【单元测试】2018人教八下标准试卷《第十九章一次函数》单元测试含答案

合集下载

人教版数学八年级下《第十九章一次函数》单元测试题含答案

 人教版数学八年级下《第十九章一次函数》单元测试题含答案

人教版数学八年级下《第十九章一次函数》单元测试题含答案一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

A.(0,2-)B.(32,0)C.(8,20)D.(12,12)2.变量x,y有如下关系:①x+y=10②y=x5-③y=|x-3④y2=8x.其中y是x的函数的是A.①②②③④B. ①②③C. ①②D. ①3.下列各曲线中不能表示y是x的函数是().A.B.C.D.4.已知一次函数2y x a=+与y x b=-+的图象都经过A(2-,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A.k>5B.k<5C.k>-5D.k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3xy=得到53xy+=的图象,那么直线3xy=必须().A.向上平移5个单位B.向下平移5个单位C.向上平移53个单位D.向下平移53个单位8.经过一、二、四象限的函数是A.y=7B.y=-2xC.y=7-2xD.y=-2x-7题号 1 2 3 4 5 6 7 8 9 10 11 12 答案9.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题3分,共15分。

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。

人教版数学八年级下《第十九章一次函数》单元测试卷含答案.doc

人教版数学八年级下《第十九章一次函数》单元测试卷含答案.doc

人教版数学八年级下册 第十九章 一次函数 单元测试卷一、选择题1.函数y =x -1x -2中,自变量x 的取值范围是( ) A .x ≥1 B .x >1 C .x ≥1且x ≠2 D .x ≠2 2.一次函数y =-2x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.A ,B 两地相距20千米,甲、乙两人都从A 地去B 地,图中l 1和l 2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是( )A .4B .3C .2D .14.对于一次函数y =kx +k -1(k≠0),下列叙述正确的是( ) A .当0<k <1时,函数图象经过第一、二、三象限 B .当k >0时,y 随x 的增大而减小C .当k <1时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点(-1,-2)5.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-32,0) B .(-6,0)C .(-3,0)D .(-52,0)6.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题7.已知函数y=2x2a+b+a+2b是正比例函数,则a=____,b=____.8.若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为____.9.已知(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1____y2.(填“>”“=”或“<”)10.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第____象限.11.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是____________.12.正方形A1B1C1O和A2B2C2C1按如图方式放置,点A1,A2在直线y=x+1上,点C 1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为__________.13. 甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是____米.三、解答题14.一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴的交点为A(a,0),求a的值.15.若直线y=12x+2分别交x轴、y轴于A,C两点,点P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,且S△ABC=6.(1)求点B和点P的坐标;(2)过点B作直线BQ∥AP,交y轴于点Q,求点Q的坐标和四边形BPCQ的面积.16.如图,在平面直角坐标系xOy中,直线y=kx+b交x轴于点A,交y轴于点B,线段AB的中点E的坐标为(2,1).(1)求k,b的值;(2)P为直线AB上一点,PC⊥x轴于点C,PD⊥y轴于点D,若四边形PCOD为正方形,求点P的坐标.17.1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).(1)根据题意,填写下表:上升时间/min10 30 (x)1号探测气球所在位置的海拔/m15 …2号探测气球所在位置的海拔/m30 …位于什么高度?