高考数学一轮复习,题型归纳系列资料,数列专题

合集下载

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。

在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。

一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。

对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。

1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。

设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。

(1)等差数列中,任意三项可以构成一个等差数列。

(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。

与等差数列不同的是,等比数列中的任意两项的比值都相等。

2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。

设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。

(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。

高三文科数学第一轮复习数列专题.docx

高三文科数学第一轮复习数列专题.docx

数列专题姓名: _____________ (一)数列求和学号: _____________1.公式法。

(直接用等差、等比数列的求和公式求和)n(a 1a n )n(n 1)na 1 (q 1)na 1 ; S nn ) (q 1)S n22da 1 (1 q公比含字母时一定要讨论1 q例 1(1):已知等差数列.... { a n } 满足 a 1 1, a 23 ,求前 n 项和 S n .例 1(2):已知等比数列.... { a n } 满足 a 11, a 2 3 ,求前 n 项和 S n .练习 1( 1) .设 f (n)2 2427210L23 n 10 ( nN ) ,则 f (n) 等于()A. 2(8n1) B.2 (8n 1 1) C.2(8n 3 1)D. 2 (8n 41)777 7练习 1( 2) . 求和: 1+ 3 + 7 + 9 + K + (2 n - 1)2.分组求和法c n = a n + b n , a n 、 b n 是等差或等比数列,则采用分组求和法1111 例 3:求数列1, 2+, 3+ , 4++⋯ + nn 1 的前 n 项和 S n .2 482练习 2(1):已知数列 { a n } 是 3+ 2-1,6+ 22- 1,9+ 23- 1,12+24 -1,⋯,写出数列 { a n } 的通项公式并求其前 n 项和 S n .练习 2( 2):求和: (2 - 3? 5- 1 ) (4 - 3? 5- 2 ) L + (2 n - 3? 5- n ) .3.错位相减法:(乘以式中的公比q ,然后再进行相减) a n等差 , b n等比 , 求 a1b1 a 2b2a n b n的和 .例 3.求和S n 1 2x 3x2L nx n 1( x 1 0 )(提示:分类讨论, x1和 x 1 两种情况)练习 3( 1)化简:S n 1 21 2 2 2n2n123n练习 3(2) .求和:S n23na a a a练习3(3). 设{ a n}是等差数列,{b n } 是各项都为正数的等比数列,且a1b1 1 , a3b521 ,a5 b3 13 (Ⅰ)求 { a n} , { b n } 的通项公式;(Ⅱ)求数列a n的前 n 项和S n.b n4.裂项相消法 ( 把数列的通项拆成两项之差、正负相消剩下首尾若干项)常见拆项:1 11;1 1 ( 1 1 ) 1= 1 ( 1- 1 )n(n 1) nn 1n(n2)2 n n 2 ; n(n + k) k n n + k11111111]()[(2n 1)( 2n 1) 2 2n 1 2n 1 ; n(n 1)( n2) 2 n(n 1) ( n 1)(n2)例 4(1).数列 { a n } 的前 n 项和为 S n ,若 a n1,则 S 5 等于( )n(n 1)A . 1B .5C .1D .16630例 4(2) . 已知数列 { a n } 的通项公式为 a n1,求前 n 项的和.nn11,求前 n 项的和.练习 4( 1).已知数列 { a n } 的通项公式为 a nn(n 1)练习 4( 2).若数列的通项公式为 b n1n 项和为 _________.,则此数列的前 (2n1) (2n 1)练习 4( 3)已知数列a n: 1 ,12 , 1 23 , ⋯ , 1 2 3 L 9, ⋯ , 若 b n 1,23 34 4410 10 1010a nan 1那么数列 b n 的前 n 项和 S n 为()A .n B. 4n C.3n D. 5n n1n 1n 1n 1练习 4( 4).已知数列 { a n } 的通项公式为 a n =n1,设 T n11 L1 ,求 T n .2a 1 a 3a 2 a 4a nan 2练习 4( 5).求 11 1 14 1,(n N * ) 。

