2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)
2008年高考·全国卷Ⅰ(河南、河北、山东等地区)数学(文)

2004年普通高等学校招生全国统一考试文科数学(必修+选修I )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩( U B )= ( )A .{2}B .{2,3}C .{3}D . {1,3}2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若 ( )A .21B .-21 C .2D .-2 3.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11>+-=x x y 的反函数是( )A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设)2,0(πα∈若,53sin =α则)4cos(2πα+= ( )A .57B .51C .27D .4球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线 l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于 ( )A .91 B .94C .41D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 ( )A .95B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式x +x 3≥0的解集是 .14.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = .15.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.19.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21.(本小题满分12分)如图,已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离;(II)求面APB与面CPB所成二面角的大小.22.(本小题满分14分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.2004年普通高等学校招生全国统一考试文科数学(必修+选修I )参考答案一、选择题DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥0} 14.3·2n -3 15.422=+y x 16.①②④三、解答题17.本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:(Ⅰ)由,50,30,)1(20101==-+=a a d n a a n 得方程组 ⎩⎨⎧=+=+.5019,30911d a d a ……4分 解得.2,121==d a 所以 .102+=n a n ……7分(Ⅱ)由242,2)1(1=-+=n n S d n n na S 得方程 .24222)1(12=⨯-+n n n ......10分 解得).(2211舍去或-==n n (12)分 18.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41…………12分 19.本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.解:函数f (x )的导数:.163)(2-+='x ax x f ………………3分 (Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;………………9分………………6分(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x 由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是(].3,-∞-………………12分20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分21.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD. 由此知∠PEB 为面PAD 与面ABCD所成二面角的平面角,………………4分 ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.………………6分 (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥等于所求二面角的平面角,…………10分 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π.…………12分 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角.……9分 ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG=23, 又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan23.…………12分 22.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① ……2分当前第 页共11页 11 .120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率分的取值范围为即离心率且且6).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=e e e a a a aa e (II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 ……8分 由于x 1,x 2都是方程①的根,且1-a 2≠0,分所以由得消去所以14.1317,06028912,,.12125,1212172222222222 =>=----=--=a a a a x a a x a a x。
2008年高考题_山东卷_文数(附答案及解析)

2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( )A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据,xxA .B .C .D .俯视图 正(主)视图 侧(左)视图可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π 7.不等式252(1)x x +-≥的解集是( )A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B,的大小分别为( ) A .ππ63,B .2ππ36,C .ππ36,D .ππ33,9.( )ABC .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A .5-B .5C .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa fx b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101ab --<<<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 14.执行右边的程序框图,若0.8p =, 则输出的n = . 15.已知2(3)4log 3233xf x =+, 则8(2)(4)(8)(2)f f f f ++++的值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式; (Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和. 21.(本小题满分12分)ABCMPD设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.22.(本小题满分14分)已知曲线11(0)x yC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B解析:本小题主要考查集合子集的概念及交集运算。