如果不能,请说明理由;(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?18.如图①,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图②为列车离乙地路程y(千米)与行驶时间x(小时)的函数关系图象.(1)填空:甲、丙两地距离_______千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.19.如图,A(0,1),M(3,2),N(4,4),动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上.20. A 城有某种农机30台,B 城有该农机40台,现要将这些农机全部运往C ,D 两乡,调运任务承包给某运输公司.已知C 乡需要农机34台,D 乡需要农机36台,从A 城往C ,D 两乡运送农机的费用分别为250元/台和200元/台,从B 城往C ,D 两乡运送农机的费用分别为150元/台和240元/台.(1)设A 城运往C 乡该农机x 台,运送全部农机的总费用为W 元,求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A 城运往C 乡的农机,从运输费中每台减免a 元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?答案:一、1---6 CCBCAC二、7. 23 -138. 3 9. < 10. 四 11. x <-2 12. (3,2) 13. 175 三、14. 解:(1)由题意得⎩⎨⎧b =2,k +b =3,解得⎩⎨⎧k =1b =2(2)在函数解析式y =x +2中,令y =0,则x =-2,∴a =-2 15. 解:(1)B(2,0),P(2,3)(2)Q(0,-1),S 四边形BPCQ =616. 解:(1)k =-12,b =2(2)点P 的坐标为(43,43)或(-4,4)17. (1) 35 x +5 20 0.5x +15(2) (2)两个气球能位于同一高度.根据题意得x +5=0.5x +15,解得x =20,∴x+5=25,则此时,气球上升了20 min ,都位于海拔25 m 的高度(3)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在的位置的海拔相差y m ,则y =(x +5)-(0.5x +15)=0.5x -10,∵0.5>0,∴y 随x 的增大而增大,∴当x =50时,y 取得最大值15,即两个气球所在的位置海拔最多相差15 m 18. (1) 1050(2)当0≤x ≤3时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =k 1x +b 1,把(0,900),(3,0)代入得⎩⎨⎧b 1=900,3k 1+b 1=0,解得⎩⎨⎧k 1=-300,b 1=900,∴y=-300x +900,高速列车的速度为900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时),则点A 的坐标为(3.5,150);当3<x ≤3.5时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =k 2x +b 2,把(3,0),(3.5,150)代入得⎩⎨⎧3k 2+b 2=0,3.5k 2+b 2=150,解得⎩⎨⎧k 2=300,b 2=-900,∴y =300x -900,∴y =⎩⎨⎧-300x +900(0≤x ≤3)300x -900(3<x ≤3.5)19. (1)直线y =-x +b 交y 轴于点P(0,b),b =1+t ,当t =3时,b =4,∴y =-x +4(2)当直线y =-x +b 过M(3,2)时,2=-3+b ,解得b =5,∴5=1+t ,∴t =4;当直线y =-x +b 过N(4,4)时,4=-4+b ,解得b =8,∴8=1+t ,∴t =7,∴4<t <7(3)t =1时,落在y 轴上;t =2时,落在x 轴上20. (1)W =250x +200(30-x)+150(34-x)+240(6+x),即W =140x +12540(0≤x≤30)(2)根据题意得140x +12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案:从A 城至C 乡运28台,A 城至D 乡运2台,从B 城至C 乡运6台,B 城至D 乡运34台;从A 城至C 乡运29台,A 城至D 乡运1台,从B 城至C 乡运5台,B 城至D 乡运35台;从A 城至C 乡运30台,A 城至D 乡运0台,从B 城至C 乡运4台,B 城至D 乡运36台(3)W =(250-a)x +200(30-x)+150(34-x)+240(6+x)=(140-a)x +12540,当0<a <140时,140-a>0,x =0时,W 最小,此时从A 城至C 乡运0台,A 城至D 乡运30台,从B 城至C 乡运34台,B 城至D 乡运6台;当a =140时,W =12540,各种方案费用一样多;当140<a <200时,140-a <0,x =30时,W 最小,此时从A 城至C 乡运30台,A 城至D 乡运0台,从B 城至C 乡运4台,B 城至D 乡运36台。

