高考文科数学复习资料:不等式的性质、一元二次不等式 Word版含解析
高三数学 第一轮复习 02:不等式的性质及一元二次不等式

例1-6 下列命题正确的是 ( )
A.若 | a | b ,则 a2 b2 C.若 a2 b2 ,则 a | b |
B.若 a | b | ,则 a2 b2 D.若 a2 b2 ,则 1 1
m
x2
0
x1 m x2 m
0
f
(m )
0 ;(6) x1, x2 (m, n)
m
b n 2a
f (m) 0
f (n) 0
-3-
· 典例精讲 ·
模块01:不等式的性质及应用
① 不等式的基本性质:
例1-1 下列四个命题:
①若 a | b | ,则 a2 b2 ③若 a b , c d ,则 ac bd 其中正确命题的个数有 ( )
D. b b m aa
【答案】: B
【解析】:向糖水(不饱和)中再加入
m
克糖,那么糖水(不饱和)将变得更甜,可知浓度变大.由题意可得:b a
b a
m m
。
故选: B 。
例1-4 设 b a , d c ,则下列不等式中一定成立的是 ( )
A. a c b d
B. ac bd
C. a d b c
*作商法:作商法比大小的变形要围绕与1比大小进行。
作商法的基本步骤是:
①求商,②变形,③与1比大小从而确定两个数的大小。
(一般运用的范围在正数范围内,幂指运算,和后期的数列学习中)
模块02:一元二次不等式的解法
1、一般流程:
①将不等式的右边化为零,左边化为二次项系数大于零的不等式 ax2 bx c 0 或 ax2 bx c 0(a 0) 。
第3节 不等式的性质、一元二次不等式

第3节 不等式的性质、一元二次不等式1.梳理不等式的性质,理解不等式的性质,掌握不等式的性质.2.会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.3.经历从实际背景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义,能借助一元二次函数的图象求解一元二次不等式,并能用集合表示一元二次不等式的解集.4.借助一元二次函数的图象,了解一元二次不等式相应的函数、方程的联系.1.两个实数大小比较的基本事实{a -b >0⇔a b (a ,b ∈R ),a -b =0⇔a b (a ,b ∈R ),a -b <0⇔a b (a ,b ∈R ). 2.不等式的基本性质3.一元二次不等式与相应的二次函数及一元二次方程的关系如表所示1.涉及实数的倒数有关的结论 (1)a>b,ab>0⇒1a <1b .(2)a<0<b ⇒1a <1b.(3)a>b>0,0<c<d ⇒a c >bd.(4)0<a<x<b或a<x<b<0⇒1b <1x<1a.2.两个重要不等式(1)若a>b>0,m>0,则ba <b+ma+m.(2)已知a,b均为正数,s,t均为正整数,则a s+t+b s+t≥a s b t+a t b s.1.不等式-x2-5x+6≥0的解集为( )A.{x|-6≤x≤1}B.{x|2≤x≤3}C.{x|x≥3或x≤2}D.{x|x≥1或x≤-6}2.下列四个命题中为真命题的是( )A.若a>b,则ac2>bc2B.若a>b,c>d,则a-c>b-dC.若a>|b|,则a2>b2D.若a>b,则1a <1 b3.一元二次不等式ax2+bx+1>0的解集为{x|-1<x<13},则ab的值为( )A.-5B.5C.-6D.64.已知f(x)=x2+4x+1+a,∀x∈R,f(f(x))≥0恒成立,则实数a的取值范围为( )A.[√5-12,+∞} B.[2,+∞) C.[-1,+∞) D.[3,+∞)5.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是台.不等式的性质及其应用1.已知a>0>b,则下列不等式一定成立的是( )A.a2>b2B.ab>b2C.ln|ab|>0 D.2a-b>12.已知实数x,y,z满足x2=4x+z-y-4且x+y2+2=0,则下列关系成立的是( )A.y>x≥zB.z≥x>yC.y>z≥xD.z≥y>x3.已知-1<x<4,2<y<3,则x-2y的取值范围是,3x+4y的取值范围是.4.已知-1≤x+y ≤1,1≤x-y ≤3,则3x-2y 的取值范围是 .1.根据不等式的性质判断不等式是否成立的方法主要是利用不等式的性质或特殊值法,而对于待比较的不等式的两端可以化为相同的函数的形式,可以利用构造函数,利用函数的单调性进行判断.2.当两个数(或式子)正负未知且为多项式时,用作差法,作差时要注意变形技巧.3.已知x,y 的范围,求由ax,by(ab ≠0)通过加、减、乘、除构成的运算式子的范围时,可利用不等式的性质直接求解.4.已知由ax,by(ab ≠0)通过加、减、乘、除构成的运算式子的范围,求解形如cx ±dy(cd ≠0)的范围问题时,要利用待定系数法,将cx ±dy 用已知条件的关系式整体代换.此种类型中不要直接求出x,y 的范围后求cx ±dy 的范围,由于a>b,c>d ⇒a+c>b+d 不是可逆的,因此容易出现错解.一元二次不等式的解法及其应用角度一 不含参数的一元二次不等式不等式-3<4x-4x 2≤0的解集为( ) A.{x|-12<x<32} B.{x|-12<x ≤0或1≤x ≤32}C.{x|1≤x<32} D.{x|-12<x ≤0或1≤x<32}a ≤f(x)≤b 等价于{f (x )≥a ,f (x )≤b .角度二 一元二次不等式与一元二次方程的关系(多选题)已知关于x 的不等式ax 2+bx+c>0的解集为(-1,3),则下列说法正确的是 A.a>0 B.bx-c>0的解集是{x|x>32}C.cx 2+ax-b>0的解集是{x|x<-23或x>1} D.a+b<c1.一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.2.给出一元二次不等式的解集,相当于知道了相应二次函数图象的开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定 系数.角度三 含参数的一元二次不等式解关于x 的不等式:ax 2+(2-4a)x-8>0.1.一般地,在解含参数的一元二次型不等式时,若所给不等式能够直接通过因式分解求出方程的根,则需要从如下两个方面进行考虑: (1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0. (2)关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x2.2.若含参数的不等式对应的二次方程的判别式含参数,主要对关于不等式对应的方程是否有根进行讨论. [针对训练](1)不等式组{x 2-1<0,x 2-3x ≥0的解集是( )A.{x|-1<x<1}B.{x|1<x ≤3}C.{x|-1<x ≤0}D.{x|x ≥3或x<1} (2)设函数f(x)={x 2-4x +6,x ≥0,x +6,x <0,则不等式f(x)>f(1)的解集是( )A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3) (3)(多选题)对于给定实数a,关于x 的一元二次不等式a(x-a)(x+1)>0的解集可能为 A.R B.(-1,a ) C.(a,-1) D.(-∞,-1)∪(a,+∞)一元二次不等式恒成立问题角度一 一元二次不等式在R 上的恒成立问题若不等式2kx 2+kx-38<0对一切实数x 都成立,则k 的取值范围为( )A.(-3,0)B.[-3,0)C.[-3,0]D.(-3,0]一元二次不等式恒成立的条件(1)ax2+bx+c>0(a≠0)恒成立的充要条件是{a>0,b2-4ac<0.(2)ax2+bx+c<0(a≠0)恒成立的充要条件是{a<0,b2-4ac<0.角度二一元二次不等式在给定区间上的恒成立问题的求解方法若对任意的x∈[-1,2],都有x2-2x+a≤0(a为常数),则a的取值范围是( ) A.(-∞,-3] B.(-∞,0] C.[1,+∞) D.(-∞,1]一元二次不等式在给定区间上的恒成立问题的求解方法(1)最值转化法:若f(x)>0在集合A中恒成立,则函数y=f(x)在集合A中的最小值大于0.(2)分离参数转化为函数的值域问题,即已知函数f(x)的值域为[m,n],则f(x)≥a恒成立⇒f(x)min≥a,即m≥a;f(x)≤a恒成立⇒f(x)max≤a,即n≤a.角度三一元二次不等式的有解问题若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是A.(-∞,-2) B.(-∞,-2] C.(-6,+∞) D.(-∞,-6)一元二次不等式在给定区间上的有解问题,常用分离参数的方法,通过分离参数后利用:a>f(x)在区间[m,n]上有解,则a>f(x)min,a<f(x)在区间[m,n]上有解,a<f(x)max.(对于a≥f(x),a≤f(x)可类似处理)[针对训练](1)若存在实数x∈[2,4],使x2-2x+5-m<0成立,则m的取值范围为( )A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(-∞,13)(2)若关于x的一元二次不等式ax2+2ax+1>0的解集为R,则实数a的取值范围是.(3)若对于任意的x∈[0,2],不等式x2-2ax-1≤0恒成立,则实数a的取值范围是.。
一元二次不等式基础题50道加解析

