特殊平行四边形之菱形

合集下载

菱形的性质11

菱形的性质11
证明2: ∵四边形ABCD是菱形
D
O
O
B
C
∴AB=AD,(菱形的定义) OD=OB (平行四边形的对角线互相平分) ∴ AC⊥BD ,AC平分∠DAB (为什么?)
同理:AC平分∠DCB BD平分∠ADC和∠ABC
D

菱形的两组对边平行且相等 A 菱形的四条边相等
菱形的两组对角分别相等
5
1 2
6
O
D
E A
F
C
B
菱形的性质 2 : 菱形的两条对角线互相垂直, 每一条对角线平分一组对角。
已知:四边形ABCD是菱形 求证:AC⊥BD,
AC平分∠DAB和∠DCB BD平分∠ADC和∠ABC
D
5 6
A
1 2
9 10
O
3 4
C
7 8
证明: ∵四边形ABCD是菱形 ∴ AD=AB,OD=OB 又∵ AO = AO
B ∵ △AOD ≌ △AOB
C. 5cm D.4cm
B
4 、 已知如图,菱形 ABCD 中, E 是 AB 的中点,且DE⊥AB,AE=2。 求(1)∠ABC的度数; (2)对角线AC、BD的长; (3)菱形ABCD的面积。
D
O
C
A
E
B
∴AD=AB (1) ∵ E是AB的中点,且DE⊥AB
∴DA=DB(DE为AB 的中垂线) ∴AD=AB=BD ∴ ∠DAB= 60 °, ∴ ∠ABC=120 °
全等三角形有: Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA △ABD≌△BCD △ABC≌△ACD Rt△DOA
【菱形的面积公式】
A B 菱形是特殊的平行四边形, 那么能否利用平行四边形 面积公式计算菱形的面积吗? D

19.2 特殊平行四边形 (第3课时)19.2.2菱形(菱形的性质)

19.2 特殊平行四边形 (第3课时)19.2.2菱形(菱形的性质)
∠ADC 。
证明:因为四边形ABCD是菱形, 证明:因为四边形ABCD是菱形, ABCD是菱形 所以AB=AD 菱形的四条边都相等)。 AB=AD( 所以AB=AD(菱形的四条边都相等)。 ABD中 在△ABD中, 又因为BO=DO BO=DO, 又因为BO=DO, B 所以AC⊥BD AC平分 BAD。 AC⊥BD, 平分∠ 所以AC⊥BD,AC平分∠BAD。 同理: AC平分 BCD; 平分∠ 同理: AC平分∠BCD; BD平分 ABC和 ADC。 平分∠ BD平分∠ABC和∠ADC。
矩形
两组对边 分别平行 平行 四边形
菱形
有一组邻边相等的平行四边形叫做菱形。 有一组邻边相等的平行四边形叫做菱形。 邻边相等 叫做菱形
AB=BC 四边形ABCD是菱形 是菱形 四边形 ABCD
如何利用折纸、剪切的方法,既快又准 如何利用折纸、剪切的方法, 确地剪出一个菱形的纸片? 确地剪出一个菱形的纸片?
他是这样做的: 他是这样做的:将一张长方形的纸 对折、再对折,然后沿图中的虚线剪下, 对折、再对折,然后沿图中的虚线剪下, 打开即可.你知道其中的道理吗? 打开即可 你知道其中的道理吗? 你知道其中的道理吗
D O A C B
菱形的性质Leabharlann 菱形的性质:(1)菱形具有平行四边形的一切性质; )菱形具有平行四边形的一切性质; (2)菱形的四条边都相等; )菱形的四条边都相等; (3)菱形的两条对角线互相垂直, )菱形的两条对角线互相垂直, 并且每一条对角线平分一组对角; 并且每一条对角线平分一组对角; (4)菱形是轴对对称图形;也是中心对称图形。 )菱形是轴对对称图形;也是中心对称图形。
?
1.已知菱形的周长是12cm, 1.已知菱形的周长是12cm,那 已知菱形的周长是12cm 3cm 么它的边长是______. 么它的边长是______. 2.菱形ABCD中 ABC=60度 2.菱形ABCD中∠ABC=60度, 菱形ABCD 60度 BAC= 60度 则∠BAC=_______. B

九年级数学上册 第一章 特殊平行四边形 第1节 菱形的性质与判定(第2课时)教案 (新版)北师大版

九年级数学上册 第一章 特殊平行四边形 第1节 菱形的性质与判定(第2课时)教案 (新版)北师大版

第一章《特殊平行四边形》《菱形的性质与判定》(第2课时)【教学目标】1.知识与技能(1).经历菱形判定定理的探索过程,进一步发展合情推理能力.(2).能够用综合法证明菱形的判定定理,进一步发展演绎推理能力.2.过程与方法在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。