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版一、单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数1x y x+=的自变量x 的取值范围是( ) A .1x >- B .1x ≥- C .1x ≥-或0x ≠D .1x ≥-且0x ≠6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km )与所收费用 y (元)之间的函数关系的图象是( )A .B .C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( ) A .a b ≥B .a b >C .a b ≤D .a b <8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A (m ,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x >32D .x >310.如图,欣欣妈妈在超市购买某种水果所付金额y (元)与购买x (千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二、填空题11.若函数6y x =-在实数范围内有意义,则函数x 的取值范围是 . 12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 . 13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t (分)时小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD 、线段EF 分别表示 1s 、 2s 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三、解答题15.如图,在靠墙(墙长8m )的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m ,求鸡场的一边y (m )与另一边x (m )的函数关系式,并求出自变量的取值范围.16.已知A 、B 两地相距30km ,小明以6km/h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.17.一次函数y=kx+b ,当x=1时y=5;当x=-1时y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q (升)与行使的路程S (km )成一次函数关系.若行使100km 时油箱存油43.5升,当行使300km 时油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四、综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y (元)与师生人数x (人)的函数关系式; (2)当师生人数是多少时甲旅行社比乙旅行社更便宜.22.将正比例函数3y x =的图象平移后经过点()14,. (1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x 构成一种函数关系.每平方米种植2株时平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式;(2)每平方米种植多少株时能获得12.5kg 的产量?参考答案与解析1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量而购买的本数x ,总费用y 是变化的量,因此x 和y 是变量 故答案为:D .【分析】结合题意,利用变量的定义求解即可。

