高校自主招生考试数学真题分类解析之7解析几何

合集下载

高中数学自主招生考试分类 专题七 解析几何

高中数学自主招生考试分类  专题七  解析几何

专题七 解析几何1、已知椭圆22221x y a b+=与圆222x y b +=,过椭圆上一点M 作圆的两切线,切点分别为,P Q ,直线PQ 与,x y 轴分别交于点,E F ,求EOF S ∆的最小值.【解】设(cos ,sin )([0,2))M a b θθθπ∈,直线PQ 为点M 关于圆222x y b +=的切点弦,其方程为2(cos )(sin )a x b y b θθ+=,从而2,cos sin E F b bx y a θθ==, 于是331||||2|sin 2|EOFE F b b S x x a aθ∆=⋅=≥,当且仅当(,)22M ±±时,上述等号成立. 2、点A 在y kx =上,点B 在y kx =-上,其中0k >,2||||1OA OB k ⋅=+,且A B 、在y 轴同侧.(1)求AB 中点M 的轨迹C ;(2)曲线C 与22(0)x py p =>相切,求证:切点分别在两条定直线上,并求切线方程. 【解】(1)设1122(,),(,)A x y B x y ,(,)M x y ,则1212121122(),,,222x x y y k x x y kx y kx x y ++-==-===, 由2||||1OA OB k ⋅=+得,121x x =,显然22121212()()44x x x x x x +--==,于是得2221(0)y x k k-=>,于是AB 中点M 的轨迹C 是焦点为(,实轴长为2的双曲线.(2)将22(0)x py p =>与2221(0)y x k k-=>联立得22220y pk y k -+=,由曲线C 与抛物线相切,故242440p k k ∆=-=,即1pk =,所以方程可化为2220y ky k -+=,即切点的纵从标均为y k =,代入曲线C 得横坐标为.因此切点分别在定直线x x ==,两切点为),()D k E k ,又因为xy p'=,于是在)D k 处的切线方程为y k x -=,即1y x p=-;同理在()E k处的切线方程为1y x p=-. 3、椭圆长轴长为4,左顶点在圆()22(4)14x y -+-=上,左准线为y 轴,则此椭圆离心率的取值范围是( )(A) 11,84⎡⎤⎢⎥⎣⎦ (B) 11,42⎡⎤⎢⎥⎣⎦ (C) 11,82⎡⎤⎢⎥⎣⎦ (D) 13,24⎡⎤⎢⎥⎣⎦ 解:设左顶点为[)42cos ,0,212sin x tt y t π=+⎧∈⎨=+⎩,则对称中心为()62cos ,12sin t t ++,令62cos ,12sin u x tv y t=--⎧⎨=--⎩则在uv 坐标系中,其左准线为62cos u t =--,因此2411162c o s ,3c o s 42a c t e c c a t ⎡⎤-=-=--⇒==∈⎢⎥+⎣⎦.选B. 4、已知两点()()2,0,2,0A B -,动点P 在y 轴上的射影是H ,且22PA PB PH ⋅=① 求动点P 的轨迹C 的方程② 已知过点B 的直线交曲线C 于x 轴下方不同的两点,M N ,设MN 的中点为R ,过R 于点()0,2Q -作直线RQ ,求直线RQ 斜率的取值范围。