3.情感态度和价值观体会探索与证明过程中所蕴含的抽象、推理等数学思想.【教学重点】菱形判定定理的发现与证明.【教学难点】菱形判定定理的应用.【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、复习引入(1)菱形的定义;(2)菱形的特征;(3)菱形的性质;提出问题引入新课:想一想我们可以怎样判定一个四边形是菱形?二、探究新知1.菱形的判定1:定义法(有一组邻边相等的平行四边形叫做菱形)数学语言:∵四边形ABCD是平行四边形且AB=AD∴四边形ABCD是菱形2.菱形的判定2的探究:对角线互相垂直的平行四边形是菱形活动内容1:根据菱形的定义,有一组邻边相等的平行四边形是菱形,除此之外,你认为还有什么条件可以判断一个平行四边形是菱形,先想一想,再与同伴交流.处理方式:先由学生独立思考,尝试解答,再采取小组合作的方式,交流讨论,进而得到结论:对角线互相垂直的平行四边形是菱形.活动内容2:通过思考、交流,我们可以发现,对角线互相垂直的平行四边形是菱形,你能证明这个命题吗?处理方式:鼓励学生积极探索,大胆猜想,在此基础上再进行严格地证明.证明过程中,学生可能会有一定的困难,教师要及时予以指导和规范.此处可安排学生板演证明过程.但是要帮助引导学生写出已知、求证,并以本题为例,规范证明命题的一般步骤,即:先将命题改写为“如果···,那么···.”的形式,分析命题的条件和结论,再根据条件和结论画出图形,写出已知、求证,最后再规范证明.同时,本题可能会有学生用证明△AOB ≌△COB 的方法证明BA=BC ,对此,教师可引导学生思考,AC 和BD 的关系,即互相垂直平分,因而可以利用线段垂直平分线定理来证明BA=BC.并对两种方法进行比较.已知: ABCD 中,对角线AC 与BD 相交于点O,AC ⊥BD. 求证: ABCD 是菱形证明:∵四边形ABCD 是平行四边形, ∴AO =CO 又∵AC ⊥BD∴BD 是线段AC 的垂直平分线.∴BA =BC (线段垂直平分线上的点到线段两个端点的距离相等) ∴四边形ABCD 是菱形(菱形的定义).设计意图:由于要判定的是一个平行四边形,因此,若要考虑边,则容易想到定义,若要考虑对角线,则可能受到性质的启发,想到对角线互相垂直的平行四边形是菱形,进而对这一命题进行严格证明,得到结论.3.菱形的判定3的探究:四边相等的四边形是菱形活动内容1:已知线段AC ,你能用尺规作图的方法作一个菱形ABCD ,使AC 为菱形的一条对角线吗?你是怎么做的?思考并独立完成后,与同伴交流.处理方式:学生独立完成作图后可与课本作法进行对比,通过思考作法的正确性,探索得到菱形的另一种判定方法:四条边都相等的四边形是菱形.并对这一判定方法加以证明. 这里可能会有一个问题:对于作图要求,学生可能会不太明确,教师要及时点拨,作图要求是要使已知线段为对角线,因而可以借助菱形的对角线互相垂直且平分这一性质,通过作线段AC 的垂直平分线来完成作图.如还是无法完成,可借鉴课本作法.活动内容2:你所做的四边形是菱形吗?你能得到怎样的结论?你能证明这个结论吗? 处理方式:根据作图过程,学生能猜想出所在在四边形为菱形,进而猜想出菱形的另一种判定方法:四条边都相等的四边形是菱形.对于学生作法的正确性的证明,可以先证明所做四边形为平行四边形,再利用定义,证明是菱形.由此得出结论:四条边都相等的四边形是菱形.AB DC O已知: 在四边形 ABCD 中,AB=BC=CD=AD 求证: 四边形 ABCD 是菱形 证明:∵AB=CD ,BC=AD∴四边形ABCD 是平行四边形 又∵AB=BC∴四边形 ABCD 是菱形归纳:菱形的三个判定:1.有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.有四条边相等的四边形是菱形. 三、例题讲解例1.下列条件中,不能判定四边形ABCD 为菱形的是( C )A. AC ⊥BD ,AC 与BD 互相平分 B. AB=BC=CD=DAC. AB=BC ,AD=CD ,且AC ⊥BD D. AB=CD ,AD=BC ,AC ⊥BD解析:根据菱形的三个判定可得C 是错误的.例2、如图, ABCD 的两条对角线AC 、BD 相交于点O ,AB=5,AC=8,DB=6, 求证:四边形ABCD 是菱形.证明:∵ 四边形ABCD 是平行四边形 ∴OA=OC=4 OB=OD=3 又∵AB=5∴222BO AO AB += ∴∠AOB=90° ∴AC ⊥BD又∵ 四边形ABCD 是平行四边形 ∴四边形ABCD 是菱形. 四、巩固练习:1.判断下列说法是否正确?为什么?(1)对角线互相垂直的四边形是菱形; ( ×)BCAD(2)对角线互相垂直平分的四边形是菱形;(√)(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(×)(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.(×)2.对角线互相垂直且平分的四边形是( C )A.矩形B.一般的平行四边形C.菱形D.以上都不对3.如图所示,在△ABC中,AB=AC,∠A<90°,边BC,CA,AB的中点分别是点D,E,F,则四边形AFDE是( A )A.菱形 B.正方形 C.平行四边形 D.梯形4.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是( A )A.AB=BC B.AC=BCC.∠B=60° D.∠ACB=60°五.拓展提高1.如图,在平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形,求证:四边形ABCD是菱形。

