15shows our test results for F AV comparedwith empirical equations by Gupta andGupta [2].They usedVickers hard ness,V,to characterise material properties.These equations were determined from tests on metal tubes with a relatively small range of dimensions(D=t=10–33, L=D=2–3).In view of this,agreement for both axi-symmetric andnon-symmetric mod es is quite goodin the range D=t=10–100.For D=t¿100,their curve for axi-symmetric mode is closer to our experimental test points than their non-symmetric one,even though the actual collapse mode exhibited was non-symmetric.Fig.16shows our test results for average force,comparedwith equations d evelopedby Abramowicz andJones[8].From thisÿgure it may be seen that agreement for both axi-symmetric and non-symmetric modes is fair.Their axi-symmetric equation predicts average forces which are rather low comparedwith our test points.On the other hand,their equation for non-symmetric mode,Eq.(4),predicts average forces which are rather high compared with our test points. Nevertheless,it may be notedfrom Fig.16that the slope of the line representing Eq.(4) (non-symmetric mode)is almost the same as our test points.This is also evident from a comparison of Eqs.(4)and(8).Fig.17shows our test results for average force,F AV,comparedwith the theoretical equations d evelopedby Abramowicz andJones[9].Their axi-symmetric Eq.(3)estimates an average force which is still low comparedwith our test results,but closer to our test points than their 1984prediction.In the case of non-symmetric collapse,Abramowicz and Jones[9]developed Eq.(5),which produces a family of lines,one for each value of N.Thus,we needto know the number of lobes,N,in order to interpret Fig.17.From the appendix it will be noted that formost of the tubes we tested,N falls in the range N=3–4.Agreement between their theory andparison of present experimental results for average force with theory by Abramowicz andJones[8].parison of present experimental results for average force with theory by Abramowicz andJones[9]. our test points is goodin this range.For cases with low D=t values(¡50),where N¡3,their prediction for F AV is rather low.For high values of D=t(¿300),where N¿4,their predicted value for F AV is rather high.Nevertheless,overall it appears that this methodof pred icting F AV is satisfactory.Fig.18shows our test results for average force comparedwith the equations d evelopedby Singace et al.[17,18].Their equation for axi-symmetric mode,Eq.(6),gives values for F AV which are much too low comparedwith our test points.In the case of non-symmetric mod e, their Eq.(7),when plottedon logarithmic axes prod uces a series of very steep lines,one for each number of lobes,N.This makes the process of interpretation even more di cult. Determining the precise number of corners or lobes for each test specimen presents somepractical di culties.As has previously been noted,if D=t¿200we sometimes observedthatparison of present experimental results for average force with theory by Singace et al.papers [16–18].the number of lobes variedd uring the one test.Nevertheless,on Fig.18test points are shown for which we felt conÿdent of the lobe number.It will be noted that the lines representing the Singace et al.Eq.(7)are not inconsistent with our test points although agreement is not close.However,we observedthat when the number of lobes variedd uring testing there was not a corresponding variation in the instantaneous crush force.This observation casts doubt on the validity of Eq.(7),as the large gaps between the lines in Fig.18suggest there should be a large variation in crush force with a change in the number of lobes,N .3.4.Discussion of average forceAt this stage the following observations may be made.In general,the existing theories produce numerical predictions for average force which are reasonable only for a limited range of D=t .Comparison of our test results with these theories has revealedtwo fund amental features which remain inexplicable at present.The ÿrst feature is that all our test points,regardless of mode of collapse (axi-symmetric or non-symmetric),lie on one curve whereas the theories treat these modes quite separately.Further,most theories for non-symmetric mode predict average forces which are a function of the number of lobes but experimentally this does not appear to be the case.The second,more important,feature relates to the functional dependence of average force on D=t .Our experiments clearly show that F AV =M P is empirically dependent on (D=t )0:32.Existing theories for axi-symmetric mode,however,suggest that F AV =M P should be dependent on D=t .In the case of non-symmetric mode,a wide variety of theories have been suggested;typically F AV =M P is seen as being a linear function of D=t as for the Singace et al.Eq.(7).An exception to this is Eq.(4)d evelopedby Abramowicz andJones [9],where F AV =M P was proportional to (D=t )0:33.However,as previously noted,this equation appears to have developed from work by Wierzbicki andAbramowicz [10]on rectangular rather than circular tubes.Thus it seemsFig.19.F MAX=F AV force ratio versus D=t.that for circular tubes a rigorous theoretical explanation of the D=t exponent of13is still to be developed.3.5.Force ratio F MAX=F AVIn a previous paper,Guillow andLu[23]id entiÿedthe force ratio F MAX=F AV as being of some interest.In that paper it was notedthat F MAX=F AV variedas a function of D=t ratio(this has also been notedby other researchers).The variation in force ratio highlights the fact that the mechanics of formation of the initial and subsequent folds is substantially di erent.Fig.19 shows the results of our more recent tests at larger values of D=t.The F MAX=F AV ratio appears to be monotonically increasing up to D=t=450.Variability in the F MAX=F AV ratio increased markedly for D=t¿100.This scatter couldbe d ue to signiÿcant variation in the initial buckling force,F MAX,at large values of D=t.Incidently,the common wisdom attributes the scatter of initial buckling force to imperfection sensitivity of thin-walled shells.However,Calladine[24]has recently provided an alternative explanation basedon post-buckling consid erations.3.6.Eccentricity factor mWhen folds occur during progressive buckling,they form partly on the outside and partly on the inside of the original tube proÿle.As previously noted,Singace et al.[16–18]have investigatedthis phenomenon by consid ering the eccentricity factor,m,(refer to Fig.7for its deÿnition).We were surprised at their claim that the factor m was approximately constant at 0.65.Therefore,we decided to examine our test pieces to see if the Singace et al.ÿndings also applied to6060-T5aluminium alloy tubes.Our test results for axi-symmetric mode folding are shown in Fig.20.They appear to conÿrm that a constant value of approximately0.65alsoapplies in this case.(It is not clear why the m value shouldbe so d i erent at D=t=20.)Fig.20.Eccentricity,m,as a function of D=t,for axi-symmetric mode.Fig.21.E ect of varying density of foamÿlling in6060-T5aluminium tubes.All tubes of length196mm,average diameter97mm and thickness1:0mm.Refer to Fig.10for stress–strain curves of polyurethane foam.3.7.E ect of foamÿllingMost of our tests involvedempty aluminium alloy tubes.However,a few tests were carried out on aluminium alloy tubes which hadbeenÿlledwith polyurethane foam.Fig.21shows some of our test results for foam-ÿlledaluminium tubes andTable1presents the d ata for aver-age axial crush force.Stress–strain curves for foam only were presentedearlier in Fig.10.All of the aluminium alloy tubes usedin this stage of testing were id entical(D=97mm;t=1:0mm and L=196mm).Test results for an identical empty aluminium tube are shown in Fig.1. We expectedto observe an increase in the average crushing force,F AV,for aluminium alloy tubes which hadbeenÿlledwith foam,as comparedwith id entical empty aluminium tubes.In fact,there is a complex interaction between the metal tubes andthe foamÿlling.The foamprovides support for the thin walls of the aluminium tubes leading to an increase in the overall。

相关文档
最新文档