高考数列题型总结(优秀范文五篇)

高考数列题型总结(优秀范文五篇)

高考数列题型总结(优秀范文五篇)第一篇:高考数列题型总结数列1.2.3.4.5.6.坐标系与参数方程 1.2.34..5.6.(1)(2)第二篇:数列综合题型总结数列求和1.(分组求和)(x-2)+(x2-2)+…+(xn-2)2.(裂相求和)++Λ+1⨯44⨯7(3n-2)(3n+1)3.(错位相减)135+2+3+222+2n-12n1⨯2+2⨯22+3⨯23+Λ+n⨯2n4.(倒写相加)1219984x)+f()+Λ+f()=x 求值设f(x),求f(1999199919994+25.(放缩法)求证:1+数列求通项6.(Sn与an的关系求通项)正数数列{an},2Sn=an+1,求数列{an}的通项公式。

7.(递推公式变形求通项)已知数列{an },满足,a1=1,8.累乘法an+1=5an求{an }的通项公式 5+an11++2232+1<2n2数列{an}中,a1=122,前n项的和Sn=nan,求an+1.2222a=S-S=na-(n-1)a⇒(n-1)a=(n-1)an-1 nnn-1nn-1n解:⇒∴∴an=ann-1=an-1n+1,anan-1a2n-1n-2111⋅Λ⋅a1=⋅Λ⨯=an-1an-2a1n+1n32n(n+1)an+1=1 (n+1)(n+2)9累加法第三篇:数列题型及解题方法归纳总结文德教育知识框架⎧列⎧数列的分类⎪数⎪⎪⎨数列的通项公式←函数⎪的概念角度理解⎪⎪⎩数列的递推关系⎪⎪⎧⎧等差数列的定义an-an-1=d(n≥2)⎪⎪⎪⎪⎪等差数列的通项公式an=a1+(n-1)d⎪⎪⎪等差数列⎪⎨n⎪⎪⎪等差数列的求和公式Sn=2(a1+an)=na1+n(n-1)d⎪⎪⎪⎪⎪2⎪⎩等差数列的性质an+am=ap+aq(m+n=⎪⎪p+q)⎪两个基⎪⎧等比数列的定义an=q(n≥⎪本数列⎨⎪⎪a2)n-1⎪⎪⎪⎪⎪⎪等比数列的通项公式an-1⎪n=a1q数列⎪⎪等比数列⎨⎨⎧a1-anq=aqn1(1-)⎪⎪⎪等比数列的求和公式S(q≠1)n=⎪⎨1-q1-q⎪⎪⎪⎪⎪⎪⎪⎩na1(q=1)⎪⎪⎪⎩等比数列的性质anam=apaq(m+n=p+q)⎪⎩⎪⎧公式法⎪⎪分组求和⎪⎪⎪⎪错位相减求和⎪数列⎪⎪求和⎨裂项求和⎪⎪倒序相加求和⎪⎪⎪⎪累加累积⎪⎪⎩归纳猜想证明⎪⎪⎪数列的应用⎧分期付款⎨⎩⎩其他掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

高三数学一、二轮复习知识梳理之“数列专题”

高三数学一、二轮复习知识梳理之“数列专题”

高三数学一、二轮复习知识梳理数列专题一、一般数列的相关知识梳理1、任意数列}{n a 的前n 项和n S 与通项n a 的关系:(1)n n a a a S +⋯⋯++=21。

(2)。

(3)。

2、数列的分类:(1)按项数分类:、。

(2)按项与项间大小关系分类:、、、。

3、根据数列通项公式判断数列的单调性方法(1)函数单调性法:若()x f y =为),1[+∞上的单调函数,则数列)(n f a n =与()x f y =有的单调性。