第一章特殊平行四边形菱形的性质与判定

第一章特殊平行四边形菱形的性质与判定

菱形的性质与判定教学目标1、掌握菱形的定义,探究菱形的性质和判定以及菱形的相关性质与平行四边形的相关性质之间的关系。

重难点分析重点:1、菱形的概念,性质和判定进行相关的计算和证明。

难点:1、运用菱形的概念,性质和判定的过程,理解特殊和一般的关系,领会菱形的本质属于与平行四边形的相关性质的关系。

知识点梳理1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2、菱形判定定理:(1)对角线互相垂直的平行四边形是菱形;邻边相等的平行四边形是菱形。

(2)四边相等的四边形是菱形。

注意:要证明一个四边形为菱形,可以证明四条边相等,也可以先证明它是平行四边形,再证明一组邻边相等或者对角线相互垂直。

3、菱形的性质:(1)菱形的四条边相等;(2)菱形的对角线相互垂直;(3)菱形的对角线平分角;(4)菱形的对角线将菱形分成四个全等的直角三角形;(5)菱形的面积公式:BD AC S ⋅⋅=21(AC 、BD 分别为菱形的对角线)(6)如果一个菱形有一个内角为o 60或o 120,则两边与较短的对角线构成等边三角形,两对角线将菱形分成四个含o 30的直角三角形,这些都是非常有用的基本图形。

知识点1:菱形的性质【例1】如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是【】A、△ABD与△ABC的周长相等B、△ABD与△ABC的面积相等C、菱形的周长等于两条对角线之和的两倍D、菱形的面积等于两条对角线之积的两倍知识点2:菱形与面积、周长、边长、角度问题【例1】已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,•菱形的边长是________cm【随堂练习】1、菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.2、如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求对角线AC的长度及周长。

3、如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为________。

专题16 菱形的判定与性质(含答案)

专题16 菱形的判定与性质(含答案)

专题16 菱形的判定与性质知识解读菱形是一个特殊的平行四边形,理解菱形的定义,可从菱形的共性和特性两个方面来理解.共性:菱形是一个特殊的平行四边形,它具有平行四边形的一切性质,如对边平行且相等,对角相等,邻角互补,对角线互相平分等。

菱形的特性主要体现在两个方面:①邻边相等;②对角线互相垂直判断一个四边形是菱形有三种方法方法1:有一组邻边相等的平行四边形是菱形方法2:对角线互相垂直的平行四边形是菱形方法3:四条边相等的四边形是菱形。

如果把一组邻边相等和对角线互相垂直看作菱形的特征,前两种判断方法可以理解为“平行四边形+菱形特征=菱形”,也就是说,要证明一个四边形是菱形,可先证明这个四边形是一个平行四边形,然后再添加一个菱形的特征。

培优学案典例示范一、菱形四边相等为全等提供了可能例1如图4-16-1①,在菱形ABCD中,点E,F分别为AB,AD的中点,连接CE,CF.(1)求证:CE=CF;(2)如图4-16-1②,若H为AB上一点,连接CH,使∠CHB=2∠ECB,求证:CH=AH+AB.BA EBAEHCFFCDD①②图4-16-1【提示】(1)由菱形ABCD中,点E,F分别为AB,AD的中点,易证得△BCE2A△DCF(SAS),则可得CE=CF;(2)延长BA与CF,交于点G,由平行线的性质,可得AG=AB,∠G=∠FCD,由全等三角形的对应角相等,可得∠BCE=∠DCF,然后由∠CHB=2∠ECB,易证得∠G=∠HCG,则可得CH=GH,则可证的结果。