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。

选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。

2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。

对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。

二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。

答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。

将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。

2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。

答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。

这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。

三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。

解析几何题型及解题方法总结

解析几何题型及解题方法总结

解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。

解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。

2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。

3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。

例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。

线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。

《高校自主招生考试》数学真题分类解析之7、解析几何

《高校自主招生考试》数学真题分类解析之7、解析几何

专题之7、解析几何一、选择题。

1.(2009年复旦大学)设△ABC三条边之比AB∶BC∶CA=3∶2∶4,已知顶点A的坐标是(0,0),B的坐标是(a,b),则C的坐标一定是2.(2009年复旦大学)平面上三条直线x−2y+2=0,x−2=0,x+ky=0,如果这三条直线将平面划分成六个部分,则k可能的取值情况是A.只有唯一值B.可取二个不同值C.可取三个不同值D.可取无穷多个值3.(2010年复旦大学)已知常数k1,k2满足0<k1<k2,k1k2=1.设C1和C2分别是以y=±k1(x−1)+1和y=±k2(x−1)+1为渐近线且通过原点的双曲线,则C1和C2的离心率之比等于5.(2011年复旦大学)A.ρsin θ=1B.ρcos θ=−1C.ρcos θ=1D.ρsin θ=−1 6.(2011年复旦大学)设直线L过点M(2,1),且与抛物线y2=2x相交于A,B两点,满足|MA|=|MB|,即点M(2,1)是A,B的连接线段的中点,则直线L的方程是A.y=x−1B.y=−x+3C.2y=3x−4D.3y=−x+5 7.(2011年复旦大学)设有直线族和椭圆族分别为x=t,y=mt+b(m,b为实数,t为参数)和(a是非零实数),若对于所有的m,直线都与椭圆相交,则a,b应满足A.a2(1−b2)≥1B.a2(1−b2)>1C.a2(1−b2)<1D.a2(1−b2)≤1 8.(2011年复旦大学)极坐标表示的下列曲线中不是圆的是A.ρ2+2ρ(cos θ+sin θ)=5B.ρ2−6ρcos θ−4ρsin θ=0C.ρ2−ρcos θ=1D.ρ2cos 2θ+2ρ(cos θ+sin θ)=19.10.(2012年复旦大学)B.抛物线或双曲C.双曲线或椭圆D.抛物线或椭圆A.圆或直线线11.(2011年同济大学等九校联考)已知抛物线的顶点在原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在直线的方程为4x+y−20=0,则抛物线方程为A.y2=16xB.y2=8xC.y2=−16xD.y2=−8xA.2B.2C.4D.413.(2011年清华大学等七校联考)AB为过抛物线y2=4x焦点F的弦,O为坐标原点,且∠OFA=135°,C为抛物线准线与x轴的交点,则∠ACB的正切值为14.(2012年清华大学等七校联考)椭圆长轴长为4,左顶点在圆(x−4)2+(y−1)2=4上,左准线为y 轴,则此椭圆离心率的取值范围是二、解答题。

解析几何数学真题及答案

解析几何数学真题及答案

解析几何数学真题及答案在数学领域中,解析几何是一门重要的学科。

它研究的是几何图形在坐标系中的性质和变换规律。

解析几何的基础是坐标系和代数知识,运用代数方法研究几何问题。

下面我们将深入解析几何数学考试中的一些真题及答案,以便更好地理解和应用解析几何的知识。

问题1:已知平面上三个点A(-4,2),B(2,6),C(6,-2),求直线AB的方程。

解析:首先,我们可以利用两点间距离公式求得AB的长度,即√[(x2 - x1)^2 + (y2 - y1)^2],代入坐标值计算得到AB的长度为√68。

然后,我们可以利用斜率公式求得直线AB的斜率,即(y2 - y1) / (x2 - x1),代入坐标值计算得到斜率为2/3。

最后,我们可以利用点斜式求得直线AB的方程,即y - y1 = m(x - x1),代入坐标值和斜率计算得到直线AB的方程为y = (2/3)x + 14/3。

问题2:已知椭圆的焦点为F1(3,0),F2(-3,0),离心率为2/3,求椭圆的方程。

解析:我们知道,椭圆的离心率等于焦距与长轴之比。

而焦距为2倍的焦点到顶点的距离。

所以,我们可以利用离心率和焦点的坐标信息来求得椭圆的长轴以及焦距。

根据已知的离心率和焦点位置,我们可以得到长轴为6。

接下来,我们可以利用椭圆的标准方程求得椭圆的方程,即(x-h)^2 / a^2 + (y-k)^2 / b^2 = 1,其中(h,k)为椭圆中心坐标,a为长轴一半的长度,b为短轴一半的长度。