2008年高考数学试卷(辽宁.文)含详解

2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用) 第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数y=(x +1)(x-a )为偶函数,则a = (A)-2 (B) -2 (C)1 (D)2(3)圆x 2+y 2=1与直线y=kx +2没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k )(C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,x =log a 2log a 3,y =,5log 21a z =loga 3,则 (A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且AD BC 2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则z =2x+y 的最大值为第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y ex +=-∞+∞的反函数是 .(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BCA 、C 两点的球面距离为3π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,内角A ,B ,C ,对边的边长分别是a ,b ,c .已知2,3c C π==. (Ⅰ)若△ABC,求a ,b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积. (18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:频数205030(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD -A ′B ′C ′D ′中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值. (20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{tna n },{lnb n }的前n 项和分别为S n ,T n .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?⊥此时||的值是多少?(22)(本小题满分14分)设函数f (x )=ax 3+bx 2-3a 2x +1(a 、b ∈R )在x =x 1,x =x2处取得极值,且|x 1-x 2|=2. (Ⅰ)若a =1,求b 的值,并求f (x )的单调区间; (Ⅱ)若a >0,求b 的取值范围.2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k kn k n n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N =( D )A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <答案:D解析:本小题主要考查集合的相关运算知识。
2008年高考新课标全国卷-文科数学(含答案)

2008年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1、已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( ) A. (-1,1) B. (-2,1)C. (-2,-1)D. (1,2)2、双曲线221102x y -=的焦距为( )3、已知复数1z i =-,则21z z =-( ) A. 2B. -2C. 2iD. -2i4、设()ln f x x x =,若0'()2f x =,则0x =( )A. 2e B. e C. ln 22D. ln 25、已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是( )A. -1B. 1C. -2D. 26、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数, 那么在空白的判断框中,应该填入下面四个选项中的( ) A. c > xB. x > cC. c > bD. b > c7、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a )8、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A. 2 B. 4 C.152D.1729、平面向量a ,b 共线的充要条件是( ) A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量C. R λ∃∈, b a λ=D. 存在不全为零的实数1λ,2λ,120a b λλ+= 10、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( ) A. [0,5]B. [0,10]C. [5,10]D. [5,15]11、函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32 D. -2,3212、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( )A. AB∥mB. AC⊥mC. AB∥βD. AC⊥β二、填空题:本大题共4小题,每小题5分,满分20分。
2008年高考(直线和圆的方程)(圆锥曲线方程)试题集

2008年高考数学第七章(直线和圆的方程)第八章(圆锥曲线方程)试题集锦2008年普通高等学校招生全国统一考试文科数学(必修+选修I) 3.原点到直线052=-+y x 的距离为 A.1 B.3 C. 2 D.56.设变量y x ,满足约束条件:⎪⎩⎪⎨⎧-≥≤+≥222x y x x y ,则y x z 3-=的最小值A.-2B. -4C. -6D. -87设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=aA. 1B.21 C. -21 D.-115.已知F 是抛物线C:x y 42=的焦点,A 、B 是C 上的两个点,线段AB 的中点为M(2,2),则ABF ∆的面积等于22. (本大题满分12分)设椭圆中心在坐标原点,)1,0(),0,2(B A 是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点 Ⅰ若DF 6ED =,求k 的值Ⅱ求四边形AEBF 面积的最大值。
2008年普通高等学校招生全国统一考试理科数学(全国Ⅱ) (5)同文科第6题 (9)设1>a ,则双曲线1)1(2222=++a yax 的离心率e 的取值范围是A .)2,2( B. )5,2( C. )5,2( D. )5,2((11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为A .3 B. 2 C. 31- D. 21-(14)设曲线axey =在点(0,1)处的切线与直线012=++y x 垂直,则a= .(15)已知F 为抛物线C :x y 42=的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设FB FA >.则FA 与FB 的比值等于 .(21) 同文科第22题2008年普通高等学校招生全国统一考试文科数学(必修1+选修Ⅰ) (4)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为 (A)30° (B)45° (C)60° (D)12°(10)若直线by a x +=1与图122=+y x 有公共点,则(A)122≤+b a(B) 122≥+b a (C)11122≤+ba(D)11122≥+ba(13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .(14)已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 (15)在△ABC 中,∠A =90°,tan B =34.若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率e = .(22)(本小题满分12分) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ) 7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-10.若直线1x y a b+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥13.同文科第13题14.同文科第14题15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 21.同文科第22题2008年普通高等学校招生全国统一考试(四川)数 学(文史类) 6、同理科第4题 11、已知双曲线22:1916x y C-=的左右焦点分别为F 1、F 2 ,P 为C 的右支上一点,且||||212P F F F =,则△PF 1F 2 的面积等于(C ) (A )24 (B )36 (C )48 (D )96 14、同理科第14题 22.(本小题满分14分) 设椭圆22221(0)x y a b ab+=>>的左、右焦点分别是F 1和F 2 ,离心率e=,点F 2到右准线l的距离为(Ⅰ)求a b 、的值;(Ⅱ)设M 、N 是右准线l 上两动点,满足0.12F M F M ∙=证明:当.M N 取最小值时,02122F F F M F N ++=. 解:(1)因为c e a=,F 2到l 的距离2ad c c=-,所以由题设得22c a a c c⎧=⎪⎪⎨⎪-=⎪⎩解得,2.c a ==由2222,b a c b =-==得(Ⅱ)由c =,a =2得12(0),0).F F l的方程为x =.故可设12),).M y N y 由120F M F M ∙=知12)0,y y -=得y 1y 2=-6,所以y 1y 2≠0,216y y =-,12112166||||||||||M N y y y y y y =-=+=+≥当且仅当1y =y 2=-y 1,所以,212212(0)))F F F M F N y y ++=-++=(0,y 1+y 2)2008年普通高等学校招生全国统一考试(四川卷)理科数学说明:2008年是四川省高考自主命题的第三年,因突遭特大地震灾害,四川六市州40县延考,本卷为非延考卷. 一、选择题:(5'1260'⨯=)4.直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位后所得的直线为( )A .1133y x =-+ B .113yx =-+C .33y x =-D .113yx =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--.选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.12.设抛物线2:8C y x =的焦点为F ,准线与x 轴相交于点K ,点A 在C 上且AK =,则AFK ∆的面积为( )A .4B .8C .16D .32解析:解几常规题压轴,不怕.边读题边画图.28y x =的焦点(2,0)F ,准线2x =-,(2,0)K -.设(,)A x y ,由A K =,即2222(2)2[(2)]x y x y++=-+.化简得:22124y x x =-+-,与28y x =联立求解,解得:2x =,4y =±.1144822AFKA S FK y ∆=⋅⋅=⋅⋅=,选B .本题的难度仅体现在对运算的准确性和快捷性上.14.已知直线:60l x y -+=,圆22:(1)(1)2C x y -+-=,则圆C 上各点到直线l 的距离的最小值(1,1)到直线60x y -+=的距离d =21.(本小题满分12分)设椭圆22221x y ab+= (0)a b >>的左、右焦点分别为1F 、2F ,离心率2e =,右准线为l ,M 、N 是l 上的两个动点,120F M F N =.(Ⅰ)若12||||F M F N ==a 、b 的值;(Ⅱ)证明:当||M N取最小值时,12F M F N + 与12F F 共线.解析: (Ⅰ)由已知, 1(,0)F c -,2(,0)F c .由2e =2212ca=,∴222a c =. 又222a b c =+,∴22b c =,222a b =. ∴l :2222ac x c cc===,1(2,)M c y ,2(2,)N c y .延长2N F 交1M F 于P ,记右准线l 交x 轴于Q . ∵120F M F N ⋅=,∴12F M F N ⊥.12F M F N ⊥ 由平几知识易证1Rt M Q F ∆≌2Rt F Q N ∆ ∴13QN F Q c ==,2QM F Q c==即1y c =,23y c =.∵12F M F N ==∴22920c c +=,22=,22b =,24a =. ∴2a =,b =(Ⅰ)另解:∵120F M F N ⋅=,∴12(3,)(,)0c y c y ⋅=,21230y y c =-<.又12F M F N ==联立212221222392020y y c c y c y ⎧=-⎪+=⎨⎪+=⎩,消去1y 、2y 得:222(209)(20)9c c c--=,整理得:4292094000c c -+=, 22(2)(9200)0c c --=.解得22c =. 但解此方程组要考倒不少人.(Ⅱ)∵1212(3,)(,)0F M F N c y c y ⋅=⋅=, ∴21230y y c =-<.22221212122121212222412M Ny y y y y y y y y y y y c=-=+-≥--=-= .当且仅当12y y =-=或21y y =-=时,取等号.此时MN取最小值.此时1212(3,)(,)(4,0)2F M F N c c c F F +=+==. ∴12F M F N + 与12F F共线.(Ⅱ)另解:∵120F M F N ⋅=,∴12(3,)(,)0c y c y ⋅=,2123y y c=-.设1M F ,2N F 的斜率分别为k ,1k-.由1()32y k x c y kc x c=+⎧⇒=⎨=⎩,由21()2y x c c y k kx c ⎧=--⎪⇒=-⎨⎪=⎩1213M N y y c k k=-=⋅+≥ .当且仅当13kk=即213k =,3k=±即当M N最小时,3k=此时1212(3,3)(,(3,)(,)(4,0)2c F M F N c kc c kc c c F F +=+-=+== ∴12F MF N+与12F F共线.点评:本题第一问又用到了平面几何.看来,与平面几何有联系的难题真是四川风格啊.注意平面几何可与三角向量解几沾边,应加强对含平面几何背景的试题的研究.本题好得好,出得活,出得妙!均值定理,放缩技巧,永恒的考点.2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类) (3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 (A)(x -1)2+(y +1)2=1 (B) (x +1)2+(y +1)2=1 (C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=1(8)若双曲线2221613xy p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为(A)2 (B)3 (C)4(15)已知圆C : 22230x y x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0 的对称点都在圆C 上,则a = .(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如题(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足:2.PM PN -=(Ⅰ)求点P 的轨迹方程;(Ⅱ)设d 为点P 到直线l : 12x =的距离,若22PM PN=,求PMd的值. 