(2)比较法:作差比较法、作商比较法。

①作差比较法(*N n ∈∀):}{01n n n a a a ⇔>-+为递增数列。

}{01n n n a a a ⇔=-+为数列。

}{01n n n a a a ⇔<-+为数列。

②对各项同号的数列,可以用作商比较法(*N n ∈∀):若0>n a ,则:}{11n nn a a a ⇔>+为数列。

}{11n n n a a a ⇔=+为常数列。

}{11n n n a a a⇔<+为数列。

若0<n a ,则:}{11n nn a a a ⇔>+为数列。

}{11n n n a a a ⇔=+为常数列。

}{11n nn a a a⇔<+为数列。

二、等差数列的相关知识梳理1、等差数列}{n a 的通项公式:d m n a d n a a m n )()1(1-+=-+=。

2、等差数列}{n a 的前n 项和公式:(1)1=d 时,=n S 。

(2)1≠d 时,=n S 2)(1n a a n +=。

3、等差中项:如果2ba A +=,那么A 叫做a 与b 的等差中项。

4、等差数列}{n a 中,若q p n m ,,,都为正整数且q p n m +=+,则q p n m a a a a +=+。

5、等差数列的前n 项和性质:设}{n a 公差为d ,则,m m m m m S S S S S 232,,--…是公差为的等差数列。

人教版高考数学一轮专项复习:数列题型11种(含解析)

人教版高考数学一轮专项复习:数列题型11种(含解析)

数列题型11种(方法+例题+答案)1.作差法求通项公式2.累乘法求通项公式3.累加法求通项公式4.构造法求通项公式(一)5.构造法求通项公式(二)6.取倒法求通项公式7.分组求和法求前n项和8.错位相减法求前n项和9.裂项相消法求前n项和10.数列归纳法与数列不等式问题11.放缩法与数列不等式问题1、作差法求数列通项公式已知n S (12()n a a a f n +++= )求n a ,{11,(1),(2)n n n S n a S S n -==-≥注意:分两步,当2≥n 时和1=n 时一、例题讲解1、(2015∙湛江)已知数列{}n a 的前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ),且12a =,23a =. ()1求数列{}n a 的通项公式2、(2015∙茂名)已知数列}{n a 的前n 项和为n S ,11=a ,且)1()1(221+=+-+n n S n nS n n ,)(*∈N n ,数列}{n b 满足,0212=+-++n n n b b b )(*∈N n ,53=b ,其前9项和为63(1)求数列}{n a 和}{n b 的通项公式3、(2015∙中山)设等差数列}{n a 的前n 项和为n S ,且,40,842==S a 数列}{n b 的前n 项和为n T ,且,032=+-n n b T *∈N n 。

(1)求数列}{n a ,}{n b 的通项公式4、(2015∙揭阳)已知n S 为数列}{n a 的前n 项和,)1(3--=n n na S n n ,(*∈N n ),且,112=a (1)求1a 的值;(2)求数列}{n a 的通项公式5、(2014∙汕头)数列{}n a 中,11=a ,n S 是{}n a 前n 项和,且)2(11≥+=-n S S n n(1)求数列{}n a 的通项公式6、(2014∙肇庆)已知数列}{n a 的前n 项和为n S ,且满足,21=a )1(1++=+n n S na n n (1)求数列}{n a 的通项公式7、(2014∙江门)已知数列}{n a 的前n 项和122-=n S n ,求数列}{n a 的通项公式。

(完整版)高三总复习数列知识点及题型归纳总结

(完整版)高三总复习数列知识点及题型归纳总结

高三总复习----数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n-=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。

例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。

从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。

高考数学第一轮复习资料汇总

高考数学第一轮复习资料汇总

高考数学第一轮复习资料汇总高考数学第一轮复习资料 1数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1—an=dan=a1+(n—1)da,A,b成等差2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b ba>b,b>c a>ca>b a+c>b+ca+b>c a>c—ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 aca>b>0,c>d>0 aca>b>0 dn>bn(n∈Z,n>1)a>b>0 > (n∈Z,n>1)(a—b)2≥0a,b∈R a2+b2≥2ab|a|—|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或aa—b>0(或a—b<0=即可(2)若b>0,要证a>b,只需证明。