一元二次不等式基础题50道加解析摘要:一、一元二次不等式的基本概念及性质1.一元二次不等式的定义2.一元二次不等式的性质二、一元二次不等式的解法1.因式分解法2.判别式法3.图像法三、一元二次不等式的应用1.实际问题中的应用2.数学问题中的应用四、一元二次不等式的拓展1.含有绝对值的一元二次不等式2.含有分式的一元二次不等式五、一元二次不等式题型解析1.传统题型解析2.创新题型解析正文:一、一元二次不等式的基本概念及性质1.一元二次不等式的定义一元二次不等式是指形如ax+bx+c>0(或ax+bx+c<0)的不等式,其中a、b、c为实数,且a≠0。
2.一元二次不等式的性质(1)当a>0时,一元二次不等式ax+bx+c>0的解集为实数集;(2)当a<0时,一元二次不等式ax+bx+c>0的解集为空集;(3)一元二次不等式ax+bx+c<0的解集与ax+bx+c>0的解集相反。
二、一元二次不等式的解法1.因式分解法将一元二次不等式ax+bx+c>0(或ax+bx+c<0)进行因式分解,得到(x-x)(x-x)>0(或(x-x)(x-x)<0),其中x、x为方程ax+bx+c=0的两根。
根据因式分解结果,讨论不等式的解集。
2.判别式法求解一元二次方程ax+bx+c=0的判别式Δ=b-4ac,根据Δ的值判断方程的根的情况,从而确定一元二次不等式的解集。
3.图像法将一元二次不等式ax+bx+c>0(或ax+bx+c<0)对应的二次函数y=ax+bx+c的图像画在坐标系中,通过观察图像下方(或上方)的区域,确定不等式的解集。
三、一元二次不等式的应用1.实际问题中的应用将一元二次不等式应用于生活中的实际问题,如利润、速度、面积等问题,通过建立一元二次不等式模型,求解实际问题。
2.数学问题中的应用一元二次不等式在数学问题中的应用广泛,如不等式证明、最值问题、恒成立问题等。
高中数学 第三章 不等式的性质和一元二次不等式的解法知识梳理素材 北师大版必修5

不等式的性质和一元二次不等式的解法【知识精讲】(1)理解不等式的性质及其证明(2)掌握分析法、综合法、比较法证明简单的不等式(3)掌握简单不等式的解法【基础梳理】1.不等式的基本概念不等(等)号的定义:2.不等式的基本性质(1)(对称性)(2)(传递性)(3)(加法单调性)(4)(同向不等式相加)(5)(异向不等式相减)(6)(7)(乘法单调性)(8)(同向不等式相乘)(异向不等式相除)(倒数关系)(11)(平方法则)(12)(开方法则)二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:常用不等式的放缩法:①②(2)柯西不等式:(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点有则称f(x)为凸(或凹)函数.5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解.特例① 一元一次不等式ax>b解的讨论;②一元二次不等式ax2+bx+c>0(a≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则(3)无理不等式:转化为有理不等式求解○1○2○3(4).指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式○1应用分类讨论思想去绝对值;○2应用数形思想;○3应用化归思想等价转化中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
高考数学总复习 第七章 不等式 第1节 不等式的性质与一元二次不等式教案 文(含解析)

第1节不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一二次不等式模型;3.通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的算法框图.知识梳理1.实数的大小顺序与运算性质的关系(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c >d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方:a>b>0⇒n∈N,n≥2).3.三个“二次”间的关系二次函数y =ax 2+bx +c (a >0)的图像一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅∅[微点提醒]1.有关分数的性质(1)若a >b >0,m >0,则b a <b +m a +m ;b a >b -ma -m(b -m >0).(2)若ab >0,且a >b ⇔1a <1b.2.对于不等式ax 2+bx +c >0,求解时不要忘记a =0时的情形. 3.当Δ<0时,不等式ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)a >b ⇔ac 2>bc 2.( )(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( ) (3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R .( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ac 2>bc 2.(3)若方程ax 2+bx +c =0(a <0)没有实根,则不等式ax 2+bx +c >0(a <0)的解集为∅.(4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 答案 (1)× (2)√ (3)× (4)×2.(必修5P72思考交流改编)若a >b >0,c <d <0,则一定有( )A.a d >b cB.a d <b cC.a c >b dD.a c <b d 解析 因为c <d <0,所以0>1c >1d,两边同乘-1,得-1d>-1c>0,又a >b >0,故由不等式的性质可知-a d >-bc >0.两边同乘-1,得a d <bc. 答案 B 3.(必修5P113A1改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B =( ) A.(-2,3) B.(-2,2) C.(-2,2]D.[-2,2]解析 因为A ={x |x ≤2},B ={x |-2<x <3},所以A ∩B ={x |-2<x ≤2}=(-2,2]. 答案 C4.(2018·抚州联考)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2B.1a <1bC.b a >a bD.a 2>ab >b 2解析 c =0时,A 项不成立; 1a -1b =b -a ab>0,选项B 错;b a -a b =b 2-a 2ab =(b +a )(b -a )ab<0,选项C 错. 由a <b <0,∴a 2>ab >b 2.D 正确. 答案 D5.(2019·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为________.解析 由2x 2-x -3>0,得(x +1)(2x -3)>0, 解得x >32或x <-1.∴不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x |x >32或x <-1.答案⎩⎨⎧⎭⎬⎫x |x >32或x <-16.(2018·汉中调研)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是______.解析 若a =0,则f (x )=-1≤0恒成立, 若a ≠0,则由题意,得⎩⎪⎨⎪⎧a <0,Δ=a 2+4a ≤0,解得-4≤a <0, 综上,得a ∈[-4,0]. 答案 [-4,0]考点一 不等式的性质多维探究角度1 比较大小及不等式性质的简单应用【例1-1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A.c ≥b >a B.a >c ≥b C.c >b >aD.a >c >b(2)(一题多解)若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b;④ln a 2>ln b 2.其中正确的不等式是( )A.①④B.②③C.①③D.②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎪⎫a -122+34>0, ∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b<0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A ,B ,D.法二 由1a <1b<0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,则-1a >-1b>0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确. 答案 (1)A (2)C角度2 利用不等式变形求范围【例1-2】 (一题多解)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.解析 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10. 