解:(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线. 因此半焦距c =2,实半轴a =1,从而虚半轴b所以双曲线的方程为x2-23y=1.(II)解法一:由(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线.因此半焦距e=2,实半轴a=1,从而虚半轴R 所以双曲线的方程为x 2-23y=1.(II)解法二:由(I )及答(21)图,易知|PN|≥1,因|PM|=2|PN|2, ① 知|PM|>|PN|,故P 为双曲线右支上的点,所以|PM|=|PN|+2. ②将②代入①,得2||PN|2-|PN|-2=0,解得44舍去,所以|PN|=14+.因为双曲线的离心率e=c a=2,直线l:x =12是双曲线的右准线,故||P N d=e=2,所以d=12|PN |,因此 2||2||4||4||1||||PM PM PN PN dPN PN ====+(II)解法三:设P (x,y ),因|PN |≥1知|PM |=2|PN |2≥2|PN|>|PN |,故P 在双曲线右支上,所以x ≥1. 由双曲线方程有y 2=3x 2-3. 因此||PN ===从而由|PM |=2|PN |得2x+1=2(4x 2-4x +1),即8x 2-10x+1=0.所以x 8(舍去x 8有4d=x-12=18+.故||14P M d=-=+2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类) (3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是(A)相离 (B)相交(C)外切 (D)内切(8)已知双曲线22221x y ab-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为 (A )22x a-224ya=1 (B)222215x yaa -=(C)222214x yb b -= (D)222215xyb b-= (15)直线l 与圆x 2+y 2+2x-4y+a=0(a<3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 . (21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(Ⅰ)求点P 的轨迹方程; (Ⅱ)若2·1cos P M P N M P N-=,求点P 的坐标.解:(Ⅰ)由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴b ==所以椭圆的方程为221.95xy+=(Ⅱ)由2,1cos P M P N M P N=- 得cos 2.PM PN M PN PM PN =- ①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形.在△PMN中,4,M N =由余弦定理有2222cos .M NPMPNPM PN M PN =+- ②将①代入②,得 22242(2).PMPNPM PN =+--故点P 在以M 、N 为焦点,实轴长为2213xy -=上.由(Ⅰ)知,点P 的坐标又满足22195xy+=,所以由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得22x y ⎧=±⎪⎪⎨⎪=±⎪⎩即P 点坐标为22222222-、-、(-或(-.2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)2.设变量x y ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 则目标函数5z x y =+的最大值为( )A .2B .3C .4D .57.设椭圆22221(00)x y m n mn+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( ) A .2211216xy+= B .2211612xy+= C .2214864xy+= D .2216448xy+=15.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 22.(本小题满分14分)同理科第21题2008年普通高等学校招生全国统一考试(天津卷)数学(理工农医类) (2)同文科第2题 (5)设椭圆()1112222>=-+m m ym x上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21 (D)772(13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x 与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 . (21)(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是1(30)F -,,一条渐近线的方程是20y -=.(Ⅰ)求双曲线C 的方程; (Ⅱ)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M N ,,且线段M N的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.[本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分.](Ⅰ)解:设双曲线C 的方程为22221x y ab-=(0,0a b >>).由题设得2292a b b a⎧+=⎪⎨=⎪⎩,解得2245a b ⎧=⎪⎨=⎪⎩,所以双曲线方程为22145x y -=. (Ⅱ)解:设直线l 的方程为y kx m =+(0k ≠).点11(,)M x y ,22(,)N x y 的坐标满足方程组22145y kx mx y =+⎧⎪⎨-=⎪⎩将①式代入②式,得22()145xkx m +-=,整理得222(54)84200k x km x m ----=.此方程有两个一等实根,于是2504k -≠,且222(8)4(54)(420)0k m k m ∆=-+-+>.整理得22540m k+->. ③ 由根与系数的关系可知线段M N 的中点坐标00(,)x y 满足12024254x x km x k+==-,002554m y kx m k=+=-.从而线段M N 的垂直平分线方程为22514()5454mkm y x kkk-=----. 此直线与x 轴,y 轴的交点坐标分别为29(,0)54kmk-,29(0,54mk-.由题设可得2219981||||254542kmmk k ⋅=--.整理得222(54)||k m k -=,0k ≠.将上式代入③式得222(54)540||k k k -+->,整理得22(45)(4||5)0k k k --->,0k ≠.解得0||2k <<或5||4k >.所以k的取值范围是55,)(0)(0,(,)4224(∞-+--∞ . 2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)(11)若A 为不等式组 002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x+y =a 扫过A 中的那部分区域的面积为 (A )34(B)1 (C)74(D)2(14)已知双曲线2212xyn n--=1n =(22)(本小题满分14分)已知椭圆2222:1(0)xyC a b a b+=>>,其相应于焦点F (2,0)的准线方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.求证:22cos AB =-θ;(Ⅲ)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求A B D E +的最小值.2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(33-(15).同文科第11题,理科中为填空题 (22).