代入已知的数据计算得到椭圆的方程为(x-0)^2 / 9 + (y-0)^2 / 3 = 1。

问题3:已知抛物线经过点(1,4),并且顶点为(2,3),求抛物线的方程。

解析:首先,我们可以利用顶点信息求得抛物线的对称轴。

对称轴的方程为x = h,其中(h,k)为顶点坐标。

代入顶点的坐标计算得到对称轴的方程为x = 2。

接下来,我们可以利用抛物线的标准方程求得抛物线的方程,即y = a(x-h)^2 + k,其中(h,k)为顶点坐标,a 为抛物线的开口方向和大小。

数学解析几何的常见题型解析

数学解析几何的常见题型解析

数学解析几何的常见题型解析解析几何是数学中的分支学科,通过运用代数和几何的知识,以方程和不等式为工具,研究几何对象的性质和关系。

解析几何的题型主要包括直线方程、曲线方程、平面方程和空间曲面方程等。

本文将对解析几何的常见题型进行解析。

一、直线方程的解析1. 一般式方程直线的一般式方程为Ax + By + C = 0,其中A、B、C是常数,且A和B不同时为0。

2. 斜截式方程直线的斜截式方程为y = kx + b,其中k是直线的斜率,b是直线与y轴的截距。

3. 点斜式方程直线的点斜式方程为(y - y₁) = k(x - x₁),其中(x₁,y₁)是直线上的一点,k是直线的斜率。

二、曲线方程的解析1. 圆的方程圆的标准方程为(x - a)² + (y - b)² = r²,其中(a,b)是圆心的坐标,r是圆的半径。

2. 椭圆的方程椭圆的标准方程为(x/a)² + (y/b)² = 1,其中a和b分别是椭圆在x轴和y轴上的半轴长度。

3. 双曲线的方程双曲线的标准方程为(x²/a²) - (y²/b²) = 1,其中a和b分别是双曲线在x轴和y轴上的半轴长度。

三、平面方程的解析1. 一般式方程平面的一般式方程为Ax + By + Cz + D = 0,其中A、B、C和D是常数,且A、B和C不同时为0。

2. 法向量和点的关系式平面的法向量为(A,B,C),平面上一点为(x₁,y₁,z₁),则平面方程为A(x - x₁) + B(y - y₁) + C(z - z₁) = 0。

四、空间曲面方程的解析1. 球的方程球的标准方程为(x - a)² + (y - b)² + (z - c)² = r²,其中(a,b,c)是球心的坐标,r是球的半径。

2. 圆锥曲线的方程圆锥曲线的方程根据不同类型的圆锥曲线而不同,比如椭圆锥的方程为(x²/a²) + (y²/b²) - (z²/c²) = 0,双曲锥的方程为(x²/a²) + (y²/b²) - (z²/c²)= 1等。