法二由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 法三由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示, 当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时, 取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]规律方法 1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】 (1)(2019·东北三省四市模拟)设a ,b 均为实数,则“a >|b |”是“a 3>b 3”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则ab 的取值范围是________.解析 (1)a >|b |能推出a >b ,进而得a 3>b 3;当a 3>b 3时,有a >b ,但若b <a <0,则a >|b |不成立,所以“a >|b |”是“a 3>b 3”的充分不必要条件.(2)依题意可得4<1b <8,又1<a <3,所以4<ab<24.答案 (1)A (2)(4,24)考点二 一元二次不等式的解法【例2-1】 (1)(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.(2)已知不等式ax 2-bx -1>0的解集是{x |-12<x <-13},则不等式x 2-bx -a ≥0的解集是________.解析 (1)设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-(x 2+2x ). 又f (0)=0. 于是不等式f (x )>x等价于⎩⎪⎨⎪⎧x >0,x 2-2x >x 或⎩⎪⎨⎪⎧x <0,-x 2-2x >x ,解得x >3或-3<x <0.故不等式的解集为(-3,0)∪(3,+∞).(2)由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.答案 (1)(-3,0)∪(3,+∞) (2){x |x ≥3或x ≤2} 【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即-2<a <0时,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a 或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .规律方法 1.解一元二次不等式的一般方法和步骤 (1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R 或∅). (3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】 (1)不等式x +5(x -1)2≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12B.⎣⎢⎡⎦⎥⎤-12,3C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3](2)(2019·铜川一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A.(-∞,-1)∪(3,+∞) B.(1,3) C.(-1,3)D.(-∞,1)∪(3,+∞)解析 (1)不等式可化为2x 2-5x -3(x -1)2≤0,即(2x +1)(x -3)(x -1)2≤0, 解得-12≤x <1或1<x ≤3.(2)关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3). 答案 (1)D (2)C考点三 一元二次不等式恒成立问题多维探究角度1 在实数R 上恒成立【例3-1】 (2018·大庆实验中学期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2)D.(-2,2]解析 当a -2=0,即a =2时,-4<0恒成立;当a -2≠0,即a ≠2时,则有⎩⎪⎨⎪⎧a -2<0,Δ=[-2(a -2)]2-4×(a -2)×(-4)<0,解得-2<a <2.综上,实数a 的取值范围是(-2,2]. 答案 D角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________.解析 要使f (x )<-m +5在[1,3]上恒成立, 故mx 2-mx +m -6<0,则m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 法一 令g (x )=m ⎝⎛⎭⎪⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0.法二因为x 2-x +1=⎝⎛⎭⎪⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 . 答案⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞)D.(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立, 得f (-1)=x 2-5x +6>0, 且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.答案 C规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)(2019·河南豫西南五校联考)已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( )A.[0,1]B.(0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)(2)(2019·安庆模拟)若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎥⎤0,12恒成立,则a 的最小值是( ) A.0B.-2C.-52D.-3解析 (1)当k =0时,不等式kx 2-6kx +k +8≥0可化为8≥0,其恒成立,当k ≠0时,要满足关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,只需⎩⎪⎨⎪⎧k >0,Δ=36k 2-4k (k +8)≤0,解得0<k ≤1.综上,k 的取值范围是[0,1]. (2)由于x ∈⎝⎛⎦⎥⎤0,12,若不等式x 2+ax +1≥0恒成立,则a ≥-⎝ ⎛⎭⎪⎫x +1x ,x ∈⎝⎛⎦⎥⎤0,12时恒成立,令g (x )=x +1x ,x ∈⎝⎛⎦⎥⎤0,12,易知g (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,则y =-g (x )在⎝ ⎛⎦⎥⎤0,12上是增函数.∴y =-g (x )的最大值是-⎝ ⎛⎭⎪⎫12+2=-52. 因此a ≥-52,则a 的最小值为-52.答案 (1)A (2)C [思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单. [易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组 (建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A.f (x )=g (x ) B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ). 答案 B2.(2019·北京东城区综合练习)已知x ,y ∈R ,那么“x >y ”的充要条件是( ) A.2x>2yB.lg x >lg yC.1x >1yD.x 2>y 2解析 因为2x>2y⇔x >y ,所以“2x>2y ”是“x >y ”的充要条件,A 正确;lg x >lg y ⇔x >y >0,则“lg x >lg y ”是“x >y ”的充分不必要条件,B 错误;“1x >1y”和“x 2>y 2”都是“x >y ”的既不充分也不必要条件.答案 A3.不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-∞,12C.⎝ ⎛⎭⎪⎫12,+∞D.⎝⎛⎭⎪⎫0,12解析 当x ≥0时,原不等式即为x (1-2x )>0,所以0<x <12;当x <0时,原不等式即为-x (1-2x )>0,所以x <0,综上,原不等式的解集为(-∞,0)∪⎝⎛⎭⎪⎫0,12.答案 A4.(2018·延安质检)若实数m ,n 满足m >n >0,则( ) A.-1m<-1nB.m -n <m -nC.⎝ ⎛⎭⎪⎫12m>⎝ ⎛⎭⎪⎫12nD.m 2<mn解析 取m =2,n =1,代入各选择项验证A ,C ,D 不成立.只有B 项成立(事实上2-1<2-1). 答案 B5.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)解析 易知f (x )在R 上是增函数,∵f (2-x 2)>f (x ), ∴2-x 2>x ,解得-2<x <1,则实数x 的取值范围是(-2,1). 答案 D 二、填空题6.若0<a <1,则不等式(a -x )⎝⎛⎭⎪⎫x -1a >0的解集是________.解析 原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a.答案⎝⎛⎭⎪⎫a ,1a7.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________. 