人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第19章一次函数》单元测试卷(1)一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y25.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.146.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.二、填空题11.若y=(m+1)是正比例函数,则m的值为.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是.13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是.15.函数中,自变量x的取值范围是.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是.19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P的坐标是.20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜元.(2)若通讯费用为60元,则B方案比A方案的通话时间(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜元.(4)若两种方案通讯费用相差10元,则通话时间是分.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.人教新版八年级下册《第19章一次函数》单元测试卷(1)参考答案与试题解析一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.【考点】函数的图象.【分析】找到对于x的一个值,y都有唯一的值与其对应的图象即可.【解答】解:A、B、C、中,对于x的一个值,y都有2个值与其对应,所以y不是x的函数.故选:D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定【考点】一次函数图象与系数的关系.【分析】由题意y=﹣3mx﹣4(m≠0),y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=﹣3mx﹣4(m≠0),y随x的增大而增大,∴﹣3m>0,∴m<0.故选:B.3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x【考点】待定系数法求正比例函数解析式.【分析】把点(﹣1,2)代入y=mx,即可求得m的值,则函数的解析式即可求得.【解答】解:把点(﹣1,2)代入y=mx得:﹣m=2,解得:m=﹣2,则函数的解析式是:y=﹣2x.故选:D.4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可知.【解答】解:根据k<0,得y随x的增大而减小.①当x1<x2时,y1>y2,②当x1>x2时,y1<y2.故选:C.5.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.14【考点】动点问题的函数图象.【分析】根据函数的图象知BC=4,AC=3,根据直角三角形的面积的求法即可求得其面积.【解答】解:∵D是斜边AB的中点,∴根据函数的图象知BC=4,AC=3,∵∠ACB=90°,=AC•BC=×3×4=6.∴S△ABC故选:B.6.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【考点】一次函数的图象;根据实际问题列一次函数关系式.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选:D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大【考点】一次函数的性质.【分析】根据凡是函数图象经过的点比能使解析式左右相等,故A错误;根据k、b的值进行分析可得B错误;根据解析式y=﹣2x+1可得x=﹣,再由x>可得﹣,再解不等式即可得到C正确;根据一次函数的性质可得D错误.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B、k=﹣2<0,b=1经过第一、二、四象限,故此选项错误;C、由y=﹣2x+1可得x=﹣,当x>时,y<0,故此选项正确;D、y随x的增大而减小,故此选项错误;故选:C.8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)【考点】两条直线相交或平行问题.【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【解答】解:联立两个函数解析式得,解得则两个函数图象的交点为(﹣,),故选:B.9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】先求出点A关于y轴的对称点A′的坐标,再用待定系数法求出直线A′B的解析式,求出直线与y轴的交点即可.【解答】解:∵A(3,4),∴点A关于y轴的对称点A′的坐标为(﹣3,4),设直线A′B的解析式为y=kx+b(k≠0),则,解得,∴直线A′B的解析式为y=﹣x+1,∴P(0,1).故选:B.10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.【考点】函数的图象.【分析】根据题意,第1小时高度上升至2千米,1到1.5小时,高度不变,应为平行于t轴的线段,1.5小时之后1小时到达山顶,时间为2.5小时,高度为3千米.所以图象应是三条线段,结合图象选取即可.【解答】解:根据题意,先用1小时爬了2千米,是经过(0,0)到(1,1)的线段,休息0.5小时,高度不变,是平行于t轴的线段,用3小时爬上山顶,是经过(1.5,1),(2.5,3)的线段.只有D选项符合.故选:D.二、填空题11.若y=(m+1)是正比例函数,则m的值为1.【考点】正比例函数的定义.【分析】根据正比例函数的定义列式求解即可.一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.【解答】解:由题意得,2﹣m2=1且m+1≠0,解得m=±1且m≠﹣1,所以,m=1.故答案为:1.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是(1.5,1)(0.5,﹣1).【考点】一次函数图象上点的坐标特征.【分析】与x轴的距离等于1,那么点的纵坐标为±1,代入一次函数可得其横坐标.【解答】解:和x轴的距离等于1的点的纵坐标为±1,当y=1时,x=1.5;当y=﹣1时,x=0.5,故答案为:(1.5,1)(0.5,﹣1).13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是y=120﹣x.