解析几何大题及答案

解析几何大题及答案

解析几何大题及答案解析几何是数学中的一个重要分支,研究的是空间图形的性质和变换。

在高中数学中,解析几何是一个关键的考点,也是学生容易遇到的难点之一。

本文将解析几何中的几个大题进行解析,并给出详细的答案。

一、平面直角坐标系与向量1. 设平面上一直线的方程为3x-y+4=0,求该直线的斜率及与坐标轴的交点坐标。

答案:首先将直线的方程转化为斜截式的形式,即y=3x+4。

由此可得该直线的斜率为3。

与x轴的交点坐标可通过令y=0,解得x=-4/3;与y轴的交点坐标可通过令x=0,解得y=4。

因此,该直线与x轴的交点坐标为(-4/3,0),与y轴的交点坐标为(0,4)。

2. 已知平面内的向量a=(4,3),求向量2a的模和方向角。

答案:向量2a=(2*4,2*3)=(8,6)。

模可以通过向量的标准模公式计算:|2a|=√((8)^2+(6)^2)=√100=10。

方向角可以通过向量的方向角公式计算:tanθ=y/x=6/8=3/4,所以θ=arctan(3/4)。

因此,向量2a的模为10,方向角为arctan(3/4)。

二、直线的方程与位置关系1. 设直线L1过点A(1,3)且与直线L2:2x+3y-7=0相交于点B,求线段AB的中点坐标。

答案:首先求直线L1的方程,由过点A(1,3),设斜率为k,则直线L1的方程为y-3=k(x-1)。

将直线L2的方程与直线L1的方程联立,可求出点B的坐标。

解方程组得到B的坐标为(-1,3)。

线段AB的中点坐标可以通过两点坐标的平均值计算:((1+(-1))/2,(3+3)/2)=(0,3)。

因此,线段AB的中点坐标为(0,3)。

2. 设直线L1:x+2y-3=0与直线L2:2x-y-1=0相交于点A,直线L1与直线L3:2x+3y-4=0平行,求直线L3的方程。

答案:由直线L1与直线L2的方程可解得直线L1与直线L2的交点A的坐标为(1,1)。

由直线L1与直线L3平行可得其斜率相等,即2=3k,解得k=2/3。

自主招生几何试题及答案

自主招生几何试题及答案

自主招生几何试题及答案试题1:已知三角形ABC中,∠A=30°,∠B=45°,求∠C的度数。

答案1:根据三角形内角和定理,三角形的三个内角之和等于180°。

因此,∠C = 180° - ∠A - ∠B = 180° - 30° - 45° = 105°。

试题2:若一个圆的半径为5cm,求该圆的周长。

答案2:圆的周长公式为C = 2πr,其中r为圆的半径。

将半径r=5cm 代入公式得:C = 2 × 3.14 × 5 = 31.4cm。

试题3:在直角三角形中,如果一条直角边长为3cm,另一条直角边长为4cm,求斜边的长度。

答案3:根据勾股定理,直角三角形的斜边长度等于两条直角边长度的平方和的平方根。

设斜边为c,则c = √(3² + 4²) = √(9 + 16)= √25 = 5cm。

试题4:已知一个等腰三角形的底边长为6cm,两腰长分别为5cm,求该三角形的面积。

答案4:首先,根据等腰三角形的性质,底边的中点到顶点的线段即为高。

设高为h,底边的一半为3cm。

根据勾股定理,h = √(5² - 3²) = √(25 - 9) = √16 = 4cm。

然后,根据三角形面积公式S = (底× 高) / 2,代入底边6cm和高4cm,得S = (6 × 4) / 2 = 12cm²。

试题5:如果一个正方形的对角线长为10cm,求正方形的边长。

答案5:设正方形的边长为a,根据勾股定理,对角线长度的平方等于边长的平方的两倍,即10² = 2 × a²。

解得a² = 50,所以a = √50 ≈ 7.07cm。

试题6:已知一个圆锥的底面半径为3cm,高为4cm,求圆锥的体积。

答案6:圆锥体积的公式为V = (1/3)πr²h,其中r为底面半径,h 为高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题之7、解析几何一、选择题。

1.(2009年复旦大学)设△ABC三条边之比AB∶BC∶CA=3∶2∶4,已知顶点A的坐标是(0,0),B的坐标是(a,b),则C的坐标一定是2.(2009年复旦大学)平面上三条直线x−2y+2=0,x−2=0,x+ky=0,如果这三条直线将平面划分成六个部分,则k可能的取值情况是A.只有唯一值B.可取二个不同值C.可取三个不同值D.可取无穷多个值3.(2010年复旦大学)已知常数k1,k2满足0<k1<k2,k1k2=1.设C1和C2分别是以y=±k1(x−1)+1和y=±k2(x−1)+1为渐近线且通过原点的双曲线,则C1和C2的离心率之比等于5.(2011年复旦大学)A.ρsin θ=1B.ρcos θ=−1C.ρcos θ=1D.ρsin θ=−1 6.(2011年复旦大学)设直线L过点M(2,1),且与抛物线y2=2x相交于A,B两点,满足|MA|=|MB|,即点M(2,1)是A,B的连接线段的中点,则直线L的方程是**=x−1**=−x+3**=3x−4**=−x+57.(2011年复旦大学)设有直线族和椭圆族分别为x=t,y=mt+b(m,b为实数,t为参数)和(a是非零实数),若对于所有的m,直线都与椭圆相交,则a,b应满足**(1−b2)≥1 **(1−b2)>1 **(1−b2)<1**(1−b2)≤18.(2011年复旦大学)极坐标表示的下列曲线中不是圆的是A.ρ2+2ρ(cos θ+sin θ)=5B.ρ2−6ρcos θ−4ρsin θ=0C.ρ2−ρcos θ=1D.ρ2cos 2θ+2ρ(cos θ+sin θ)=19.10.(2012年复旦大学)B.抛物线或双曲C.双曲线或椭圆D.抛物线或椭圆A.圆或直线线11.(2011年同济大学等九校联考)已知抛物线的顶点在原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在直线的方程为4x+y−20=0,则抛物线方程为**=16x **=8x **=−16x**=−8x** ** ** **13.(2011年清华大学等七校联考)AB为过抛物线y2=4x焦点F的弦,O为坐标原点,且∠OFA=135°,C为抛物线准线与x轴的交点,则∠ACB的正切值为14.(2012年清华大学等七校联考)椭圆长轴长为4,左顶点在圆(x−4)2+(y−1)2=4上,左准线为y 轴,则此椭圆离心率的取值范围是二、解答题。