(本小题满分13分)设椭圆2222:1(0)xyC a b a b+=>>过点M ,且焦点为1(0)F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段A B 上取点Q ,满足AP Q B AQ PB =,证明:点Q 总在某定直线上2008年普通高等学校招生全国统一考试数学(文史类)(北京卷) (3)“双曲线的方程为116922=-yx”是“双曲线的准线方程为x =59±”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )即不充分也不必要条件x -y +1≥0,(6)若实数x ,y 满足 x +y ≥0, 则z =x +2y 的最小值是x ≤0, (A)0 (B) 21(C) 1 (D)2(19)(本小题共14分)已知△ABC 的顶点A ,B 在椭圆2234x y +=上,C 在直线l :y =x +2上,且AB ∥l . (Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及△ABC 的面积;(Ⅱ)当∠ABC =90°,且斜边AC 的长最大时,求AB 所在直线的方程. 解:(Ⅰ)因为AB ∥l ,且AB 边通过点(0,0),所以AB 所在直线的方程为y =x .设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).由2234,x y y x ⎧+=⎨=⎩得1,x =±所以12AB x =-=又因为AB 边上的高h 等于原点到直线l 的距离,所以1 2.2A B C h S A B h ===(Ⅱ)设AB 所在直线的方程为y =x +m . 由2234,x y y x m⎧+=⎨=+⎩得2246340.x mx m ++-=因为A ,B 在椭圆上,所以212640.m ∆=-+>设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).则21212334,,24m m x x x x -+=-=所以122AB x =-=又因为BC 的长等于点(0,m )到直线l 的距离,即BC =所以22222210(1)11.ACABBCm m m =+=--+=-++所以当m =-1时,AC 边最长.(这时12640=-+ >) 此时AB 所在直线的方程为y =x -1.2008年普通高等学校校招生全国统一考试数学(理工农医类)(北京卷) (4)若点P 到直线x =-1的距离比它到点(2,0)的大1,则点P 的轨迹为 (A )圆 (B )椭圆 (C )双曲线 (D )抛物线x -y +1≥0,(5)若实数x ,y 满足 x +y ≥0, 则z =3x +y的最小值是x ≤0,(A)0 (B)1 (C)3 (D)9(7)过直线y =x 上的一点作圆(x -5)2=2的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,综们之间的夹角为 (A )30° (B )45° (C)60° (D)90° (19)(本小题共14分)已知菱形ABCD 的顶点A ,C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为l. (Ⅰ)当直线BD 过点(0,1)时,求直线AC 的方程; (Ⅱ)当∠ABC =60°,求菱形ABCD 面积的最大值. 解: (Ⅰ)由题意得直线BD 的方程为y =x +1. 因为四边形ABCD 为菱形,所以AC ⊥BD .于是可设直线AC 的方程为y =-x +n .由2234,x y y x n⎧+=⎨=-+⎩得2246340.x nx n -+-= 因为A ,C 在椭圆上,所以△=-12n 2+64>0,解得33n -<设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2), 则212121122334,,,.24n n x x x x y x n y x n -+===-+=-+所以12.2n y y +=所以AC 的中点坐标为3.44n n⎛⎫⎪⎝⎭由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭在直线y =x +1上, 所以3144n n =+,解得n =-2.所以直线AC 的方程为2y x =--,即x +y +2=0.(Ⅱ)因为四边形ABCD 为菱形,且60A B C ∠=︒,所以.AB BC CA ==所以菱形ABCD的面积2.S =由(Ⅰ)可得22221212316()().2n AC x x y y -+=-+-=所以2316)(433S n n =-+-<所以当n =0时,菱形ABCD的面积取得最大值2008年普通高等学校招生全国统一考试数学卷(福建)数 学(文史类) (10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是(D )A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)(12)双曲线22221xya b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为(B )A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞] (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 .(22)(本小题满分14分) 如图,椭圆2222:1xyC a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.(本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分) 解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3,所以椭圆C 前方程为13422=+yx.(Ⅱ)(i)由题意得F (1,0),N (4,0).设A (m,n ),则B (m ,-n )(n ≠0),3422nm+=1. ……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0,n (x -4)-(m -4)y =0.设M (x 0,y 0),则有 n (x 0-1)-(m -1)y 0=0, ……②n (x 0-4)+(m -4)y 0=0, ……③由②,③得x 0=523,52850-=--m ny m m .所以点M 恒在椭圆G 上. (ⅱ)设AM 的方程为x =xy +1,代入3422yx+=1得(3t 2+4)y 2+6ty -9=0.1)52(4936)85()52(412)85()52(3)52(4)85()52(3)52(4)85(34222222222222222020=--+-=-+-=-+--=-+--=+m mm m nm m nm m m nm m y x 由于设A (x 1,y 1),M (x 2,y 2),则有:y 1+y 2=.439,4362212+-=+-t y y x x|y 1-y 2|=.4333·344)(2221221++=-+t t y y y y令3t 2+4=λ(λ≥4),则 |y 1-y 2|=,+)--(=+)-(=- 412113411341·3432λλλλλ 因为λ≥4,0<时,,==所以当04411,41≤1=t λλλ|y 1-y 2|有最大值3,此时AM 过点F .△AMN 的面积S △AMN=.292323y ·212121有最大值y y y y y FN -=-=-解法二:(Ⅰ)问解法一: (Ⅱ)(ⅰ)由题意得F (1,0),N (4,0). 设A (m ,n ),则B (m ,-n )(n ≠0),.13422=+nm……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, ……②n (x -4)-(m -4)y =0, ……③ 由②,③得:当≠523,528525-=--=x yn x x m 时,. ……④由④代入①,得3422yx+=1(y ≠0).当x=52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩解得0,0,n y =⎧⎨=⎩与a ≠0矛盾.所以点M 的轨迹方程为221(0),43xxy +=≠即点M 恒在锥圆C 上.(Ⅱ)同解法一.2008年普通高等学校招生全国统一考试数学卷(福建)数 学(理工农医类) (8) .