【解答】【技巧点评】菱形的四条边相等、对角相等,这就为全等三角形提供了条件,因此菱形问题常常与全等三角形联系在一起.【跟踪训练】1.如图4-16-2,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=34CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③二、菱形被两条对角线分成四个直角三角形例2已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【提示】菱形的周长是20cm,故边长为5cm,又两条对角线的比是4:3,不妨设两条对角线长为4k,3k,因菱形的对角线互相垂直平分,同勾股定理可得(4k)2+(3k)=100,可求出k的值,即可求出菱形的两条对角线的长,代入菱形的面积公式,可求出菱形的面积.【技巧点评】菱形的一边和两条对角线的一半构成直角三角形,在直角三角形中,应用勾股定理,是解决这个问题的基本思路,本题在计算菱形的面积的时候,应用了菱形的面积等于对角线之积的一半.【跟踪训练】1.如图4-16-3,菱形ABCD的周长为40cm,AC,BD相交于O,且BD:AC=3:4.求AC,BD的长及菱形ABCD的面积.【解答】三、含60°角的菱形常与等边三角形结合在一起例3如图4-16-4,菱形ABCD的边长为2,BD=2,E,F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;【提示】(1)由于菱形ABCD的边长为2,BD=2,所以△ABD和△BCD是等边三角形,则∠BDE=∠BCF=60°,BC=BD,又由于AE+CF=2,AE+ED=2可得DE=CF,即可证明△BDE≌△BCF;(2)由△BDE≌△BCF可证BE=BF,∠DBE=∠CBF,由于∠CBF+∠DBF=60°,即可证明∠FBE=60°,根据有一个角是60°的等腰三角形是等边三角形证得△DEF是等边三角形.【解答】【技巧点评】如果一个菱形有一个内角等于60°,那么这个菱形较短的对角线会把菱形分成两个等边三角形,此时常需要用等边三角形知识解决问题.【跟踪训练】3.如图4-16-5,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.四、菱形的判定思路,平行四边形+菱形特性=菱形由于菱形是一个特殊的平行四边形,因此判定一个四边形是菱形时,可考虑先证明这个四边形是平行四边形,然后再证明这个平行四边形具有菱形特征(如邻边相等或对角线互相垂直).当然如果能直接证明四条边相等,就不需要先证明它是平行四边形.例4如图4-16-6,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D.交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?并说明理由.【提示】(1)用两组对边平行且相等,可以证明四边形ACEF是平行四边形.(2)通过探究得出当∠B=30°时,四边形ACEF是菱形,可以用一组对边相等的平行四边形来证明.【解答】【技巧点评】要证明一个四边形是菱形,应尽可能先证明这个四边形是平行四边形,然后再证明一组邻边相等或者证明对角线互相垂直.【跟踪训练】4.如图4-16-7,在□ABCD中,对角线AC,BD相交于点O,过点O作直线EF⊥BD,分别交AD,BC 于点E 和点F ,求证:四边形BEDF 是菱形.【解答】例5 如图4-16-8,在四边形ABCD 中,AD ∥BC ,AB =CD ,点E ,F ,G ,H 分别是AD ,BD ,BC ,AC 的中点.试说明:四边形EFGH 是菱形.【提示】由于“点E ,F ,G ,H 分别是AD ,BD ,BC ,AC 的中点”,我们可联想到三角形中位线定理,EH ,HG ,GF ,FE 分别是△ACD ,△ABC ,△BCD ,△ABD 的中位线,EH ,HG ,GF ,FE 分别等于12CD ,12AB ,12CD ,12A B .由于AB =CD ,所以EH =HG =GF =FE ,根据“四条边相等的四边形是菱形”可得四边形EFGH 是菱形.【解答】【技巧点评】当题目不容易证明两直线平行时,我们可考虑通过证明四条边相等来证明这个四边形是菱形. 【跟踪训练】5.如图4-16-9,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB,BC,CD,DA的中点分别为P,Q,M,N,试判断四边形PQMN为怎样的四边形,并证明你的结论.【解答】五、从对称的角度考虑菱形问题,可以为解决问题提供帮助例6如图4-16-10,在菱形ABCD中,对角线AC=6,BD=8,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3B.4C.5D.6【提示】找到点F关于AC的对称点(即CD的中点),连接CD的中点与点E交AC于点B P,则点P为AC 与BD的交点,此时PE+PF的和最短,即等于AD的长,由于菱形的对角线互相垂直,由勾股定理可得AD =5,所以PE+PF的长为5.【技巧点评】本题是把轴对称变换与菱形的轴对称性结合在一起的综合题,解决问题的方法是作出F点的对称点F',线段EF'的长就是PE+PF的最小值,同样道理,也可以作E点的对称点E’.菱形既是中心对称图形,又是轴对称图形,许多题目正是从对称的角度展开对问题的讨论,因此从对称的角度思考问题,常常会给解决问题带来便利.【跟踪训练】6.如图4-16-11,在平行四边形ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.【解答】【拓展延伸】例7如图4-16-12,在Rt△ABC中,∠B=90°,BC=5,∠C=30o.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.【提示】(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使口AEFD为菱形则还需要满足一组邻边相等;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中利用AD=2AE即求得.②∠DEF=90°时,由(2)知EF//AD,则得∠ADE=∠DEF=90°,求得AD=AE·cos60°列式得.③∠EFD=90°时,此种情况不存在.【解答】【跟踪训练】7.如图4-16-13,菱形ABCD的边长为24厘米,∠A=60°,质点P从点A出发沿着AB-BD-DA作匀速运动,质点Q从点D同时出发沿着线路DC-CB-BD作匀速运动.(1)求BD的长;(2)已知质点P,Q运动的速度分别为4cm/s、5cm/s,经过12秒后,P,Q分别到达M,N两点,若按角的大小进行分类,请问△AMN是哪一类三角形?并说明理由.【解答】【竞赛连接】例8(希望杯全国数学邀请赛试题)若某一个内角为30°的菱形中有一个点到四边的距离分别为1、2、3、4,则这个菱形的面积等于.【提示】菱形内的点到对边的距离之和为菱形的高线,故菱形的高为1+4=2+3=5,根据直角三角形中30°角的特殊性可以证明AB=2AE,根据边长和高即可求菱形ABCD的面积.【跟踪练习】8.(湖北初中数学竞赛试题)如图4-16-14,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°培优训练1.如图4-16-15,菱形ABCD的对角线AC,BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为.2.如图4-16-16,在菱形ABCD中,∠BCD=120°,点F是BD上一点,EF⊥CF,AE⊥EF,AE=3,EF=4,求AB长.3.如图4-16-17,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,CE 平分∠ACB ,交AD 于G ,交AB 于E ,EF ⊥BC 于F . 求证:四边形AEFG 是菱形.G DFECB A图4-16-174.如图4-16-18,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N . 求证:四边形AMNE 是菱形.OENMD ACB图4-16-185.如图4-16-19,在菱形ABCD 中,E ,F 分别为BC ,CD 上的点,且CE =CF .试说明:AE =AF .F DABC图4-16-196.如图4-16-20,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF =DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.FED图4-16-207.如图4-16-21,在平行四边形ABCD 中,E 为BC 边上的一点,连接AE ,BD 且AE =AB . (1)求证:∠ABE =∠EAD ;(2)若∠AEB =2∠ADB , 求证:四边形ABCD 是菱形.ECBA图4-16-218.如图4-16-22,在四边形ABCD 中,AB =AC =AD ,BC =CD ,锐角∠BAC 的角平分线AE 交BC 于点E ,AF 是CD 边上的中线,且PC ⊥CD 与AE 交于点P ,QC ⊥BC 与AF 交于点Q . 求证:四边形APCQ 是菱形.QPEFACB图4-16-229.如图4-16-23,在△ABC 中,∠ABC =90°,BD 为AC 边的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG 、DF .若AG =13,CF =6,求四边形BDFG 的周长.EFDBC图4-16-2310.如图4-16-24,点D 是等腰Rt △ABC 的直角边BC 上一点,AD 的垂直平分线EF 分别交AC ,AD ,AB 于E ,O ,F ,且BC =2. (1)当CD =2时,求AE ;(2)当CD =2(21) 时,试证明四边形AEDF 是菱形.FE OACD图4-16-24直击中考11.★★(2017·湖北十堰)如图4-16-25,在菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,若∠ABC =140°,则∠OED =________.O EDCABE D ABCP ADBC图4-16-25图4-16-26图4-16-2712.★★(2017·山东东营)如图4-16-26,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为________.13.★★★★(2017·湖南怀化)如图4-16-27,在菱形ABCD 中,∠ABC =120°,AB =10cm ,点P 是这个菱形内部或边上的一点。