15.(2009年华南理工大学)设三角形ABC三个顶点的坐标分别为A(2,1),B(−1,2),C(3,−1),D,E 分别为AB,BC上的点,M是DE上一点,且(1)求点M的横坐标的取值范围;(2)求点M的轨迹方程.16.(2009年南京大学)在x轴上方作与x轴相切的圆,切点横坐标为,过B(−3,0),C(3,0)分别作圆的切线,两切线交于点P,Q是C在锐角BPC的平分线上的射影.(1)求点P的轨迹方程及其横坐标的取值范围;(2)求点Q的轨迹方程.17.(2010年南京大学)设|y2−16x|=256−16|x|.(1)记方程表示的曲线围成的封闭区域为D,试作出这个区域D;(2)过抛物线y2=16x焦点的直线l与该抛物线交于P,Q两点,若|PQ|=a,求S△OPQ;(3)当过抛物线y2=16x焦点的直线l与该抛物线在区域D内的部分相交于P,Q时,求S△OPQ的最大值.18.(2009年浙江大学)双曲线 =1(a>0,b>0)的离心率为,A(x1,y1),B(x2,y2)两点在双曲线上,且x1≠x2.(1)若线段AB的垂直平分线经过点Q(4,0),且线段AB的中点坐标为(x0,y0),试求x0的值;(2)双曲线上是否存在这样的点A与B,满足OA⊥OB?19.(2011年同济大学等九校联考)已知椭圆的两个焦点为F1(−1,0),F2(1,0),且椭圆与直线y=x 相切.(1)求椭圆的方程;(2)过F1作两条互相垂直的直线l1,l2与椭圆分别交于P,Q及M,N,求四边形PMQN面积的最大值与最小值.20.(2012年同济大学等九校联考)抛物线y2=2px(p>0),F为抛物线的焦点,A、B是抛物线上两点,线段AB的中垂线交x轴于D(a,0),a>0,(1)证明:a是p、m的等差中项;(2)若m=3p,l为平行于y轴的直线,其被以AD为直径的圆所截得的弦长为定值,求直线l的方程.21.(2009年清华大学)有限条抛物线及其内部能否覆盖整个坐标平面?证明你的结论.22.(2009年清华大学)已知|PM|−|PN|=2,M(−2,0),N(2,0).(1)求点P的轨迹W;(2)直线y=k(x−2)与W交于点A,B,求S△OAB(O为原点).23.(2009年清华大学)椭圆C: + =1(a>b>0),直线l过点A(−a,0),与椭圆交于点Q,与y轴交于点R,过原点的平行于l的直线l'与椭圆交于点P,证明:|AQ|, |OP|,|AR|成等比数列.24.(2010年清华大学等五校联考)设A,B,C,D 为抛物线x2=4y上不同的四点,A,D关于该抛物线的对称轴对称,BC 平行于该抛物线在点D 处的切线l.设D 到直线AB,AC 的距离分别为d1,d2,(Ⅰ)判断△ABC是锐角三角形、直角三角形、钝角三角形中的哪一种三角形,并说明理由; (Ⅱ)若△ABC 的面积为240,求点A 的坐标及直线BC的方程.25.(2011年清华大学等七校联考)F1、F2分别为C的左、右焦点,P为C右支上一点,(1)求C的离心率e;(2)设A为C的左顶点,Q为第一象限内C上的任意一点,问是否存在常数λ(λ>0),使得∠QF2A=λ∠QAF2恒成立?若存在,求出λ的值;若不存在,请说明理由.26.(2012年清华大学等七校联考)(1)求动点P的轨迹C的方程;(2)已知过点B的直线交曲线C于x轴下方不同的两点M,N,设MN的中点为R,过R与点Q(0,−2)作直线RQ,求直线RQ斜率的取值范围.27.