【考点】平行四边形的性质.【分析】由平行四边形的性质可直接求解.【解答】解:∵平行四边形的周长为240,两邻边长为x、y,∴2(x+y)=240,∴y=120﹣x,故答案为:y=120﹣x.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是﹣.【考点】待定系数法求一次函数解析式.【分析】将x+3代入函数解析式可得出对应的y2值,根据题意y2﹣y=﹣2可得出k的值.【解答】解:将x+3代入得:y2=k(x+3)+b,y2﹣y=k(x+3)+b﹣kx﹣b=﹣2,解得:k=﹣.故填﹣.15.函数中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为﹣3.【考点】正比例函数的定义.【分析】根据一次函数和正比例函数的定义,可得出m的值.【解答】解:∵y=(m﹣3)x+m2﹣9是正比例函数,∴.解得m=﹣3.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是减小2.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】先待定系数法求函数解析式,根据k的值即可确定变化率以及增减性,即可确定答案.【解答】解:将点P(2,﹣1)与点Q(﹣1,5)代入y=kx+b,得,解得,∴y=﹣2x+3,可知每当x增加1,y的值将减小2,∴当y的值增加4时,x的值减小2.故答案为:减小2.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是(1,1)和(﹣3,﹣1).【考点】一次函数图象上点的坐标特征.【分析】分别代入y=1及y=﹣1求出x的值,进而可得出符合题意的点的坐标.【解答】解:当y=1时,x+=1,解得:x=1,∴点(1,1)符合题意;当y=﹣1时,x+=﹣1,解得:x=﹣3,∴点(﹣3,﹣1)符合题意.故答案为:(1,1)和(﹣3,﹣1).19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P 的坐标是(,1).【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解进行回答.【解答】解:∵方程组的解为,∴一次函数y=2x﹣3与y=﹣x+3的交点P的坐标为(,1).故答案为(,1).20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜20元.(2)若通讯费用为60元,则B方案比A方案的通话时间多(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜12元.(4)若两种方案通讯费用相差10元,则通话时间是145或195分.【考点】函数的图象.【分析】(1)通话时间少于120分,A方案费用30元,B方案费用50元;(2)费用为60元时,对应的时间从图中(绿线)两个交点位置可以比较;(3)【解答】解:(1)通话时间少于120分,A方案费用30元,B方案费用50元,所以A 方案比B方案便宜20元.故答案为:20;(2)从图中绿线可以看出,当通讯费用为60元,那么A方案比B方案的通话时间多.故答案为:多;(3)当x>120,y A=30+(x﹣120)×[(50﹣30)÷(170﹣120)]=0.4x﹣18;当x>200,y B=50+[(70﹣50)÷(250﹣200)](x﹣200)=0.4x﹣30,∴当x≥200时,B方案比A方案便宜12元,故答案为:12;(4)当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故答案为:145或195.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.【考点】待定系数法求一次函数解析式;一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,4)、点B(2,0)代入得,解得,故直线AB的解析式为y=﹣2x+4;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣4.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.【考点】待定系数法求一次函数解析式.【分析】由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.【解答】解:由正比例函数y=kx的图象过点(1,2),得:k=2,所以正比例函数的表达式为y=2x;由一次函数y=ax+b的图象经过点(1,2)和(4,0)得解得:a=,b=,∴一次函数的表达式为y=x+.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?【考点】一元一次不等式的应用;根据实际问题列一次函数关系式;一元一次方程的应用.【分析】(1)直接根据题意列出函数解析式即可;(2)把y=3000分别代入(1)中所求的函数关系式中求出x的值,比较大小即可;(3)根据“甲厂的费用<乙厂的费用”列出不等式x+1000<2x求解即可.【解答】解:(1)甲厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=x+1000;乙厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=2x;(2)根据题意可知,若找甲厂印刷,设可以印制x份,则:3000=x+1000,解得:x=2000;若找乙厂印刷,设可以印制x份,则:3000=2x,解得:x=1500.所以,甲厂印制的宣传材料多一些;(3)设印刷x份时,在甲厂印刷合算.根据题意可得:x+1000<2x,解得:x>1000.∴当印制数量大于1000份时,在甲厂印刷合算.24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.【考点】一次函数综合题.【分析】(1)根据直线解析式确定出B坐标,设P(x,y),以OA为底,P的纵坐标为高表示出S与y的关系式即可;(2)判断出S与y的函数关系式,并求出y的范围即可;(3)以OA为底,PM为高列出S与x的函数解析式,求出x的范围即可;(4)△QOA是以OA为底的等腰三角形,可得出点Q在OA的中垂线上,求出Q坐标即可.【解答】解:(1)直线y=﹣x+3与y轴的交点为B(0,3),设点P(x,y),∵点P在第一象限,x>0,y>0,∴S=OA•PM=×y×4=2y;(2)S是y的正比例函数,自变量y的取值范围是0<y<3;(3)S=2y=2(﹣x+3)=﹣x+6,S是x的一次函数,自变量的取值范围是0<x<6.(4)∵△QOA是以OA为底的等腰三角形,∴点Q在OA的中垂线上,设Q(x0,y0),则有,解得:,则点Q的坐标为(2,2).。