同文科第10题(11) 同文科第12题x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 .(21)(本小题满分12分) 如图、椭圆22221(0)x y a b ab+= 的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OBAB + ,求a 的取值范围.(本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.) 解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,因为△MNF 为正三角形, 所以32O F N =,即132, 3.23bb 解得 2214,a b =+=因此,椭圆方程为221.43xy+=(Ⅱ)设1122(,),(,).A x y B x y (ⅰ)当直线 AB 与x 轴重合时,2222222222,4(1),.O A O Ba ABa a O A O BAB +==>+<因此,恒有(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:22221,1,x y x my ab=++=代入整理得22222222()20,a b m y b my b a b +++-= 所以222212122222222,b m b a b y y y y a b ma b m-+==++因为恒有222OA OB AB +<,所以∠AOB 恒为钝角.即11221212(,)(,)0OA OB x yx y x x y y ==+<恒成立.2121212121212(1)(1)(1)()1x x y y m y m y y y m y y m y y +=+++=++++2222222222222222222222(1)()210.m b a b b ma b ma b mm a b b a b aa b m+-=-+++-+-+=<+又a 2+b 2m 2>0,所以-m 2a 2b 2+b 2-a 2b 2+a 2<0对m ∈R 恒成立,即a 2b 2m 2> a 2 -a 2b 2+b 2对m ∈R 恒成立.当m ∈R 时,a 2b 2m 2最小值为0,所以a 2- a 2b 2+b 2<0. a 2<a 2b 2- b 2, a 2<( a 2-1)b 2= b 4,因为a >0,b >0,所以a <b 2,即a 2-a -1>0,解得a2或a2(舍去),即a2,综合(i )(ii),a的取值范围为(12+,+∞).解法二:(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时, x =1代入22222221(1)1,A y b a y aba-+===1.因为恒有|OA |2+|OB |2<|AB |2,2(1+y A 2)<4 y A 2, y A 2>1,即21aa->1,解得a2或a2(舍去),即a2.(ii )当直线l 不垂直于x 轴时,设A (x 1,y 1), B (x 2,y 2). 设直线AB 的方程为y =k (x -1)代入22221,xy ab+=得(b 2+a 2k 2)x 2-2a 2k 2x + a 2 k 2- a 2 b 2=0,故x 1+x 2=222222222222222,.a ka k a bx x b a k b a k-=++因为恒有|OA |2+|OB |2<|AB |2,所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 2=(1+k 2)2222222222222222222222222()a k a ba ka ab b k a bk k b a k b a kb a k--+--+=+++.由题意得(a 2- a 2 b 2+b 2)k 2- a 2 b 2<0对k ∈R 恒成立. ①当a 2- a 2 b 2+b 2>0时,不合题意;②当a 2- a 2 b 2+b 2=0时,a2;③当a 2- a 2b 2+b 2<0时,a 2- a 2(a 2-1)+ (a 2-1)<0,a 4- 3a 2 +1>0,解得a 2>32+或a 2>32-(舍去),a>12+,因此a≥12+.综合(i )(ii ),a的取值范围为(12+,+∞).2008年普通高等学校统一考试(广东卷)数学(文科) 6、经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )A. x + y + 1 = 0B. x + y - 1 = 0C. x - y + 1 = 0D. x - y - 1 = 0 12、若变量x 、y 满足24025000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则32z x y =+的最大值是____70___14、(坐标系与参数方程)已知曲线C 1、C 2的极坐标方程分别为cos 3ρθ=,4cos ρθ=(0ρ≥,02πθ≤<),则曲线C 1与C 2交点的极坐标为6π⎛⎫⎪⎝⎭,6π⎛⎫- ⎪⎝⎭20、(本小题满分14分)设b >0,椭圆方程为222212xy bb+=,抛物线方程为28()x y b =-。
2008年高考数学试卷(陕西.文)含详解

2008年普通高等学校招生全国统一考试(陕西卷)文科数学(必修+选修Ⅰ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.sin330︒等于( B ) A.B .12-C .12D解:1sin 330sin 302︒=-=-2.已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合()UA B =( D )A .{3}B .{4,5}C .{3,4,5}D .{1245},,,解:{1,3}A =,{3,4,5}B ={3}A B ⇒=所以()UA B ={1245},,,3.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 解:设样本中松树苗的数量为x ,则15020300004000xx =⇒=4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B ) A .64B .100C .110D .120解:设公差为d ,则由已知得112421328a d a d +=⎧⎨+=⎩1101109101210022a S d =⎧⨯⇒⇒=⨯+⨯=⎨=⎩ 50y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A或 B.或C.-D.-解:圆的方程22(1)3x y -+=,圆心(1,0)到直线的距离等于半径m⇒==m ⇒=m ⇒=-6.“1a =”是“对任意的正数x ,21ax x+≥”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:1a=1221a x x x x ⇒+=+≥=>,显然2a =也能推出,所以“1a =”是“对任意的正数x ,21ax x+≥”的充分不必要条件。
2008高考安徽数学文科试卷和答案(全word版)080612