解析 由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1, 所以-1<k <1. 答案 (-1,1)8.(2019·宜春质检)设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.解析 令t =cos x ,t ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎪⎨⎪⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 答案 (-∞,-2] 三、解答题9.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.故a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解(1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2.所以y =f (x )=40(10-x )(25+4x ), 定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x的取值范围是⎣⎢⎡⎦⎥⎤12,2.能力提升题组 (建议用时:20分钟)11.已知0<a <b ,且a +b =1,则下列不等式中正确的是( )A.log 2a >0B.2a -b<12C.log 2a +log 2b <-2D.2a b +b a <12解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b<1,B 错误;因为0<a <b ,所以a b +ba >2a b ·b a =2,所以2a b +b a>22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确.答案 C12.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A.(-∞,-2)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞) 解析 因为f (x )在R 上为奇函数,且在[0,+∞)上为增函数,所以f (x )在R 上是增函数,结合题意得-4t >2m +mt 2对任意实数t 恒成立⇒mt 2+4t +2m <0对任意实数t 恒成立⇒⎩⎪⎨⎪⎧m <0,Δ=16-8m 2<0⇒m ∈(-∞,-2). 答案 A13.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是________.解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232, ∴3x +2y 的取值范围为⎝ ⎛⎭⎪⎫-32,232. 答案 ⎝ ⎛⎭⎪⎫-32,232 14.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x.若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围.解 因为函数f (x )是偶函数,故函数图像关于y 轴对称,且在(-∞,0]上单调递减,在[0,+∞)上单调递增.所以由f (x +a )≥f (2x )可得|x +a |≥2|x |在[a ,a +1]上恒成立, 从而(x +a )2≥4x 2在[a ,a +1]上恒成立,化简得3x 2-2ax -a 2≤0在[a ,a +1]上恒成立, 设h (x )=3x 2-2ax -a 2,则有⎩⎪⎨⎪⎧h (a )=0≤0,h (a +1)=4a +3≤0,解得a ≤-34. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34.。
不等式不等式的性质及一元二次不等式课件理ppt

算术平均数不等式
算术平均数不等式
$a_1+a_2+...+a_n \geq \frac{n}{n}(a_1+a_2+...+a_n)=n\frac{(a _1\cdot a_2\cdot ...\cdot a_n)^{\frac{1}{n}}}{n}$
VS
应用场景
在生产、科研、日常生活中,凡涉及比较 、大小、排序、分组等问题时,常需要用 到不等式。
一元二次不等式在金融经济中的应用
一元二次不等式在金融经济学中也有着广泛的应用。例如,在研究公司财务理论时,公司需要根据其财务状况 和目标来制定财务策略,这时一元二次不等式可以用来描述公司财务的约束条件。
在其他领域中的应用
不等式在其他领域中的应用
不等式不仅仅在数学建模和金融经济学中有广泛的应 用,在其他领域中也同样有着广泛的应用。例如,在 物理学中,不等式可以用来描述物理量的约束条件; 在医学中,不等式可以用来描述疾病的控制和预防的 约束条件。
03
一元高次不等式
一元高次不等式的解法
准备知识
一元高次不等式的解法需要先了解一元高次方程的解法,因 为一元高次不等式和一元高次方程的解法类似。
解法步骤
将一元高次不等式化为标准形式,然后利用因式分解、数学 归纳法等数学方法,逐步分解出各个因式,并求出不等式的 解。
一元高次不等式的应用
实际应用
一元高次不等式可以应用于各种实际问题中,如最优化问题、分式不等式问 题、多元函数极值问题等。
绝对值不等式
绝对值不等式
$|a|-|b| \leq |a+b| \leq |a|+|b|$
应用场景
绝对值不等式在数学、物理、工程等领域都有广泛的应用,例如在求解最值问题 时可以用来进行放缩和缩放。
专题7.1 不等式的性质及一元二次不等式(讲)(解析版)

专题7.1 不等式的性质及一元二次不等式1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知识点一两个实数比较大小的依据(1)a-b>0⇔a>b.(2)a-b=0⇔a=b.(3)a-b<0⇔a<b.知识点二不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方性:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方性:a>b>0⇒na>nb(n∈N,n≥2).知识点三一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实数根x1,x2(x1<x2)有两相等实数根x1=x2=-b2a没有实数根一元二次不等式ax2+bx+c>0 {x|x<x1或x>x2}⎩⎨⎧⎭⎬⎫x| x≠-b2a R(a>0)的解集一元二次不等式ax2+bx+c<0(a>0)的解集{x|x1<x<x2} ∅∅由二次函数的图象与一元二次不等式的关系判断不等式恒成立问题的方法1.一元二次不等式ax2+bx+c>0对任意实数x恒成立⇔⎩⎪⎨⎪⎧a>0,b2-4ac<0.2.一元二次不等式ax2+bx+c<0对任意实数x恒成立⇔⎩⎪⎨⎪⎧a<0,b2-4ac<0.考点一不等式的性质及应用【典例1】(湖南雅礼中学2019届质检)(1)已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是()A.c≥b>aB.a>c≥bC.c>b>aD.a>c>b(2)若1a<1b<0,给出下列不等式:①1a+b<1ab;②|a|+b>0;③a-1a>b-1b;④ln a2>ln b2.其中正确的不等式是()A.①④B.②③C.①③D.②④【答案】(1)A(2)C【解析】(1)∵c-b=4-4a+a2=(a-2)2≥0,∴c≥b.又b+c=6-4a+3a2,∴2b=2+2a2,∴b=a2+1,∴b-a=a2-a+1=⎝⎛⎭⎫a-122+34>0,∴b>a,∴c≥b>a.(2)方法一因为1a<1b<0,故可取a=-1,b=-2.显然|a|+b=1-2=-1<0,所以②错误;因为ln a2=ln(-1)2=0,ln b2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A,B,D.方法二由1a<1b<0,可知b<a<0.①中,因为a+b<0,ab>0,所以1a+b<0,1ab>0.故有1a+b<1ab,即①正确;②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.【方法技巧】比较大小的方法(1)作差法,其步骤:作差⇒变形⇒判断差与0的大小⇒得出结论. (2)作商法,其步骤:作商⇒变形⇒判断商与1的大小⇒得出结论. (3)构造函数法:构造函数,利用函数单调性比较大小.(4)赋值法和排除法:可以多次取特殊值,根据特殊值比较大小,从而得出结论.【变式1】(河北辛集中学2019届模拟)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.【答案】[5,10] 【解析】方法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1. ∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法三 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A ⎝⎛⎭⎫32,12时, 取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10.考点二 一元二次不等式的解法【典例2】(山西平遥中学2019届模拟)解关于x 的不等式ax 2-2≥2x -ax (a ∈R )。