人教版数学八年级下《第十九章一次函数》单元测试卷含答案.doc

人教版数学八年级下《第十九章一次函数》单元测试卷含答案.doc

人教版数学八年级下册 第十九章 一次函数 单元测试卷一、选择题1.函数y =x -1x -2中,自变量x 的取值范围是( ) A .x ≥1 B .x >1 C .x ≥1且x ≠2 D .x ≠2 2.一次函数y =-2x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.A ,B 两地相距20千米,甲、乙两人都从A 地去B 地,图中l 1和l 2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是( )A .4B .3C .2D .14.对于一次函数y =kx +k -1(k≠0),下列叙述正确的是( ) A .当0<k <1时,函数图象经过第一、二、三象限 B .当k >0时,y 随x 的增大而减小C .当k <1时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点(-1,-2)5.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-32,0) B .(-6,0)C .(-3,0)D .(-52,0)6.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题7.已知函数y=2x2a+b+a+2b是正比例函数,则a=____,b=____.8.若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为____.9.已知(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1____y2.(填“>”“=”或“<”)10.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第____象限.11.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是____________.12.正方形A1B1C1O和A2B2C2C1按如图方式放置,点A1,A2在直线y=x+1上,点C 1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为__________.13. 甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是____米.三、解答题14.一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴的交点为A(a,0),求a的值.15.若直线y=12x+2分别交x轴、y轴于A,C两点,点P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,且S△ABC=6.(1)求点B和点P的坐标;(2)过点B作直线BQ∥AP,交y轴于点Q,求点Q的坐标和四边形BPCQ的面积.16.如图,在平面直角坐标系xOy中,直线y=kx+b交x轴于点A,交y轴于点B,线段AB的中点E的坐标为(2,1).(1)求k,b的值;(2)P为直线AB上一点,PC⊥x轴于点C,PD⊥y轴于点D,若四边形PCOD为正方形,求点P的坐标.17.1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).(1)根据题意,填写下表:上升时间/min10 30 (x)1号探测气球所在位置的海拔/m15 …2号探测气球所在位置的海拔/m30 …位于什么高度?如果不能,请说明理由;(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?18.如图①,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图②为列车离乙地路程y(千米)与行驶时间x(小时)的函数关系图象.(1)填空:甲、丙两地距离_______千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.19.如图,A(0,1),M(3,2),N(4,4),动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上.20. A 城有某种农机30台,B 城有该农机40台,现要将这些农机全部运往C ,D 两乡,调运任务承包给某运输公司.已知C 乡需要农机34台,D 乡需要农机36台,从A 城往C ,D 两乡运送农机的费用分别为250元/台和200元/台,从B 城往C ,D 两乡运送农机的费用分别为150元/台和240元/台.(1)设A 城运往C 乡该农机x 台,运送全部农机的总费用为W 元,求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A 城运往C 乡的农机,从运输费中每台减免a 元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?答案:一、1---6 CCBCAC二、7. 23 -138. 3 9. < 10. 四 11. x <-2 12. (3,2) 13. 175 三、14. 解:(1)由题意得⎩⎨⎧b =2,k +b =3,解得⎩⎨⎧k =1b =2(2)在函数解析式y =x +2中,令y =0,则x =-2,∴a =-2 15. 解:(1)B(2,0),P(2,3)(2)Q(0,-1),S 四边形BPCQ =616. 解:(1)k =-12,b =2(2)点P 的坐标为(43,43)或(-4,4)17. (1) 35 x +5 20 0.5x +15(2) (2)两个气球能位于同一高度.根据题意得x +5=0.5x +15,解得x =20,∴x+5=25,则此时,气球上升了20 min ,都位于海拔25 m 的高度(3)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在的位置的海拔相差y m ,则y =(x +5)-(0.5x +15)=0.5x -10,∵0.5>0,∴y 随x 的增大而增大,∴当x =50时,y 取得最大值15,即两个气球所在的位置海拔最多相差15 m 18. (1) 1050(2)当0≤x ≤3时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =k 1x +b 1,把(0,900),(3,0)代入得⎩⎨⎧b 1=900,3k 1+b 1=0,解得⎩⎨⎧k 1=-300,b 1=900,∴y=-300x +900,高速列车的速度为900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时),则点A 的坐标为(3.5,150);当3<x ≤3.5时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =k 2x +b 2,把(3,0),(3.5,150)代入得⎩⎨⎧3k 2+b 2=0,3.5k 2+b 2=150,解得⎩⎨⎧k 2=300,b 2=-900,∴y =300x -900,∴y =⎩⎨⎧-300x +900(0≤x ≤3)300x -900(3<x ≤3.5)19. (1)直线y =-x +b 交y 轴于点P(0,b),b =1+t ,当t =3时,b =4,∴y =-x +4(2)当直线y =-x +b 过M(3,2)时,2=-3+b ,解得b =5,∴5=1+t ,∴t =4;当直线y =-x +b 过N(4,4)时,4=-4+b ,解得b =8,∴8=1+t ,∴t =7,∴4<t <7(3)t =1时,落在y 轴上;t =2时,落在x 轴上20. (1)W =250x +200(30-x)+150(34-x)+240(6+x),即W =140x +12540(0≤x≤30)(2)根据题意得140x +12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案:从A 城至C 乡运28台,A 城至D 乡运2台,从B 城至C 乡运6台,B 城至D 乡运34台;从A 城至C 乡运29台,A 城至D 乡运1台,从B 城至C 乡运5台,B 城至D 乡运35台;从A 城至C 乡运30台,A 城至D 乡运0台,从B 城至C 乡运4台,B 城至D 乡运36台(3)W =(250-a)x +200(30-x)+150(34-x)+240(6+x)=(140-a)x +12540,当0<a <140时,140-a>0,x =0时,W 最小,此时从A 城至C 乡运0台,A 城至D 乡运30台,从B 城至C 乡运34台,B 城至D 乡运6台;当a =140时,W =12540,各种方案费用一样多;当140<a <200时,140-a <0,x =30时,W 最小,此时从A 城至C 乡运30台,A 城至D 乡运0台,从B 城至C 乡运4台,B 城至D 乡运36台。