(2010年北京大学等三校联考)A,B为y=1−x2上在y轴两侧的点,求过A,B的切线与x轴围成的图形面积的最小值.28.(2011年北京大学等十三校联考)C1和C2是平面上两个不重合的固定圆,C是该平面上的一个动圆,C与C1、C2都相切,则C的圆心的轨迹是何种曲线?说明理由.29.(2011年北京大学等十三校联考)求过抛物线y=2x2−2x−1,y=−5x2+2x+3交点的直线方程.**【解析】如图,**【解析】三条直线相交于一点或者其中两条直线平行,则平面被分成六个部分.(1)当三条直线交于一点(2,2),对应一个k值;(2)当直线x+ky=0与x−2y+2=0或者x−2=0平行,则对应两个不同的k值.因此共有三个不同的k值.**4.A【解析】本题可以采用特殊值和特殊位置来分析,结合具体的选项,得到正确结果.当n=4时,相邻两射线的夹角为,然后可以让A1,A2,A3,A4正好为椭圆的四个顶点,容易得到|OA k|−2=2(a−2+b−2),结合各选项知A正确.**【解析】由得直线方程为y=mx+b,由消去y得(x−1)2+a2(mx+b)2−a2=0,即(1+a2m2)x2+(2a2mb−2)x+(1+a2b2−a2)=0,由于直线与椭圆相交,所以Δ=(2a2mb−2)2−4(1+a2m2)(1+a2b2−a2)>0,整理得(a2−1)m2−2bm+(1−b2)>0,上式对于任意的实数m 恒成立,所以有,整理得a2(1−b2)>1.**【解析】在D选项中,由ρ2cos 2θ+2ρ(cos θ+sin θ)=1得ρ2(cos2θ−sin2θ)+2ρ(cos θ+sin θ)=1,ρ2cos2θ−ρ2sin2θ+2ρcos θ+2ρsin θ=1,由于x=ρcos θ,y=ρsin θ,代入可得x2−y2+2x+2y−1=0,显然这不是一个圆的方程.**【解析】依题意知,椭圆上的各个点中到圆心(0,6)的距离最大的点是椭圆的下顶点(0,−4),最大距离为10,因此椭圆上的点到圆上的点的距离的最大值等于11.**【解析】设圆锥曲线上任一点M(ρ,θ),焦点F到相应准线的距离为P,则ρ=为三种圆锥曲线(椭圆、双曲线、抛物线)的统一极坐标方程,0<e<1时曲线表示椭圆,e=1时曲线表示抛物线,e>1时曲线表示双曲线右支,允许ρ<0表示整个双曲线.由知识拓展中圆锥曲线的统一极坐标方程知:ρ==,则0<e=≤1,故极坐标方程所表示的曲线为椭圆或抛物线(当且仅当k=1时曲线为抛物线).**【解析】由题意可设抛物线方程为y2=2px(p≠0),A(x3,y3),B(x1,y1),C(x2,y2),△ABC的重心为G(,0).联立,得2y2+py−20p=0,有,又,得,即A(10,),代入抛物线方程可得=2p(10),故p=8,抛物线方程为y2=16x.故选A.**【解析】利用C2的短轴长与C1的实轴长的比值等于C2的离心率找到k和a之间的关系,再利用k和a表示出C1在C2的一条准线上截得线段的长,整理可得最终结果.由C2的短轴长与C1的实轴长的比值等于C2的离心率可知,= ,故k(a2−4)=4,C2的右准线方程为x=,代入C1的方程得− =k,整理可得y=±2,故C1在C2的右准线上截得线段的长为4,选D.**解法二如图,**15.(1)如图所示,16.(1)设x轴与圆的切点为D,PB,PC分别切圆于E,F,17.