高中数学第七章不等式第一节不等式的性质及一元二次不等式

第一节 不等式的性质及一元二次不等式[考纲要求]1.了解现实世界和日常生活中存在着大量的不等关系. 2.了解不等式(组)的实际背景. 3.掌握不等式的性质及应用.4.会从实际问题情境中抽象出一元二次不等式模型.5.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. 6.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.突破点一 不等式的性质[基本知识]1.比较两个实数大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b (a ,b ∈R ),a -b =0⇔a =b (a ,b ∈R ),a -b <0⇔a <b (a ,b ∈R ).(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b >0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的基本性质(1)倒数的性质①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >bd .④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质若a >b >0,m >0,则:①b a <b +m a +m ;b a >b -m a -m (b -m >0).②a b >a +m b +m ;a b <a -mb -m(b -m >0).[基本能力]一、判断题(对的打“√”,错的打“×”)(1) 若1a <1b <0,则1a+b <1ab . ( )(2)若a c >bc ,则a >b .( )(3)若a >b ,c >d ,则ac >bd .( ) 答案:(1)√ (2)× (3)× 二、填空题 1.若a <b <0,则1a -b 与1a大小关系是__________. 答案:1a -b <1a2.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________. 答案:(-∞,-1)[典例感悟]1.设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <ND .M ≤N解析:选A 因为M -N =2a (a -2)-(a +1)(a -3)=a 2-2a +3=(a -1)2+2>0,所以M >N ,故选A.2.(2018·吉安一中二模)已知下列四个关系式:①a >b ⇒ac >bc ;②a >b ⇒1a <1b ;③a >b >0,c >d >0⇒a d >bc ;④a >b >1,c <0⇒a c <b c .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B 当c =0时,①不正确. 当a >0>b 时,②不正确. 由于c >d >0,所以1d >1c >0,又a >b >0,所以a d >bc >0,③正确.由于a >b >1,当x <0时,a x <b x , 故a c <b c ,④正确.故选B. 3.若a =ln 22,b =ln 33,则a ____b (填“>”或“<”). 解析:易知a ,b 都是正数,b a =2ln 33ln 2=log 89>1,所以b >a .答案:<4.已知-12≤2x +y ≤12,-12≤3x +y ≤12,则9x +y 的取值范围是________.解析:设9x +y =a (2x +y )+b (3x +y ),则9x +y =(2a +3b )x +(a +b )y ,于是比较两边系数得⎩⎨⎧2a +3b =9,a +b =1,得a =-6,b =7.由已知不等式得-3≤-6(2x +y )≤3,-72≤7(3x +y )≤72,所以-132≤9x +y ≤132.答案:[]-132,132[方法技巧]1.比较两个数(式)大小的两种方法2.不等式性质应用问题的常见类型及解题策略(1)利用不等式性质比较大小.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充要条件相结合的问题.用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用. (3)与命题真假判断相结合的问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.突破点二 一元二次不等式[基本知识]1.三个“二次”之间的关系有两个相等实根x =x =-(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎨⎧ a =b =0,c >0或⎩⎨⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎨⎧ a =b =0,c <0或⎩⎨⎧a <0,Δ<0.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(2)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为空集.( ) (3)若不等式ax 2+bx +c ≥0对x ∈R 恒成立,则其判别式Δ≤0.( ) 答案:(1)√ (2)× (3)× 二、填空题 1.不等式1x -1≥-1的解集是________________. 解析:原不等式可化为xx -1≥0,即x (x -1)≥0,且x -1≠0,解得x >1或x ≤0. 答案:(-∞,0]∪(1,+∞)2.设a <-1,则关于x 的不等式a (x -a )()x -1a <0的解集是________________.答案:(-∞,a )∪()1a ,+∞3.不等式ax 2+bx +2>0的解集是()-12,13,则a +b 的值是________. 答案:-144.若不等式ax 2-ax +1<0的解集为∅,则实数a 的取值范围为________. 答案:[0,4][全析考法]考法一 一元二次不等式的解法解一元二次不等式的方法和步骤[例1] (1)(2019·衡阳月考)不等式2x +3-x 2>0的解集是( ) A .{x |-1<x <3} B .{x |x >3或x <-1} C .{x |-3<x <1}D .{x |x >1或x <-3}(2)(2019·深圳月考)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,2x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-1,1)C .(-2,1)D .(-1,2)[解析] (1)原不等式变形为x 2-2x -3<0, 即(x -3)(x +1)<0,解得-1<x <3.故选A.(2)∵f (x )=⎩⎨⎧x 2+2x ,x ≥0,2x -x 2,x <0,∴函数f (x )是奇函数,且在R 上单调递增, ∴f (2-a 2)>f (a )等价于2-a 2>a ,即a 2+a -2<0, 解得-2<a <1,∴实数a 的取值范围是(-2,1),故选C. [答案] (1)A (2)C[例2] (2019·六安阶段性考试)已知常数a ∈R ,解关于x 的不等式12x 2-ax >a 2. [解] ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为{ x |x <-a 4,或x >a3}; ②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0};③当a <0时,-a 4>a3,解集为{ x |x <a 3,或x >-a4}. 综上所述:当a >0时,不等式的解集为{ x |x <-a 4,或x >a3}; 当a =0时,不等式的解集为{x |x ∈R ,且x ≠0}; 当a <0时,不等式的解集为{}x |x <a 3,或x >-a4. [方法技巧]解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式. 考法二 由一元二次不等式恒成立求参数范围考向一 在实数集R 上恒成立[例3] (2019·大庆期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A .(-∞,2) B .(-∞,2] C .(-2,2]D .(-2,2) [解析] 当a -2=0,即a =2时,-4<0恒成立;当a -2≠0时,则有⎩⎨⎧a -2<0,4(a -2)2+16(a -2)<0,解得-2<a <2,∴-2<a ≤2,故选C. [答案] C考向二 在某区间上恒成立[例4] (2019·忻州第一中学模拟)已知关于x 的不等式x 2-4x ≥m 对任意的x ∈(0,1]恒成立,则有( ) A .m ≤-3 B .m ≥-3 C .-3≤m <0D .m ≥-4[解析] 令f (x )=x 2-4x ,x ∈(0,1],∵f (x )图象的对称轴为直线x =2,∴f (x )在(0,1]上单调递减,∴当x =1时f (x )取得最小值,为-3,∴m ≤-3,故选A.[答案] A [方法技巧]解决一元二次不等式在某区间恒成立问题常转化为求二次函数的最值问题或用分离参数法求最值问题.[集训冲关]1.[考法一]如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a 等于( ) A .-81 B .81 C .