初中八年级下册数学1822 菱形(第1课时)课件q

初中八年级下册数学1822 菱形(第1课时)课件q

B
C 第4题图
4.如图,菱形ABCD的周长为48cm,对角线AC , BD相交于O点,
E是AD的中点,连接OE,则线段OE的长为___6_cm___.
18.2 特殊的平行四边形/
5.如图,在菱形ABCD中,点O为对角线AC与BD的交点,且在 △AOB中,OA=5,OB=12.求菱形ABCD两对边的距离h.
A
D
O
B
C
∴∠ABC= ×180°=60°,∴∠ABO= ×∠ABC=30°.
∴△ABC是等边三角形.
18.2 特殊的平行四边形/
∵菱形ABCD的周长是8cm. ∴AB=2cm. ∴OA= AB=1cm,AC=AB=2cm.

.
∴BD=2OB= 2 3cm;
(2)S菱形ABCD =
1 AC•BD
2
A.24m
B.12m
C.96m
D.48m
18.2 特殊的平行四边形/
知识点 3 菱形对角线的性质 观察:将一张长方形的纸对折、再对折,然后沿图中的虚 线剪下,打开即得一个菱形.
操作:在自己剪出的菱形上画出两条折痕,折叠手中的图 形(如图),并回答以下问题:
18.2 特殊的平行四边形/
问题1 菱形是轴对称图形吗?如果是,指出它的对称轴. 是,两条对角线所在直线都是它的对称轴.
对边相等
对边相等
四边相等
对角相等 四个角都是直角 对角相等
对角线互相平分
对角线互 相平分且 相等
两条对角线互相 垂直平分,并且 每一条对角线平 分一组对角
18.2 特殊的平行四边形/
考点 1 利用菱形的性质求线段的长 如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=12cm, AC=6cm,求菱形的周长. 解:∵四边形ABCD是菱形, ∴AC⊥BD,AO= AC,BO= BD. ∵AC=6cm,BD=12cm, ∴AO=3cm,BO=6cm. 在Rt△ABO中,由勾股定理,得

19.2 特殊的平行四边形—菱形(1)