2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径如果事件A B ,相互独立,那么 球的体积公式 34π3V R =()()()P A B P A P B =其中R 表示球的半径第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).若A 位全体实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =--(2).若(2,4)AB = ,(1,3)AC = , 则BC = ( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)(3).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖(4).0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(5).在三角形ABC 中,5,3,7AB AC BC ===,则BAC ∠的大小为( )A .23πB .56π C .34π D .3π (6).函数2()(1)1(0)f x x x =-+≤的反函数为A.1()11)f x x -=-≥ B .1()11)f x x -=≥ C.1()12)fx x -=-≥ D .1()12)f x x -=≥(7).设88018(1),x a a x a x +=+++ 则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .5(8).函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=(9).设函数1()21(0),f x x x x=+-< 则()f x ( ) A .有最大值B .有最小值C .是增函数D .是减函数(10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A.[ B.(C.[,33-D.( (11) 若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 ( ) A .34B .1C .74D .5(12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是 ( )A . 2686C AB . 2283C AC .2286C AD .2285C A2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)第Ⅱ卷(非选择题 共90分)考生注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效....................... 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. (13).函数2()f x =的定义域为 .(14).已知双曲线22112x y n n-=-n =(15) 在数列{}n a 在中,542n a n =-,212n a a a an bn ++=+ ,*n N ∈,其中,a b 为常数, 则ab =(16)已知点,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB =AC =8AD =,则,B C 两点间的球面距离是三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. (17).(本小题满分12分)已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域(18).(本小题满分12分)在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”.(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。
2008年普通高等学校招生全国统一考试数学卷(全国Ⅰ.文)含详解

2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,,一、选择题 1.函数y =)A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在A B C △中,AB c = ,AC b = .若点D 满足2BD DC = ,则AD=( ) A .2133b c +B .5233c b -C .2133b c -D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22e x -B .2e xC .21e x +D .2+2e x9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位10.若直线1x y ab+=与圆221x y +=有公共点,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤ D .2211ab+≥111.已知三棱柱111A B C A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A B C △的中心,则1A B 与底面ABC 所成角的正弦值等于( )A .13B .3C .3D .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在A B C △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形A B C D 中,2A B =,120A ∠=,沿对角线B D 将ABD △折起,使二面角A B D C --为120 ,则点A 到BC D △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设A B C △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若A B C △的面积10S =,求A B C △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A B C D E -中,底面B C D E 为矩形,侧面A B C ⊥底面B C D E ,2B C =,CD =A B A C =.(Ⅰ)证明:AD C E ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C A D E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122nn n a a +=+.(Ⅰ)设12n n n a b -=.证明:数列{}n b 是等差数列;(Ⅱ)求数列{}n a 的前n 项和n S .20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.DE AB21.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.1215.12162三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b B B b AAb Bb====又通过cos 3a B =知:cos 0B >, 则3cos 5B =,4sin 5B =,则5a =. (2)由1sin 2S ac B =,得到5c =.由222cos 2a c bB ac+-=,解得:b =最后10l =+.18.解:(1)取B C 中点F ,连接D F 交C E 于点O , A B A C =,∴AF BC ⊥,又面A B C ⊥面B C D E , ∴A F ⊥面B C D E , ∴AF C E ⊥.tan tan 2C ED FD C ∠=∠=,∴90OED ODE ∠+∠=,90DOE ∴∠=,即C E D F ⊥,C E ∴⊥面AD F , CE A D ∴⊥.(2)在面A C D 内过C 点做A D 的垂线,垂足为G .C G AD ⊥,CE AD ⊥, A D ∴⊥面C EG , E G A D ∴⊥,则C G E ∠即为所求二面角.3AC C D C G AD==,3D G =,3EG ==,C E =则222cos 210C G G E C EC G E C G G E+-∠==-,πarccos 10C G E ⎛∴∠=-⎪⎝⎭. 19.解:(1)122n n n a a +=+,11122n n nn a a +-=+,11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+ 12121222(1)22n nn S n n -=+++-+两式相减,得1121222221nn n nn S n n -=---=-+ .20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P Pk n -=-= ,,,一、选择题 1.函数y = )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤1D 解析:依题意,1,0xx -≥⎧⎨≥⎩解得, 0≤x ≤1,所以函数y ={|01}x x ≤≤,选择D;点评:本题考查了不等式的解法,函数定义域的求法以及交集、并集等集合运算,是基础题目。