要证a综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

分析法分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”高考数学第一轮复习资料 21、直线两点距离、定比分点直线方程|AB|=| ||P1P2|=y—y1=k(x—x1)y=kx+b两直线的位置关系夹角和距离或k1=k2,且b1≠b2l1与l2重合或k1=k2且b1=b2l1与l2相交或k1≠k2l2⊥l2或k1k2=—1 l1到l2的角l1与l2的夹角点到直线的距离2、圆锥曲线圆椭圆标准方程(x—a)2+(y—b)2=r2圆心为(a,b),半径为R一般方程x2+y2+Dx+Ey+F=0其中圆心为(),半径r(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系(2)两圆的位置关系用圆心距d与半径和与差判断椭圆焦点F1(—c,0),F2(c,0)(b2=a2—c2)离心率准线方程焦半径|MF1|=a+ex0,|MF2|=a—ex0双曲线抛物线双曲线焦点F1(—c,0),F2(c,0)(a,b>0,b2=c2—a2)离心率准线方程焦半径|MF1|=ex0+a,|MF2|=ex0—a抛物线y2=2px(p>0)焦点F准线方程坐标轴的平移这里(h,k)是新坐标系的原点在原坐标系中的坐标。

高考数学题型全归纳数列的概念知识总结及例题讲解

高考数学题型全归纳数列的概念知识总结及例题讲解

§1.1.1 数列的概念本末节重点:了解数列概念、分类、通项公式;及通项公式的求法。

大体概念1. 数列的概念○1按必然顺序排列的一列数叫数列。

注:数列的另一概念:数列也能够看做是一个概念域为正整数集,当自变量从小到大依次取值时对应的一列函数值。

○2数列中的每一个数按顺序1,2,3,…,都有一个序号,叫作项数,每一个序号也对应着一个数,那个数叫作数列中的项,例如第4个数,叫作第4项,第n个数,叫作第n项,记作;○3数列的一般形式为,,,…,,…简单记为,其中表示数列的通项. ○4通项公式:若是一个数列的第n项与项数n之间的函数关系能够用一个公式表示时,咱们称那个公式为那个数列的通项公式。

特别提示:a) 数列的通项公式不是唯一的,例如:-1,1,-1,1,…通项公式可表示为或;b) 不是所有的数列都有通项公式,例如:3,,,,,…就没有通项公式.○5递推公式:若是已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系式能够用一个公式来表示,则那个公式就叫作递推公式。