∵四边形ABCD是菱形 四边形ABCD是菱形 ABCD B AC⊥BD,AC平分 BAD、 平分∠ ∴AC⊥BD,AC平分∠BAD、 BCD,BD平分 ABC、 平分∠ ∠BCD,BD平分∠ABC、∠ADC
1 2
BD平分∠ABC、 BD平分∠ABC、∠ADC 平分
A
O
5 6 3 4 7 8
D
C
已知:菱形ABCD的对角线AC和BD相交于点O, 已知:菱形ABCD的对角线AC和BD相交于点O ABCD的对角线AC 相交于点 如图。 如图。
第十九章
平行四边形
19.2 特殊的平行四边形
义务教育课程标准实验教科书——人教版——八年级下册
19.2.2 菱形的性质
义务教育课程标准实验教科书——人教版——八年级下册
两次, 将一张矩形的纸对折两次,然后 沿图中的虚线剪下, 沿图中的虚线剪下,得到一个直角三 角形,打开即得到一个四边形。 角形,打开即得到一个四边形。
1.菱形ABCD的周长是20cm,则菱形ABCD的边 1.菱形ABCD的周长是20cm,则菱形ABCD的边 菱形ABCD的周长是20cm,则菱形ABCD 长是 5cm ; 2.下面性质中菱形有而矩形没有的是( ) 2.下面性质中菱形有而矩形没有的是( 下面性质中菱形有而矩形没有的是 (A)邻角互补 (B)四个角都为直角 (C)对角线相等 (D)对角线互相垂直
A O B C D
∴AC⊥BD,AC平分∠ ∴AC⊥BD,AC平分∠BAD 平分
同理: AC平分 BCD; 平分∠ 同理: AC平分∠BCD; BD平分 ABC和 平分∠ BD平分∠ABC和∠ADC
菱形是特殊的平行四边形,既具有平行四边 的平行四边形, 形的所有性质,又具有自己的特殊性质:

教学课件02+菱形的性质与判定2023-2024学年九年级数学核心知识点与常见题型通关讲解练

第一章 特殊平行四边形
2菱形的性质与判定(第2课时)
目录
1 学习目标 3 新课讲解 5 当堂小练 7 拓展与延伸
2 新课导入 4 课堂小结 6 巩固提升
学习目标
1. 由对角线的位置关系判定菱形(重点、难点) 2. 由边的数量关系判定菱形 3.理解并掌握菱形的定义及两个判定方法;会用这些判定 方法进行有关的论证和计算. 4.在菱形的判定方法的探索与综合应用中,培养学生的观 察能力、动手能力及逻辑思维能力.
证明: ∵四边形ABCD是平行四边形, ∴OA=OC. 又∵AC⊥BD, ∴BD所在直线是线段AC的垂直平分线, ∴AB=BC, ∴四边形ABCD是菱形(有一组邻边相等的平行四
边形是菱形).
新课讲解
讨论
已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为
菱形的一条对角线吗?
结论
1. 判定定理:对角线互相垂直的平行四边形是菱形. 2. 规律导引:若用对角线进行判定:先证明四边形是平行四 边形,再证明对角线互相垂直,或直接证明四边形的对角线 互相垂直平分.
(2)解:四边形 AFBE 是菱形,理由如下: ∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形 AFBE 是平行四边形,又∵EF⊥AB, ∴四边形 AFBE 是菱形.
3.(岳阳中考)求证:对角线互相垂直的平行四边形是菱形. 小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全 已知和求证,并写出证明过程.
新课讲解
典例分析
例 4.如图,▱ABCD的对角线AC,BD相交于点O,请你添加一 个适当的条件__A_C__⊥__B_D__使其成为菱形(只填一个即可).
新课讲解
练一练
1 已知:如图,在□ABCD中,对角线AC⊥BD.

特殊的平行四边形——菱形的定义与性质


6.已知菱形的周长是12cm,那么它的 3cm 边长是 ______. 7.如下图:菱形ABCD中∠BAD=60度, 若BD=6cm,则菱形的周长是( ) D
C
A A.3cm B.12cm C. 6cm D.4cm B
O
C
7、已知,菱形对角线长分别为12cm和 16cm,求菱形的高。 8、如图,E为菱形ABCD边BC上一点, 且AB=AE,AE交BD于O,且 A ∠DAE=2∠BAE, D 求证:EB=OA; O
= AC×BD
C 思考:计算菱形的面积除了上式方法外,利用对 角线能 计算菱形的面积公式吗?
面积:S菱形=底×高=对角线乘积的一半
2
1、菱形ABCD两条对角线BD、AC长分别 是6cm和8cm,求菱形的面积。
D A O B C
S菱形ABCD
1 AC BD 2
24
D O
A
C
B
如图,在菱形ABCD中,对角线AC、BD相交于点O
已知:在
ABCD 中,AC ⊥ BD B
A

求证: ABCD 是菱形
证明:
O C
D
∵四边形ABCD是平行四边形
∴OA=OC 又∵AC⊥BD;
∴BA=BC ∴ ABCD是菱形
判定方法3:
对角线互相垂直的平行四边形是菱形
A
D AC⊥BD B C B C A D
□ABCD
菱形ABCD
数学语言
∵在□ABCD中,AC⊥BD ∴ □ABCD是菱形
∥ ∴ AD BC ∴ ∠ ∴ DAB+ ∠ DAC= ∠ ABC= ∠BAC 180° ∴ AB=BC=CD=DA ∴OA=OC;OB=OD ∠DAB= ∠ DCB ∴ =