人教版数学八年级下册第19章一次函数单元测试卷4份含答案

人教版数学八年级下册第19章一次函数单元测试卷4份含答案

人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。

八年级数学下册《第十九章 一次函数》单元测试卷及答案(人教版)

八年级数学下册《第十九章 一次函数》单元测试卷及答案(人教版)

八年级数学下册《第十九章一次函数》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.k=2 B.k=3 C.b=2 D.b=3.如图,在O中,直径DM与弦AC的函数关系的图象大致是(A.B.C.D.A .B .C .D .10.一次函数2y x =-+的图象与两坐标轴围成的三角形面积为( )A .1x <-或1x >B .1x <-或2x >C .12x -<<D .11x -<<2347二、填空题13.若一次函数y =2x +b 的图象经过A (-1,1),则b =_____,该函数图象经过点B (1,_____)和点C(_____,0).14.一次函数与二元一次方程组的关系:①方程5x -y =20可以化为y =___,方程5x +y =120可以化为y =___;②如图,直线y =5x -20与直线y =-5x +120的交点坐标为(m ,n ),则m ,n 符合方程组___;③解关于x 、y 的方程组,从“数”的角度看,相当于考虑当 为何值时,两个函数的值相等以及___为多少;从“形”的角度看,相当于确定两条直线y =kx +b 与y =mx +n 的___.15. 随着海拔高度的升高,空气中的含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =请写出y 与x 的函数关系式___.16.在平面直角坐标系中,点A (﹣1,0),B (3,﹣1),点P 为y 轴上一点,若△ABP 的面积为3,则满足条件的点P 坐标为_____.17.正比例函数y =kx 和一次函数y =ax +b 的图象都过A (﹣1,﹣2),B (3,m )两个点,则a +b =_____.18.在平面直角坐标系中,把直线y =3x-3向上平移3个单位长度后,其直线解析式为___________________三、解答题19.下列图象中,表示一次函数的有哪些?20.小明晚饭后外出散步,遇见同学,交谈一会,返回途中在读报厅看了一会报.下图是根据此情景画出的图象,请你回答下列问题:(1)小明在距家多远遇见同学的,交谈了多少时间?(2)读报厅离家多远?(3)小明在哪一段路程中走得最快,速度是多少?21.在弹性限度内,弹簧的长度()cm y 是所挂物体质量()kg x 的一次函数,某弹簧不挂物体时长14.2cm ,当所挂物体质量为3kg 时,弹簧长是16.3cm .(1)求y 与x 之间的函数关系式;(2)求所挂物体质量为5kg 时弹簧的长度.22.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元. 方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元). (1)请分别写出y 1,y 2与x 之间的函数表达式.(2)若小亮一年内来此游泳馆的次数为15次,选择哪种方式比较划算?(3)若小亮计划拿出1400元用于在此游泳馆游泳,采用哪种付费方式更划算?23.某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB BC CD →→所示(不包括端点A ).(1)当5001000x <≤时,写出y 与x 之间的函数关系式;(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?24.画出函数y =2x -4的图象,并回答下列问题:(1)当x 取何值时,y >0?(2)若函数值满足-6≤y ≤6,求相应的x 的取值范围.17.2.18.y=3x19.(2)20.(1)800米,10分钟;(2)400m ;(3)80米/分钟.21.(1)0.714.2y x =+(2)当所挂物体的质量为5kg 时弹簧的长度为17.7cm .22.(1)方式一费用为y 1=30x +200,方式二的费用为y 2=40x ;(2)方式二划算;(3)采用方式一更划算.23.(1)0.0240y x =-+;(2)一次性采购量为800千克时,蔬菜种植基地能获得最大利润为12800元.24.(1)x >2 (2)-1≤x ≤5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档