-64D .64解析:选B 不等式x 2<ax +b 可化为x 2-ax -b <0,其解集是{x |1<x <3},那么,由根与系数的关系得⎩⎨⎧1+3=a ,1×3=-b ,得⎩⎨⎧a =4,b =-3,所以b a =(-3)4=81.故选B. 2.[考法二·考向一]已知关于x 的不等式x 2-(k -1)x -k +1≥0对任意实数x 都成立,则实数k 的取值范围是( ) A .(-∞,-3]∪[1,+∞) B .(-∞,1]∪[3,+∞) C .[-1,3]D .[-3,1]解析:选D 关于x 的不等式x 2-(k -1)x -k +1≥0对任意实数x 都成立,则Δ=(k -1)2+4(k -1)≤0,解得-3≤k ≤1,故选D.3.[考法二·考向二]若不等式x 2+mx -1<0对于任意x ∈[m ,m +1]都成立,则实数m 的取值范围是________. 解析:由题意,得函数f (x )=x 2+mx -1在[m ,m +1]上的最大值小于0,又抛物线f (x )=x 2+mx -1开口向上,所以只需⎩⎨⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,即⎩⎨⎧2m 2-1<0,2m 2+3m <0,解得-22<m <0.答案:()-22,0 [课时跟踪检测][A 级 基础题——基稳才能楼高]1.下列结论正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a 2>b 2,则a >bC .若a >b ,c <0,则a +c <b +cD .若a <b ,则a <b解析:选D 选项A 中,当c =0时不满足ac 2>bc 2,所以A 错;选项B 中,当a =-2,b =-1时,满足a 2>b 2,不满足a >b ,所以B 错;选项C 中,a +c >b +c ,所以C 错;选项D 中,因为0≤a <b ,所以a <b ,所以D 正确.故选D.2.(2019·郑州模拟)“x >1”是“x 2+2x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由x 2+2x >0,得x >0或x <-2,所以“x >1”是“x 2+2x >0”的充分不必要条件,故选A.3.(2019·武汉武昌区调研)已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),使得f (x 0)=0,则实数a 的取值范围是( ) A .(-∞,-3)∪(1,+∞) B .(-∞,-3) C .(-3,1)D .(1,+∞)解析:选A 依题意可得f (-1)·f (1)<0,即(-2a -a +3)(2a -a +3)<0,解得a <-3或a >1,故选A. 4.(2019·江淮十校联考)|x |·(1-2x )>0的解集为( ) A .(-∞,0)∪()0,12 B .()-∞,12C.()12,+∞D .()0,12解析:选A 原不等式等价于⎩⎨⎧1-2x >0,x ≠0,解不等式组可得实数x 的取值范围是(-∞,0)∪()0,12.5.(2019·遂宁诊断)若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB .b a >b +1a +1C .a -1b >b -1aD .2a +b a +2b >ab解析:选A 不妨取a =2,b =1,排除B 和D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x在(0,1]上单调递减,在[1,+∞)上单调递增,所以当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )不一定成立,因此a -1a >b -1b ⇔a +1b >b +1a,故选A. [B 级 保分题——准做快做达标]1.(2019·郑州模拟)已知p :1a >14,q :∀x ∈R ,ax 2+ax +1>0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由1a >14得0<a <4.∀x ∈R ,ax 2+ax +1>0,必有⎩⎨⎧ a =0,1>0或⎩⎨⎧a >0,a 2-4a <0,则0≤a <4,所以p 是q 的充分不必要条件,故选A.2.(2019·青岛三地名校联考)已知不等式ax 2-bx -1≥0的解集是[]-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞) C.()13,12D .()-∞,13∪()12,+∞解析:选A ∵不等式ax 2-bx -1≥0的解集是[]-12,-13,∴a <0,方程ax 2-bx -1=0的两个根为-12,-13,∴--b a =-12-13,-1a =16,∴a =-6,b =5,又x 2-bx -a <0,∴x 2-5x +6<0,∴(x -2)(x -3)<0,∴不等式的解集为(2,3).3.(2019·深圳中学模拟)已知a >b >0,c <0,下列不等关系中正确的是( ) A .ac >bcB .a c >b cC .log a (a -c )>log b (b -c )D .a a -c >bb -c解析:选D 因为c <0,a >b ,所以ac <bc ,故A 错;当c <0时,幂函数y =x c 在(0, +∞)上是减函数,所以a c <b c ,故B 错;若a =4,b =2,c =-4,则log a (a -c )=log 48<2< log b (b -c )=log 26,故C 错;a a -c -bb -c=ab -ac -ab +bc (a -c )(b -c )=(b -a )c (a -c )(b -c )>0,所以a a -c >bb -c成立,故D 正确.选D.4.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3]D .[-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.5.(2019·包头模拟)若不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的大致图象为( )解析:选C 由题意得⎩⎨⎧a <0,-2+1=1a ,-2×1=-c a,解得a =-1,c =-2.则函数y =f (-x )=-x 2+x +2,由二次函数的图象可知选C.6.(2019·绵阳诊断)国庆节期间,绵阳市某大型商场举行“购物送券”活动.一名顾客计划到该商场购物,他有三张商场的优惠券,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券A :若商品的标价超过100元,则付款时减免标价的10%; 优惠券B :若商品的标价超过200元,则付款时减免30元;优惠券C :若商品的标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠券C ,并希望比使用优惠券A 或B 减免的钱款都多,则他购买的商品的标价应高于( ) A .300元 B .400元 C .500元D .600元解析:选B 设购买的商品的标价为x 元,则(x -200)×20%>x ·10%,且(x -200)×20%>30,解得x >400,选B. 7.(2019·南昌重点校联考)如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( )A .(0,1)B .(-2,1)C .(-2,0)D .(-2,2)解析:选A 记f (x )=x 2+(m -1)x +m 2-2,依题意有⎩⎨⎧f (-1)<0,f (1)<0,即⎩⎨⎧1-(m -1)+m 2-2<0,1+(m -1)+m 2-2<0,解得0<m <1.选A.8.规定符号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为非负实数),若1⊙k 2<3,则k 的取值范围是( ) A .(-1,1) B .(0,1) C .(-1,0)D .(0,2)解析:选A 因为定义a ⊙b =ab +a +b (a ,b 为非负实数),1⊙k 2<3,所以k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1.9.(2019·西北工业大学附属中学模拟)已知a >b >1,c <0,在不等式①c a >cb ;②ln(a +c )>ln(b +c );③(a -c )c <(b -c )c ;④b e a >a e b 中,所有正确命题的序号是( )A .①②③B .①③④C .②③④D .①②④解析:选B ∵a >b >1,∴0<1a <1b ,又c <0,∴c a >cb ,∴①正确;∵a >b >1,c <0,∴不妨取a =3,b =2,c =-4,此时ln(a +c )>ln(b +c )不成立,∴②错误;易知函数y =x α(α<0)在(0,+∞)上单调递减,∵a -c >b -c >0,c <0,∴(a -c )c <(b -c )c,∴③正确;令y =e x x (x ≠0),则y ′=(x -1)e x x 2,令y ′=0,得x =1,令y ′>0,得x >1,故函数y =e xx在(1,+∞)上单调递增,∵a >b >1,∴e a a >e bb,即b e a >a e b ,∴④正确,故选B.10.(2019·启东中学调研)已知△ABC 的三边分别为a ,b ,c ,且满足b +c ≤3a ,则ca 的取值范围为________.