(1)首先,256−16|x|≥0,∴|x|≤16,∴−16≤x≤16.①y2−16x=256−16|x|.i)当0≤x≤16时,y2=256, ∴y=±16(0≤x≤16),图象是两条线段;ii)当−16≤x<0时,y2=256+32x=32(x+8)(−8≤x<0),图象是抛物线y2=32(x+8)的一段;(3)18.(1) x0=2. (2)不存在19.(1)椭圆方程为+y2=1.(2) S四边形PMQN的最小值为,最大值为2 【解析】20.(1)设A(x1,y1),B(x2,y2),由抛物线的定义知21.与抛物线对称轴不平行的直线与抛物线的位置关系有以下三种:(1)总有两个交点;(2)相切;(3)无公共点.对于(1),抛物线及其内部仅覆盖该直线上的一段线段;对于(2),抛物线及其内部仅覆盖该直线上的一个点;对于(3),抛物线及其内部不能覆盖该直线上的任意一点.根据以上三种情况,我们知道:用有限条抛物线及其内部不能覆盖与这有限条抛物线的对称轴均不平行的直线,而平面中存在这样的直线.于是,用有限条抛物线及其内部不能覆盖一条直线,当然不能覆盖整个坐标平面.22.(1)由题意可得点P的轨迹W是双曲线的右支:x2−y2=2(x>0).23.设l:y=k(x+a)(易知斜率存在,否则点Q不存在),则l':y=kx.24.如图.所以×8|4|=240,解得x0=±8,所以A(8,16)或A(−8,16),当取A(−8,16)时,求得B(4,4),又BC的斜率为x0=4,所以直线BC的方程为y−4=4(x−4),即4x−y−12=0.同理,当取A(8,16)时,求得B(−12,36),直线BC的方程为4x+y+12=0.25.(1)如图,26.27.【解析】设过A点的切线交x轴于点C,过B点的切线交x轴于点D,直线AC与直线BD 相交于点E,如图.28.假设圆C1、C2的半径分别为r1、r2,动圆半径为r.分以下情况进行讨论:(1)如果r1=r2.①当圆C1、C2相离时,(a)若动圆C与两个圆都外切,则|CC1|=r+r1,|CC2|=r+r2,因此|CC1|=|CC2|,动圆圆心轨迹为线段C1C2的垂直平分线;(b)若动圆C与两个圆都内切,则|CC1|=r−r1,|CC2|=r−r2,因此|CC1|=|CC2|,动圆圆心轨迹为线段C1C2的垂直平分线;(c)若动圆C与两个圆中的一个内切,另一个外切,则C1C2=r1+r2<C1C2,动圆圆心轨迹为以C1、C2为焦点的双曲线.②当圆C1、C2外切时,(a)若动圆C与两个圆都外切,则C1=r+r1,C2=r+r2,因此C1=C2,动圆圆心轨迹为线段C1C2的垂直平分线,但应除去两圆的切点;(b)若动圆C与两个圆都内切,则C1=r1,|CC2|=r2,因此C1=C2,动圆圆心轨迹为线段C1C2的垂直平分线;(c)若动圆C与两个圆中的一个内切,另一个外切,则C1C2r1r2C1C2(或C1C2=r1+r2),动圆圆心轨迹为直线C1C2,但应除去C1、C2以及两圆的切点.③当圆C1、C2相交时,(a)若动圆C与两个圆都外切,则C1=r+r1,C2=r+r2,因此C1=C2,动圆圆心轨迹为线段C1C2的垂直平分线,但应除去两圆的公共弦;(b)若动圆C与两个圆都内切,则C1=r1,C2=r2,因此C1=C2,动圆圆心轨迹为线段C1C2的垂直平分线;为焦点的椭圆.(2)如果r1≠r2 ,不妨设r1>r2.