2. 数列的表示方式○1列表法,指列出表格来表示数列的第n项与序号n之间的关系.○2图像法,指在座标平面顶用点表示.○3解析法,指用一数学式子表示来。

例如:常常利用的通项公式.3. 数列的分类○1按数列中项数的多少来分:有穷数列和无穷数列.○2按数列中相邻两项间的大小关系来分:递增数列、递减数列、常数列和摆动数列.○3依照任何一项的绝对值是不是都大于某一正数来分:有界数列和无界数列.例题讲解按照数列的前几项,写出下列各数列的一个通项公式:,,,,…(2) 1,3,6,10,15,…(3) ,,,,…(4) 6,66,666,…(5),,,,…(6) ,,,,,,…或特别提示:在此种题型当中一些常常利用的数列为:1,0,1,0,…; 2)-1,1,-1,1,…; 3)1,11,111,1111,…已知数列,求数列的第10项是不是为该数列的项,为何?求证:数列中各项都在区间内;在区间内有无数列中的项?利用递推公式写出下列各题通项公式(1)(可用两种方式)(2)已知数列知足求(3)(插项法和叠加法组合)(4)在数列中,已知,(5)设是首项为1的正数数列,且,求它的通项公式.(累乘法)(6)已知数列中,,数列中,,当时,,求例4. 求下列数列中某一项已知数列知足,求已知数列对任意,有,若,求在数列中,,求已知数列知足,求例5. 利用数列的单调性解答(1)若数列的通项公式,数列的最大项为第x项,最小项为第y项,则x+y=(2)设数列的通项公式为,若数列是单调递增数列,求实数k 的取值范围.(3)设,又知数列的通项知足,1)试求数列的通项公式;2)判断数列的增减性.(4)设是概念在正整数集上的函数,且知足,若是,则=例6. 和之间的关系注:数列的通项与前n项和的彼此关系是:;已知数列的前n项和,求数列的通项公式.已知求已知,又数列中,,那个数列的前n项和的公式,对所有大于1的自然数n都有.求数列的通项公式.若, 求的值特别提示:请同窗自行归纳出求通项公式的大体方式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第七章数列 (2)第一节等差数列 (2)题型73、等差数列基本运算 (2)题型74、等差数列判定与证明 (3)题型75、等差数列性质及结论的应用 (4)题型76、等差数列前n项和的最值 (5)第二节等比数列 (6)题型77、等比数列基本运算 (6)题型78、等比数列的判定与证明 (6)题型79、等比数列的性质和结论 (8)第三节数列的通项公式和前n项和公式 (9)题型80、数列求通向公式 (9)80.1、累加法: (9)80.2、累乘法: (10)80.3、待定系数法: (11)80.4、对数变换法: (16)80.5、倒数变换法: (17)80.6、阶差法(逐项相减法): (17)题型81、数列求前n项和 (20)81.1、利用常用求和公式求和 (20)81.2、错位相减法求和 (21)81.3、分组法求和 (22)81.4、裂项法求和 (23)81.5、反序相加法求和 (25)81.6、分段求和 (26)第六章 数列第一节 等差数列题型73、等差数列基本运算❖ 知识点摘要:➢ 定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数). ➢ 等差数列的通项公式:a n =a 1+(n -1)d ;通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). ➢ 等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.➢ 等差中项的推论:在等差数列中,若m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *). ➢ 前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.➢ 等差数列的通项公式及前n 项和公式与函数的关系1. 集合当d ≠0时,a n 是关于n 的一次函数;当d >0时,数列为递增数列;当d <0时,数列为递减数列.2. 公差不为0时,S n =An 2+Bn (A ,B 为常数).S n 是关于n 的二次函数,且常数项为0. ❖ 典型例题精讲精练:1. (2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )BA .-12B .-10C .10D .122. 已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( )D A .3 B .7 C .9 D .103. (2019·开封高三定位考试)已知等差数列{a n }的前n 项和为S n ,且a 1+a 5=10,S 4=16,则数列{a n }的公差为( )BA .1B .2C .3D .44. 已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( )D A .420 B .340 C .-420 D .-3405. 在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( )C A .12 B .18 C .24 D .30题型74、等差数列判定与证明❖ 知识点摘要:➢ 定义法:a n +1-a n =d (n ∈N *,d 为常数).(证明最常用,判定也常用) ➢ 通项公式法:(常用来判定) ➢ 等差中项法:➢ 前n 项和公式法:(常用来判定) ❖ 典型例题精讲精练:1. 已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列.(2)求a n 的表达式.【答案:】(2)所以a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.2. (2019·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7等于( )BA .13B .49C .35D .633. 已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.题型75、等差数列性质及结论的应用❖ 知识点摘要:已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和,则:➢ 等间距抽取:⋯++m k m k k a a a 2,,仍是等差数列,公差为m d (k ,m ∈N *). ➢ 等长度截取:S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d . ➢ 算数平均值:若{a n }是等差数列,则⎭⎬⎫⎩⎨⎧n S n 也成等差数列,公差为2d 。

➢ 若项数为偶数2n ,则:)()(1212++=+=n n n n a a n a a n S ,n na S =奇,1+=n na S 偶, nd S S =-奇偶,1+=n n a aS S 偶奇。

➢ 若项数为奇数2n -1,则:n n a n S )12(12-=-,n na S =奇,n a n S )1(-=偶, n a S S =-偶奇,1-=n nS S 偶奇。