解析:由已知及三角形的三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >b a,∴⎩⎪⎨⎪⎧1<b a +c a ≤3,-1<c a -b a <1,两式相加得,0<2×c a <4,∴ca的取值范围为(0,2).答案:(0,2)11.(2019·青岛模拟)设a ,b 为正实数,现有下列命题:①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1;③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有____________.(写出所有真命题的序号)解析:对于①,由条件可得a >1,b >0,则a +b >1,又a 2-b 2=(a +b )(a -b )=1,所以a -b <1,故①正确.对于②,令a =2,b =23,则1b -1a =1,但a -b =43>1,故②错.对于③,令a =4,b =1,则|a -b |=1,但|a -b |=3>1,故③错.对于④,|a 3-b 3|=|(a -b )(a 2+ab +b 2)|=1,由条件可得,a ,b 中至少有一个大于等于1,则a 2+ab +b 2>1,则|a -b |<1,故④正确.综上,真命题有①④.答案:①④12.(2019·江苏海安高级中学月考)已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________.解析:设f (x )=x 2-2(a -2)x +a .因为对于任意的x ∈(-∞,1)∪(5,+∞),都有f (x )=x 2-2(a -2)x +a >0,所以令f (x )=0,有Δ<0或⎩⎨⎧Δ≥0,1≤a -2≤5,f (1)≥0,f (5)≥0,解得1<a <4或4≤a ≤5,即1<a ≤5.答案:(1,5]13.(2019·重庆凤鸣山中学月考)若不存在整数x 满足不等式(kx -k 2-4)(x -4)<0,则实数k 的取值范围是________. 解析:容易判断k =0或k <0时,均不符合题意,所以k >0.所以原不等式即为k ()x -k 2+4k (x -4)<0,等价于()x -k 2+4k (x -4)<0,依题意应有3≤k 2+4k ≤5且k >0,所以1≤k ≤4.答案:[1,4]14.(2019·南昌模拟)定义域为R 的函数f (x )满足f (x +3)=2f (x ),当x ∈[-1,2)时,f (x )=⎩⎨⎧x 2+x ,x ∈[-1,0),-()12|x -1|,x ∈[0,2),若存在x ∈[-4,-1),使得不等式t 2-3t ≥4f (x )成立,则实数t 的取值范围是___________.解析:由题意知f (x )=12f (x +3).当x ∈[-1,0)时,f (x )=x 2+x =()x +122-14∈[]-14,0;当x ∈[0,2)时,f (x )=-()12|x -1|∈[]-1,-12.所以当x ∈[-1,2)时,f (x )min =-1.故当x ∈[-4,-1)时,x +3∈[-1,2),所以f (x +3)min =-1,此时f (x )min =12×(-1)=-12.由存在x ∈[-4,-1),使得不等式t 2-3t ≥4f (x )成立,可得t 2-3t ≥4×()-12,解得t ≤1或t ≥2.答案:(-∞,1]∪[2,+∞)15.(2019·南昌摸底)已知函数f (x )=ax 2+bx -a +2.(1)若关于x 的不等式f (x )>0的解集是(-1,3),求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式f (x )>0.解:(1)由题意知a <0,且-1,3是方程ax 2+bx -a +2=0的两个根,则⎩⎨⎧ b =2,8a +3b +2=0,∴⎩⎨⎧a =-1,b =2.(2)当b =2时,f (x )=ax 2+2x -a +2=(ax -a +2)(x +1),∵a >0,∴f (x )>0可化为()x -a -2a(x +1)>0, ①当a -2a ≥-1,即a ≥1时,不等式的解集为{}x |x <-1或x >a -2a; ②当a -2a <-1,即0<a <1时,不等式的解集为{}x |x <a -2a或x >-1.16.(2018·正定中学二模)已知f (x )=ax 2+x -a ,a ∈R.(1)若不等式f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的实数x ∈[-1,1]恒成立,求实数a 的取值范围; (2)若a <0,解不等式f (x )>1.解:(1)原不等式等价于x 2-2ax +2a +1>0对任意的实数x ∈[-1,1]恒成立, 设g (x )=x 2-2ax +2a +1=(x -a )2-a 2+2a +1(x ∈[-1,1]),①当a <-1时,g (x )min =g (-1)=1+2a +2a +1>0,得a >-12,所以a ∈∅;②当-1≤a ≤1时,g (x )min =g (a )=-a 2+2a +1>0,得1-2<a ≤1; ③当a >1时,g (x )min =g (1)=1-2a +2a +1>0,得a >1. 综上,a 的取值范围为(1-2,+∞). (2)ax 2+x -a -1>0,即(x -1)(ax +a +1)>0, 因为a <0,所以(x -1)()x +a +1a<0, 因为1-()-a +1a =2a +1a ,所以当-12<a <0时,1<-a +1a ,解集为{}x |1<x <-a +1a; 当a =-12时,(x -1)2<0,解集为∅;当a <-12时,1>-a +1a,解集为{}x |-a +1a<x <1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业 A 组——基础对点练1.已知x >y >z ,x +y +z =0,则下列不等式成立的是( ) A .xy >yz B .xz >yz C .xy >xzD .x |y |>z |y |解析:因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,所以x >0,又y >z ,所以xy >xz ,故选C. 答案:C 2.函数f (x )=1-xx +2的定义域为( ) A .[-2,1] B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞)解析:要使函数f (x )=1-xx +2有意义,则⎩⎪⎨⎪⎧(1-x )(x +2)≥0,x +2≠0,解得-2<x ≤1,即函数的定义域为(-2,1]. 答案:B3.已知集合A ={x ∈N|x 2-x -6<0},则集合A 的子集的个数为( ) A .3 B .4 C .7D .8解析:不等式x 2-x -6<0的解集为{x |-2<x <3},又x ∈N ,所以A ={0,1,2},故集合A 的子集的个数为23=8,故选D. 答案:D4.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A .[-2,-1] B .[-1,2) C .[-1,1]D .[1,2)解析:A ={x |x ≤-1或x ≥3},故A ∩B =[-2,-1],选A. 答案:A5.若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2abD.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:∵a >b >0,∴1a <1b ,且|a |>|b |,a +b >2ab ,又f (x )=⎝⎛⎭⎫12x是减函数,∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b .故C 项不成立. 答案:C6.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2)D .(1,2]解析:A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}. 答案:D7.不等式(1+x )( 1-x )>0的解集是( ) A .{x |-1<x <1} B .{x |x <1}C .{x |x <-1或x >1}D .{x |x <1且x ≠-1}解析:原式可化为(x +1)(x -1)<0, ∴-1<x <1. 答案:A8.已知a >0,且a ≠1,m =aa 2+1,n =a a +1,则( )A .m ≥nB .m >nC .m <nD .m ≤n解析:由题易知m >0,n >0,两式作商,得m n =a (a 2+1)-(a +1)=a a (a -1),当a >1时,a (a -1)>0,所以a a (a-1)>a 0=1,即m >n ;当0<a <1时,a (a -1)<0,所以a a (a-1)>a 0=1,即m >n .综上,对任意的a >0,a ≠1,都有m >n . 答案:B9.不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,2x 2-7x +6>0的解集是( )A .(2,3)B.⎝⎛⎭⎫1,32∪(2,3) C.⎝⎛⎭⎫-∞,32∪(3,+∞) D .(-∞,1)∪(2,+∞)解析:∵x 2-4x +3<0,∴1<x <3.又∵2x 2-7x +6>0,∴(x -2)(2x -3)>0,∴x <32或x >2,∴原不等式组的解集为⎝⎛⎭⎫1,32∪(2,3). 答案:B10.