①当圆C1、C2相离时,(a)若动圆C与两个圆都外切,则C1=r+r1,C2=r+r2,因此C2r1r2C1C2,动圆圆心轨迹为以C1、C2为焦点的双曲线的对应焦点为C2的一支;(b)若动圆C与两个圆都内切,则C1=r−r1,C2=r−r2,因此C1r1r2C1C2,动圆圆心轨迹为以C1、C2为焦点的双曲线的对应焦点为C1的一支;(c)若动圆C与两个圆中的一个内切,另一个外切,则C1C2=r1+r2<C1C2,动圆圆心轨迹为以C1、C2为焦点的双曲线.②当圆C1、C2相外切时,(a)若动圆C与两个圆都外切,则C1=r+r1,C2=r+r2,因此C1C2=r1−r2<C1C2,动圆圆心轨迹为以C1、C2为焦点的双曲线的对应焦点为C2的一支,但应除去两圆的切点;(b)若动圆C与两个圆都内切,则C1=r−r1,C2=r−r2,因此C2C1=r1−r2<C1C2,动圆圆心轨迹为以C1、C2为焦点的双曲线的对应焦点为C1的一支;(c)若动圆C与两个圆中的一个内切,另一个外切,则CC1CC2=r1+r2=C1C2(或CC1CC2=r1+r2),动圆圆心轨迹为直线C1C2,但应除去C1、C2以及两圆的切点.③当圆C1、C2相交时,(a)若动圆C与两个圆都外切,则CC1=r+r1,CC2=r+r2,因此CC1CC2=r1−r2<C1C2,动圆圆心轨迹为以C1、C2为焦点的双曲线的对应焦点为C2的一支,但应除去两圆公共区域内的部分;(b)若动圆C与两个圆都内切,则CC1r1,CC2r2,因此CC2CC1=r1−r2<C1C2,动圆圆心轨迹为以C1、C2为焦点的双曲线,但应除去两圆公共区域内的部分;C2为焦点的椭圆,但应除去两圆公共区域内的部分.④当圆C1、C2内切时,(a)若动圆C与两个圆都外切,则C1=r+r1,CC2=r+r2,因此C1−CC2=r1−r2=|C1C2|,动圆圆心轨迹为直线C1C2,除去直线C1C2与圆C1、C2的交点;(b)若动圆C与两个圆都内切,则C1=r−r1,CC2=r−r2(或C1=r1−r,CC2=r−r2或C1=r1−r,CC2=r2−r),因此C1C2=r1−r2=C1C2(或C1+CC2=r1−r2),动圆圆心轨迹为直线C1C2,除去直线C1C2与圆C1、C2的交点;(c)若动圆C与C1内切,C2外切,则CC1+CC2=(r1−r)+(r+r2)=r1+r2>C1C2,动圆圆心轨迹为以C1、C2为焦点的椭圆(两圆C1、C2的交点除外).⑤当圆C1、C2内含时,(a)若动圆C与两个圆都内切,则CC1=r1−r,CC2=r−r2,CC1CC2=r1−r2>C1C2,动圆圆心轨迹为以C1、C2为焦点的椭圆.(b)若动圆C与C1内切、C2外切,这时CC1=r1−r,CC2=r+r2,所以CC1CC2(r1−r)+(r+r2)=r1+r2>C1C2,动圆圆心轨迹为以C1、C2为焦点的椭圆.【解析】两个定圆的半径的大小关系、位置关系将影响动圆的圆心的轨迹,因此应根据两个定圆的半径的大小关系、位置关系进行分类讨论.在求解中,要注意所得轨迹的纯粹性,即是不是整个曲线都是轨迹上的点,应结合图形的位置关系的实际情况进行分析,把不符合要求的点除去.**+7y−1=0.【解析】可以直接对两个抛物线方程进行加减消元,消去二次项,得到所求直线的方程;也可以直接解方程组求出两个交点的坐标,然后求直线方程.。

相关文档
最新文档