历年高考数学试题汇编数列

合集下载

高考数学真题专题分类汇编专题六 数列(教师版)

高考数学真题专题分类汇编专题六 数列(教师版)

专题六 数列真题卷题号 考点 考向2023新课标1卷7等差数列等差数列的判定、等差数列的性质 20 等差数列 求等差数列的通项公式及基本量计算2023新课标2卷8等比数列 等比数列的性质18等差数列、数列的综合应用 求等差数列的通项公式及前n 项和、数列的综合应用(不等式证明) 2022新高考1卷 17 数列的通项公式、数列求和 由递推公式求通项公式、裂项相消法求和 2022新高考2卷17 等差数列、等比数列 等差、等比数列的通项公式2021新高考1卷16数列的实际应用 错位相减法求和17 数列的通项公式、数列求和由递推公式求通项公式、公式法求和2021新高考2卷12等比数列 数列的新定义问题17 等差数列 求等差数列的通项公式、等差数列求和 2020新高考1卷14等差数列 等差数列的性质、等差数列求和 18 等比数列、数列求和求等比数列的通项公式、数列求和 2020新高考2卷15等差数列 求等差数列的通项公式、等差数列求和 18等比数列 求等比数列的通项公式、等比数列求和【2023年真题】1. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn 为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件 【答案】C 【解析】 【分析】本题考查等差数列的判定、等差数列前n 项和、充分必要条件的判定,属于中档题. 结合等差数列的判断方法,依次证明充分性、必要性即可. 【解答】 解:方法1:为等差数列,设其首项为1a ,公差为d ,则1(1)2n n n S na d −=+,111222n S n d da d n a n −=+=+−,112n n S S d n n +−=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++−+−−==+++为常数,设为t 即1(1)n nna S t n n +−=+,故1(1)n n S na t n n +=−⋅+故1(1)(1)n n S n a t n n −=−−⋅−,2n … 两式相减有:11(1)22nn n n n a na n a tn a a t ++=−−−⇒−=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d −=+, 则11(1)222n S n d da d n a n −=+=+−,故{}n S n为等差数列,即甲是乙的充分条件.反之,乙:{}n S n为等差数列.即11n n S SD n n +−=+,1(1).n S S n D n =+−即1(1).n S nS n n D =+−当2n …时,11(1)(1)(2).n S n S n n D −=−+−− 上两式相减得:112(1)n n n a S S S n D −=−=+−, 所以12(1).n a a n D =+−当1n =时,上式成立. 又1112(2(1))2n n a a a nD a n D D +−=+−+−=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C .2. (2023·新课标II 卷 第8题) 记n S 为等比数列{}n a 的前n 项和,若45S =−,6221S S =,则8S = ( ) A. 120 B. 85C. 85−D. 120−【答案】C 【解析】 【分析】本题考查等比数列的基本性质,属于中档题.利用等比数列前n 项和之间差的关系可知2S ,42S S −,64S S −,86S S −成等比数列,列出关系式计算即可得解. 【解答】解:2S ,42S S −,64S S −,86S S −成等比数列,242224264264262(1)55(21)521S S q S q S S S q S S q S S S−= +=− −+⇒ −= = 从而计算可得24681,5,21,85S S S S =−=−=−=− 故选.C3. (2023·新课标I 卷 第20题)设等差数列{}n a 的公差为d ,且 1.d >令2n n n nb a +=,记n S ,n T 分别为数列{}{},n n a b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T −=,求.d【答案】解:因为21333a a a =+,故3132d a a d ==+, 即1a d =,故n a nd =,所以21n n n n b nd d++==,(1)2n n n d S +=,(3)2n n n T d +=,又3321S T +=,即34362122d d ××+=,即22730d d −+=,故3d =或1(2d =舍), 故{}n a 的通项公式为:3.n a n =(2)方法一:(基本量法)若{}n b 为等差数列,则2132b b b =+,即11123123422a d a a d××××=+++,即2211320a a d d −+=,所以1a d =或12;a d =当1a d =时,n a nd =,1n n b d +=,故(1)2n n n d S +=,(3)2n n n T d+=,又999999S T −=, 即99100991029922d d ⋅⋅−=,即250510d d −−=,所以5150d =或1(d =−舍); 当12a d =时,(1)n a n d =+,n n b d =,故(3)2n n n d S +=,(1)2n n n T d+=,又999999S T −=, 即99102991009922d d ⋅⋅−=,即251500d d −−=,所以50(51d =−舍)或1(d =舍); 综上:51.50d = 方法二:因为{}n a 为等差数列且公差为d ,所以可得1n a dn a d =+−,则211(1)n n n n nb