2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )2A 解析:(法一)由于汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,所以,从路程与时间的图像看,其图像的切线斜率由逐渐增大、定值、逐渐减小,易知,A 正确;A .B .C .D .(法二)根据汽车加速行驶22s at =、匀速行驶s=vt 、减速行驶22s at =-并结合图像易知选择A ; 点评:本题考查了学生的识图能力与导数的概念及几何意义。
3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .13 C 解析:依题意,设第r+1为2x 项,则15()2rr r xT C +=,∵2r =,所以展开式中2x 的系数为22515()22C =,选择C;4.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°4 B 解析:/2/132,|1,x y x k y ==-==∴曲线324y x x =-+在点(13),处的切线的倾斜角045α=,选择B ;5.在ABC △中,AB c = ,AC b = .若点D 满足2BD DC = ,则AD=( ) A .2133b c + B .5233c b -C .2133b c - D .1233b c +5 A 解析:如图,∵AB = c ,AC = b ,∴点D 满足2BD DC =,222121()333333AD AB BC AB AC AB AC AB b c =+=+-=+=+,选择A ;6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数6 D 解析:222(sin cos )1sin 2sin cos cos 1sin 2y x x x x x x x =--=-+-=-,所以,这个函数是最小正周期为π的奇函数,选择D ;7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2437A 解析:设等比数列{}n a 的公比为q ,则q=2312a a a a ++=2,所以11(12)3,1a a +==,67164a a q ==,选择A ;8.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( )A .22ex -B .2e xC .21ex +D .22ex +8 A 解析:函数()y f x =的图象与函数1y =的图象关于直线y x =对称,所以函数()y f x =是函数1y =的反函数,所以由1y =1y e -=,∴22y x e -=,()f x =22e x -,选择A ;BDCA9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9 C 解析:依题意,sin cos()cos()22y x x x ππ==-=-,所以只需将函数sin cos()2y x x π==-向左平移5π6个长度单位,得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,选择C; 10.若直线1x ya b+=与圆221x y +=有公共点,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .2211a b +≥1 10.D解析:由题意知,直线1x ya b+=与圆221x y +=≤1.即22111a b +≥,选择D ; 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A.13B .3C .3D .2311.B 解析:由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB a =,棱柱的高1A O ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113A O AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060 长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11ABAB AA =+211112,,33OA AB a OA AB ⋅=== 1AB 与底面ABC 所成角的正弦值为11113OA AB AO AB ⋅=.12.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种12.B. 解析:先排第一行,有33A =6种不同方法,然后再排其他两行,每种对应2中不同排法,共有6×2=12种不同排法,选择B;2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项: 1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效..........3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .0:20l x y -=,将0l 平13. 9.解析:如图,作出可行域,作出直线移至过点A 处时,函数2z x y =-有最大值9.14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 14. 2. 解析:由抛物线21y ax =-的焦点坐标为1(0,1)4a-,又焦点为坐标原点得,∴14a =,则2114y x =-,与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=。
15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 15 12 解析:如图,不妨设|AC|=3,|AB|=4,则|BC|=5,所以2a=8,2c=4,e=12.16.已知菱形ABCD 中,2AB =,120A ∠= ,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 .解析:如图,依题意,易知,∠AOC 是二面角A BD C --的平面角,∠AOC= 120 ,又AO=1,过A 作AH ⊥CO ,交CO 于H ,则AH ⊥平面BCD ,在RT △AOH 中,AH=AOsin600。
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .17.解析:(Ⅰ)在ABC △中,由cos 3a B =,sin 4b A =得sin 4cos 3b A a B =,据正弦定理得sin sin 4sin cos 3B A A B =,∴4t a n 3B =,由于B 是三角形内角,所以B (0,)2π∈,据平方关系式得, cosB=35,∴sinB=45,又cos 3a B =,所以a=5;(2)由(1)知cosB=35,∴sinB=45,又sin 10S ac B ==,所以c=5;由余弦定理得2222cos 25253020b a c ac B =+-=+-=,b =10l =+。
18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.A BC ABCDOH18.解:(1)取中点,连接交于点, AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥,则CGE ∠即为所求二面角的平面角.AC CD CG AD == ,DG =,EG ==,CE =222cos 2CG GE CE CGE CG GE +-∠==πarccos CGE ∴∠=-⎝⎭,即二面角C AD E --的大小πarccos -⎝⎭.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122nn n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S .解析:(1)∵在数列{}n a 中,11a =,122nn n a a +=+, 12n n n a b -=,∴111121222n n n nn n n n na a a ab b +++---=-==,所以数列数列{}n b 是等差数列是等差数列,且n b n =。