2020-2021学年八年级数学下学期期末复习:1.4 特殊平行四边形【知识梳理+真题演练】(人教

专题1.4 特殊平行四边形知识归纳 知识点1:菱形1. 定义:一组邻边相等的平行四边形叫做菱形.2. 性质:菱形的四条边相等,两条对角线互垂直平分,且每一条对角线平分一组对角.3. 判定方法:①一组邻边相等的平行四边形是菱形;①对角线互相垂直的平行四边形是菱形;①四条边都相等的四边形是菱形.4. 设菱形对角线长分别为l 1,l 2,则S 菱形=21l 1l 2.1.(2020•荆门)如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若EF =5,则菱形ABCD 的周长为( )A .20B .30C .40D .502.(2020•黄冈)若菱形的周长为16,高为2,则菱形两邻角的度数之比为( )A .4:1B .5:1C .6:1D .7:13.(2020•牡丹江)如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,AD ①x 轴且AD =4,①A =60°,将菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C 的对应点的坐标是( )A.(0,2√3)B.(2,﹣4)C.(2√3,0)D.(0,2√3)或(0,﹣2√3)4.(2020•盐城)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.125B.52C.3D.55.(2020•辽阳)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD=6,点E是CD 上一点,连接OE,若OE=CE,则OE的长是()A.2B.52C.3D.46.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH①AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.√13D.67.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH①AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72B.24C.48D.968.(2020•贵阳)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.329.(2020•福建)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:①BAE=①DAF.10.(2020•滨州)如图,过①ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:①PBE①①QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.11.(2020•郴州)如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.求证:四边形BEDF是菱形.12.(2020•连云港)如图,在四边形ABCD中,AD①BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.知识点2:矩形1.定义:有一个内角是直角的平行四边形叫做矩形.2.性质:矩形的对角线互相平分且相等,四个角都是直角.3.判定方法:①有三个角是直角的四边形是矩形;①对角线相等的平行四边形是矩形;①有一个角是直角的平行四边形是矩形.4. 设矩形的长和宽分别为a,b,则S矩形=ab.1.(2020秋•西安期末)如图,矩形ABCD的对角线AC、BD相交于点O,①ABO=60°,若矩形的对角线长为6.则线段AD的长是()A.3B.4C.2D.32.(2020春•漳州期末)如图,将矩形纸片右侧部分的四边形ABCD沿线段AD翻折至四边形AB′C′D的位置.若①DAB=56°,则①1的度数是()A.34°B.56°C.58°D.68°3.(2020春•复兴区期末)如图,在矩形ABCD中,AC、BD相交于点O,AE平分①BAD交BC于点E,若①CAE=15°,则①BOE的度数为()A.60°B.75°C.72°D.90°4.(2019秋•崂山区期末)如图,在矩形ABCD中,对角线AC与BD相交于点O,AE①BD,垂足为点E,AE=5,且EO=2BE,则OA的长为()A.B.C.3D.5.(2020春•新乐市期末)如图,在①ABC中,点D在BC上,DE①AC,DF①AB,下列四个判断中不正确的是()A.四边形AEDF是平行四边形B.若①BAC=90°,则四边形AEDF是矩形C.若AD①BC且AB=AC,则四边形AEDF是菱形D.若AD平分①BAC,则四边形AEDF是矩形6.(2020秋•太原期末)如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.①ABC=90°B.AC=BD C.AD=AB D.①BAD=①ADC7.(2020秋•紫金县期末)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AD=BC8.(2020春•南宁期末)如图,在△ABC中,∠ACB=90°,D是AB的中点,且DC=AC,则∠B的度数是()A.25°B.30°C.45°D.60°9.(2020•聊城)如图,在①ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.10.(2020•遂宁)如图,在①ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:①BDE①①F AE;(2)求证:四边形ADCF为矩形.11.(2020•北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF①AB,OG①EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.知识点3:正方形1. 正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形.2. 正方形的性质(1)正方形既有矩形的性质,又有菱形的性质.(2)正方形的四个角都是直角,四条边相等.(3)正方形的对角线相等且互相垂直平分.3. 正方形的判定方法(1)有一组邻边相等的矩形是正方形.(2)对角线互相垂直的矩形是正方形.(3)有一个角是直角的菱形是正方形.(4)对角线相等的菱形是正方形.4. 平行四边形、矩形、菱形与正方形之间的联系1.(2020秋•大东区期末)如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则①CDE的度数为()A.20°B.22.5°C.25°D.30°2.(2020春•十堰期末)如图,在正方形OABC中,点B的坐标是(6,6),点E、F分别在边BC、BA 上,OE=3.若①EOF=45°,则F点的纵坐标是()A.2B.C.D.13.(2020春•漳州期末)如图,在正方形ABCD中,BF①CE于点F,交AC于点G,则下列结论错误的是()A.①BCG①①CDE B.AG=BE C.①OBG=①OCE D.①ABG=①AGB 4.(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:①BAE①①CDE;(2)求①AEB的度数.5.(2020•自贡)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE =DF,连接AE和BF相交于点M.求证:AE=BF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊平行四边形之菱形
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(特殊平行四边形之菱形)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为特殊平行四边形之菱形的全部内容。