dn a d dn a d ++⋅==+−+− 解法一:因为{}n b 为等差数列,根据等差数列通项公式可知n b 与n 的关系满足一次函数,所以上式中的分母“1dn a d +−”需满足10a d −=或者11da d=−,即1a d =或者12;a d = 解法二:由211(1)n n n n nb dn a d dn a d++⋅==+−+−可得,112b a =,216b a d =+,31122b a d =+,因为{}n b 为等差数列,所以满足1322b b b +=, 即111212622a a d a d+=⋅++,两边同乘111()(2)a a d a d ++化简得2211320a a d d −+=, 解得1a d =或者12;a d =因为{}n a ,{}n b 均为等差数列,所以995099S a =,995099T b =,则999999S T −=等价于50501a b −=, ①当1a d =时,n a dn =,1(1)n b n d =+,则505051501a b d d−−,得 250510(5051)(1)0d d d d −−=⇒−+=,解得5150d =或者1d =−, 因为1d >,所以51;50d =②当12a d =时,(1)n a d n =+,1n b n d =,则505050511a b d d−=−=,化简得 251500(5150)(1)0d d d d −−=⇒+−=,解得5051d =−或者1d =,因为1d >,所以均不取; 综上所述,51.50d =【解析】本题第一问考查数列通项公式的求解,第二问考查等差数列有关性质,等差数列基本量的求解,计算量较大,为较难题.4. (2023·新课标II 卷 第18题)已知为等差数列,,记n S ,n T 分别为数列,的前n 项和,432S =,316.T =(1)求的通项公式;(2)证明:当5n >时,n S .n T >【答案】解:(1)设数列的公差为d ,由题意知:,即,解得52(1)2 3.n a n n ∴=+−=+(2)由(1)知23na n =+,,212121n n b b n −+=+,当n 为偶数时,当n 为奇数时,22113735(1)(1)4(1)652222n n n T T b n n n n n ++=−=+++−+−=+−, ∴当n 为偶数且5n >时,即6n …时,22371(4)(1)022222n n n nT S n n n n n n −=+−+=−=−>, 当n 为奇数且5n >时,即7n …时, 22351315(4)5(2)(5)0.22222n nT S n n n n n n n n −=+−−+=−−=+−>∴当5n >时,n S .n T >【解析】本题考查了等差数列的通项公式、前n 项和公式等.(1)由已知432S =,316T =,根据等差数列的前n 项和公式展开,即可得出等差数列的首项15a =,公差2d =,进而得出通项公式2 3.na n =+ (2)由(1)知23na n =+,可得(4)n S n n =+,数列的通项公式,进而212121n n b b n −+=+,分两情况讨论,当n 为偶数时,n T 中含有偶数项,相邻两项两两一组先求和,得出237.22nT n n =+当n 为奇数时,1n +为偶数,此时11.n n n T T b ++=−最后只需证明0n n T S −>即可.【2022年真题】5.(2022·新高考I 卷 第17题)记n S 为数列{}n a 的前n 项和,已知11a =,n n S a是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112.na a a +++< 【答案】 解:1112(1)(1)33n n S S n n a a +=+−=,则23n n n S a +=①,1133n n n S a +++∴=②;由②-①得:111322;33n n n n n a n n n a a a a n++++++=−⇒=∴当2n …且*n N ∈时,13211221n n n n n a a a a a a a a a a −−−=⋅⋅ 1543(1)(1)1232122nn n n n n n a n n +++=⋅⋅⋅=⇒=−− , 又11a =也符合上式,因此*(1)();2n n n a n N +=∈ 1211(2)2()(1)1n a n n n n ==−++ ,1211111111112()2(1)2122311n a a a n n n ∴+++=−+−++−=−<++ , 即原不等式成立.【解析】本题考查了数列与不等式,涉及裂项相消法求和、等差数列的通项公式、根据数列的递推公式求通项公式等知识,属中档题.(1)利用11n n n a S S ++=−进行求解然后化简可求出{}n a 的通项公式; (2)由(1)可求出1112()1n a n n =−+,然后再利用裂项相消法求和可得. 6.(2022·新高考II 卷 第17题)已知{}n a 为等差数列,{}n b 为公比为2的等比数列,且223344.a b a b b a −=−=−(1)证明:11;a b =(2)求集合1{|,1500}km k b a a m =+剟中元素个数. 【答案】解:(1)设等差数列{}n a 公差为d由2233a b a b −=−,知1111224a d b a d b +−=+−,故12d b = 由2244a b b a −=−,知111128(3)a d b b a d +−−+,故11124(3);a d b d a d +−−+故1112a d b d a +−=−,整理得11a b =,得证.(2)由(1)知1122d b a ==,由1km b a a =+知:11112(1)k b a m d a −⋅=+−⋅+ 即111112(1)2k b b m b b −⋅=+−⋅+,即122k m −=,因为1500m 剟,故1221000k −剟,解得210k 剟, 故集合1{|,1500}km k b a a m =+剟中元素的个数为9个. 