下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D . (1,+∞)解析:当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为⎩⎪⎨⎪⎧x 2>1,x 3<1,解得x <-1,选A. 答案:A11.若a , b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1bD.b a >a b解析:a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .① 又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2. 答案:B12.已知关于x 的不等式ax 2+2x +c >0的解集为⎝⎛⎭⎫-13,12,则不等式-cx 2+2x -a >0的解集为__________.解析:依题意知,⎩⎨⎧-13+12=-2a ,-13×12=ca ,解得a =-12,c =2,∴不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0,解得-2<x <3.所以不等式的解集为(-2,3).答案:(-2,3)13.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是__________. 解析:原不等式为(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a 14.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________. 解析:不等式x 2-ax +2a >0在R 上恒成立,即Δ=(-a )2-8a <0,∴0<a <8,即a 的取值范围是(0,8). 答案:(0,8)15.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .求不等式f (x +2)<5的解集. 解析:当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为 (-7,3).B 组——能力提升练1.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B. a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1bD.⎭⎬⎫a >b ab >0⇒1a >1b解析:当c =0时,ac 2=0,bc 2=0,故由a >b 不能得到ac 2>bc 2,故A 错误;当c <0时,a c >bc⇒a <b ,故B 错误;因为1a -1b =b -aab >0⇔⎩⎪⎨⎪⎧ ab >0,a <b 或⎩⎪⎨⎪⎧ab <0,a >b ,故选项D 错误,C 正确.故选C. 答案:C2.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0解析:∵f (0)=f (4)>f (1), ∴c =16a +4b +c >a +b +c , ∴16a +4b =0,即4a +b =0, 且15a +3b >0,即5a +b >0, 而5a +b =a +4a +b ,∴a >0.故选A. 答案:A3.在R 上定义运算:⎝⎛⎭⎪⎫a b cd =ad -bc ,若不等式⎝⎛ x -1a +1⎭⎪⎫a -2x≥1对任意实数x 恒成立,则实数a 的最大值为( ) A .-12B .-32C.12D.32解析:由定义知,不等式⎝ ⎛ x -1a +1⎭⎪⎫a -2x≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.答案:D4.“(m -1)(a -1)>0”是“log a m >0”的一个( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当(m -1)(a -1)>0时,有⎩⎪⎨⎪⎧ m >1,a >1,或⎩⎪⎨⎪⎧m <1,a <1,当m <0,a <0时,log a m 无意义,故log a m >0不一定成立;当log a m >0时,则⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,则(m -1)(a -1)>0恒成立,故“(m -1)·(a -1)>0”是“log a m >0”的必要不充分条件.故选B. 答案:B5.若0<b <a <1,则下列结论不一定成立的是( ) A.1a <1b B.a >b C .a b >b aD .log b a >log a b解析:对于A ,函数y =1x 在(0,+∞)上单调递减,所以当0<b <a <1时,1a <1b 恒成立;对于B ,函数y =x 在(0,+∞)上单调递增,所以当0<b <a <1时,a >b 恒成立;对于C ,当0<a <1时,函数y =a x 单调递减,所以a b >a a ,函数y =x a 单调递增,所以a a >b a ,所以a b >a a >b a 恒成立.所以选D. 答案:D6.若a <b <0,则下列不等式中不成立的是( ) A .|a |>|b | B.1a -b >1a C.1a >1bD .a 2>b 2解析:由不等式的性质可得|a |>|b |,a 2>b 2,1a >1b 成立.假设1a -b >1a 成立,由a <b <0得a -b <0,∴a (a -b )>0,由1a -b >1a ⇒a (a -b )·1a -b >1a ·a (a -b )⇒a >a -b ⇒b >0,与已知矛盾,故选B.答案:B7.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数.设a =f (log 47),b =f ⎝⎛⎭⎫log 123,c =f (21.6),则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .b <c <aD .a <b <c解析:∵f (x )是定义在 (-∞,+∞)上的偶函数,∴b =f (log 123)=f (-log 23)=f (log 23).∵log 23=log 49>log 47,21.6>2,∴log 47<log 49<21.6.∵f (x )在(-∞,0]上是增函数,∴f (x )在[0,+∞)上为减函数,则f (log 47)>f (log 49)>f (21.6),即c <b <a ,故选B. 答案:B8.(2018·武汉调研)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B ,使得MA ⊥MB ,则实数t 的取值范围为( ) A .[-2,6] B .[-3,5] C .[2,6]D .[3,5]解析:当MA ,MB 与圆相切时,|CM |=(5-1)2+(t -4)2=20,由题意,圆C 上存在两点使MA ⊥MB ,则|CM |=(5-1)2+(t -4)2≤20⇒2≤t ≤6,故选C. 答案:C9.函数f (x )=⎩⎪⎨⎪⎧|3x -4|(x ≤2),2x -1(x >2),则f (x )≥1的解集为( )A.⎣⎡⎦⎤1,53 B.⎣⎡⎦⎤53,3C .(-∞,1)∪⎣⎡⎭⎫53,+∞D .(-∞,1]∪⎣⎡⎦⎤53,3解析:不等式f (x )≥1等价于⎩⎪⎨⎪⎧x >2,2x -1≥1或⎩⎪⎨⎪⎧x ≤2,|3x -4|≥1,解之得x ≤1或53≤x ≤3,所以不等式的解集为(-∞,1]∪⎣⎡⎦⎤53,3,故选D. 答案:D10.若不等式组⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不是空集,则实数a 的取值范围是( )A .(-∞,-4]B .[-4,+∞)C .[-4,3]D .[-4,3)解析:不等式x 2-2x -3≤0的解集为[-1,3],假设⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(a +1)≤0的解集为空集,则不等式x 2+4x -(a +1)≤0的解集为集合{x |x <-1或x >3}的子集,因为函数f (x )=x 2+4x -(a +1)的图像的对称轴方程为x =-2,所以必有f (-1)=-4-a >0,即a <-4,则使⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不为空集的a 的取值范围是a ≥-4. 答案:B11.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.解析:由8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立, 得Δ=(-8sin α)2-4×8cos 2α≤0, 即64sin 2α-32(1-2sin 2α)≤0,得到sin 2α≤14,∵0≤α≤π,∴0≤sin α≤12,∴0≤α≤π6或5π6≤α≤π,即α的取值范围为⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π. 答案:⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 12.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,求实数m 的取值范围.解析:不等式x 2+mx +1≥0的解集为R ,相当于二次函数y =x 2+mx +1的最小值非负,即方程x 2+mx +1=0最多有一个实根,故Δ=m 2-4≤0,解得-2≤m ≤2.。