一、菱形的基本定义及性质:
1、 菱形的定义:在一个平面内,有一组邻边相等的平行四边形是菱形。

2、菱形的性质:
二. 菱形
的判定:
1、判定定理:
在同一平面内, (1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法. 2、面积计算:菱形的面积:S 菱形=底边长×高=两条对角线乘积的一半。

三、总结:
(1)解题时注意菱形四边相等、对角线垂直这一特点,注意勾股的应用. (2)在平面直角坐标系中利用菱形求点的坐标是今后学习的重点。

例题1如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线
AC 于点F,垂足为E,连接DF,则∠CDF
等于(
)A .
50°B .60°C .70°D .80°
例题2在△ABC 中,AB=AC ,∠BAC=120°,过点C 作CD∥AB,且
CD=2AB,连接BD ,BD=2.求△ABC 的面积.
利用菱形中的边角关系总结规律
实例:如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱
形的边长是
性质判定综合运用
实例:如图,在菱形ABCD 中,AB=BD ,点E 、F 分别在BC 、CD 上,且BE=CF,连接BF 、DE 交于点M ,延长ED 到H 使DH=BM ,连接AM ,AH

则以下四

结论:①△BDF≌△DCE ;②∠BMD=120°
;③△AMH 是等边三角形;④S 四边形ABCD =(2012•贵港)如图,在菱形ABCD 中,AB=BD ,点E 、F 分别在BC 、CD 上,且BE=CF ,连接BF 、DE 交于点M ,延长ED 到H 使DH=BM ,连接AM ,AH,则以下四个结论:①△BDF≌△DCE ;②∠BMD=120°;
③△AMH 是等
边三角形;④S 四边形ABCD = AM 2
.其中正确结论的个数是( )
例题.在平行四边形ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 的延长线于点F,以EC 、CF 为邻边作平行四边形ECFG . (1)如图1,证明平行四边形ECFG 为菱形; (2)如图2,若∠ABC=90°,M 是EF 的中点,求∠BDM 的度数; (3)如图3,若∠ABC=120°,请直接写出∠BDG 的度数.
(答题时间:45分钟) 一、选择题
1、在菱形ABCD 中,对角线AC 、BD 相交于点O,AB=5,AC=6,
过点D 作
AC 的平行线交BC 的延长线于点E ,则△BDE 的面积为( )A .22 B .24 C .48 D .44
2如图,将三角形纸片△ABC 沿DE 折叠,使点A 落在BC 边上
43
的点F 处,且
DE∥BC ,下列结论中,一定正确的个数是( )①△BDF 是等腰三角形;
②DE=
BC ;③四边形
ADFE 是菱形;④∠BDF+∠FEC=2∠A .
A .1
B .
2 C .
3 D .4
*3如图,在▱ABCD 中,AE,CF 分别是∠BAD 和∠BCD 的平分线,添加一个条件,仍无法判断四边形AECF 为菱形的是( )A .AE=AF B .EF⊥AC C .∠B=60°D .AC 是∠EAF 的平分线
*4如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下: 甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于M ,O,N ,连接AN,CM,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于E ,F ,连接EF,则四边形ABEF 是菱形.根据两人的作法可判断( )
A .甲正确,乙错误
B .乙正确,甲错误
C .甲、乙均正确
D .甲、乙均错误
**5、如图四边形ABCD 是菱形,且∠ABC=60,△ABE 是等边三角形,M 为对角线BD(不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN,连接EN 、AM 、CM ,则下列五个结论中正确的是( )①若
菱形ABCD 的边长为1,则AM+CM 的最小值1;②△AMB≌△ENB;③S 四边形AMBE =S 四边形ADCM ;④连接AN ,则
AN⊥BE;⑤当
AM+BM+CM 的最小值为2
时,菱形ABCD 的边长为2.A .①②③B .②④⑤C .①②⑤D .②③⑤ 二、填空题:
*6如图,菱形ABCD 的边长为8cm ,∠A=60°,DE⊥AB 于点E ,DF⊥BC
于点F,则四边形BEDF 的面积为 cm 2

*7如图,观察图中菱形的个数:图1中有1个菱形,图2
中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是 个.
**8菱形ABCD 在平面直角坐标系中的位置如图所示,A (0,6),D (4,0),将菱形ABCD 先向左平移5个单位长度,再向下平移8个单位长度,然后在坐标平面内绕点O 旋转90°,则边AB 中点的对应点的坐标为 .
**9已知四边形ABCD 是边长为2的菱形,∠BAD=60°,对角线AC 与BD 交于点O ,过点O 的直线EF 交AD 于点E ,交BC 于点F .若∠EOD=30°,求
CE 的长 三、解答题: *10试题
(2013•盐城)如图,在平行四边形ABCD 中,E 为BC 边上的一点,连结AE 、BD 且AE=AB . (1)求证:∠ABE=∠EAD ; (2)若
∠AEB=2∠ADB ,求证:四边形ABCD 是菱形.
21
3
*11已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线Array BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.
**12△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上运动到什么位置时,四边形BCGE是菱形?并
说明理由.。

相关文档
最新文档