➢ 若{a n }与{b n }为等差数列,且前n 项和分别为S n 和T n ,则:1212--=m m m m T S b a 。

❖ 典型例题精讲精练:1. 已知在等差数列{a n }中,a 5+a 6=4,则)222(log 10212a aa⋅⋯⋅⋅=( )BA .10B .20C .40D .2+log 252. (2019·福建模拟)设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若a 5=2b 5,则S 9T 9=( )AA .2B .3C .4D .63. 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )BA .63B .45C .36D .274. 在等差数列{a n }中,若a 3=-5,a 5=-9,则a 7=( )B A .-12 B .-13 C .12 D .135. (2019·广东中山一中统测)设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )DA .-45B .-50C .-55D .-66题型76、等差数列前n项和的最值❖知识点摘要:➢求等差数列前n项和S n最值的2种方法函数法:利用等差数列前n项和的函数表达式S n=An2+Bn,借助二次函数最值的方法求解.邻项变号法:利用等差数列通项公式a n=kn+b,借助一次函数的图像的零点求解。

➢等差数列{a n}中,若a n=m,a m=n(m≠n),则a m+n=0。

➢等差数列{a n}中,若S n=m,S m=n(m≠n),则S m+n=-(m+n)。

➢等差数列{a n}中,若S n=S m(m≠n),则S m+n=0。

❖典型例题精讲精练:1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为()AA.S15B.S16 C.S15或S16D.S172.在等差数列{a n}中,若a3=-5,a5=-9,则a7=()BA.-12 B.-13 C.12 D.133.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为()CA.6 B.7 C.12 D.134.设等差数列{a n}的前n项和为S n,已知前6项和为36,最后6项的和为180,S n=324(n>6),则数列{a n}的项数为________.185.(2019·山西五校联考)在数列{a n}中,a n=28-5n,S n为数列{a n}的前n项和,当S n最大时,n=()CA.2 B.3 C.5 D.66.(2018·全国卷Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【答案】a n=2n-9;当n=4时,S n取得最小值,最小值为-16.第二节 等比数列题型77、等比数列基本运算❖ 知识点摘要:➢ 等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab . 只有当两个数同号且不为0时,才有等比中项,且等比中项有两个. ➢ 等比数列的有关公式 (1)通项公式:a n =a 1q n-1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.❖ 典型例题精讲精练:1. (2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 【答案】a n =2n -1;m =6.2. 已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( )BA .2B .4 C. 2D .223. (2019·长春质检)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=( )CA .4B .10C .16D .32 4. (2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=___.32题型78、等比数列的判定与证明❖ 知识点摘要:➢ 定义法:a n +1a n =q ;(可以用来证明和判定)➢ 等比中项法:(证明、判定) ➢ 通项公式法:(判定) ➢ 前n 项和公式法:(判定)❖ 典型例题精讲精练:1.已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列.2. 数列{a n }的前n 项和为S n =2a n -2n ,证明:{a n +1-2a n }是等比数列.3. (2019·西宁月考)已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上.在数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式;a n =n +1. (2)求证:数列{b n }是等比数列.题型79、等比数列的性质和结论❖ 知识点摘要:➢ 设数列{a n }是等比数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m ·q n-m (n ,m ∈N *).(2)若m +n =p +q ,则a m a n =a p a q ;若2s =p +r ,则a p a r =a 2s ,其中m ,n ,p ,q ,s ,r ∈N *.(3)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(4)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n 也是等比数列.(5)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .❖ 典型例题精讲精练:1. (2019·洛阳联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( )BA .-2+22B .-2C. 2D .- 2 或 22. (2018·河南四校联考)在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2…a 8=16,则1a 1+1a 2+…+1a 8的值为( )AA .2B .4C .8D .163. 各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )BA .80B .30C .26D .164. (2019·郑州第二次质量预测)已知等比数列{a n }中,a 2a 5a 8=-8,S 3=a 2+3a 1,则a 1=( )BA.12 B .-12C .-29D .-195. 已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =____.2第三节 数列的通项公式和前n 项和公式题型80、数列求通向公式❖ 典型例题精讲精练:80.1、累加法 :➢ 适用于:)(1n f a a n n +=+, 这是广义的等差数列,累加法是最基本的二个方法之一。

相关文档
最新文档