【解析】本题考查等差、等比数列的通项公式,解指数不等式,集合中元素的个数问题,属于中档题.【2021年真题】7.(2021·新高考II 卷 第12题)(多选)设正整数010112222k k k k n a a a a −−=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ ,则( ) A.()()2n n ωω=B. ()()231n n ωω+=+C. ()()8543n n ωω+=+D. ()21nn ω−=【答案】ACD 【解析】 【分析】本题重在对新定义进行考查,合理分析所给条件是关键,属于拔高题.利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【解答】解:对于A 选项,010112222k k k k n a a a a −−=⋅+⋅++⋅+⋅ ,, 则12101122222kk k k n a a a a +−=⋅+⋅++⋅+⋅ ,,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,,而0120212=⋅+⋅,则()21ω=,即,B 选项错误;对于C 选项,34302340101852225121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 32k k a ++⋅, 所以,,23201230101432223121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 22k k a ++⋅,所以,,因此,,C 选项正确;对于D 选项,01121222n n −−+++ ,故,D 选项正确.故选.ACD8.(2021·新高考I 卷 第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm 12dm ×的长方形纸,对折1次共可以得到10dm 12dm ×,20dm 6dm ×两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ×,10dm 6dm ×,20dm 3dm ×三种规格的图形,它们的面积之和22180dm S =,以此类推.则对折4次共可以得到不同规格图形的种数为____________________;如果对折*()n n N ∈次,那么12n S S S ++= __________2dm . 【答案】5 ; 3240(3)2nn +×− 【解析】 【分析】本题考查实际生活中的数列问题,由特殊到一般的数学思想.根据题设列举,可以得到折叠4次时会有五种规格的图形.由面积的变化关系得到面积通项公式,从而由错位相减法得到面积和. 【解答】解:对折3次时,可以得到2.512dm dm ×,56dm dm ×,103dm dm ×,20 1.5dm dm ×四种规格的图形. 对折4次时,可以得到2.56dm dm ×,1.2512dm dm ×,53dm dm ×,10 1.5dm dm ×,200.75dm dm ×五种规格的图形.对折3次时面积之和23120S dm =,对折4次时面积之和2475S dm =,即12402120S ==×,2180360S ==×,3120430S ==×,475515S ==×,……得折叠次数每增加1,图形的规格数增加1,且()*12401,2nn S n n N =+×∈, 121111240[234(1)]2482n n S S S n ∴++=××+×+×++⋅+记231242n n n T +=+++ ,则112312482n n n T ++=+++ , 11111111()224822n n n n n n T T T ++−==++++−113113322222n n n n n ++++=−−=−, 得332n n n T +=−, 123240(3)2n nn S S S +∴++=×−, 故答案为5;3240(3).2n n +×−9.(2021·新高考I 卷 第17题)已知数列{}n a 满足11a =,,记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; 求{}n a 的前20项和.【答案】解:⑴12b a =,且21+1=2a a =,则1=2b ,24b a =,且4321215a a a +++,则25b =; 1222121213n n n n n b a a a b +++++++,可得13n n b b +−=,故{}n b 是以2为首项,3为公差的等差数列; 故()21331n b n n =+−×=−.数列{}n a 的前20项中偶数项的和为2418201210109=102+3=1552a a a ab b b ×++++=+++×× , 又由题中条件有211a a =+,431a a =+, ,20191a a =+, 故可得n a 的前20项的和【解析】本题考查了数列递推关系式运用,等差数列通项公式求法,数列求和,考查了分析和运算能力,属于中档题.(1)结合题干给的递推关系,可以快速的算出1b 和2b ,同时利用1222121213n n n n n b a a a b +++++++可判(1)(2)(2)断出数列n b 为等差数列,即可求出数列通项公式;(2)n a 的前20项的和可分组求和,求出其对应的偶数项的和,再结合奇数项与偶数项的关系求解即可. 10.(2021·新高考II 卷 第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35a S =,244.a a S =(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解:(1)由等差数列的性质可得:535S a =,则3335,0a a a ∴,设等差数列的公差为d ,从而有22433()()a a a d a d d =−+=−, 412343333(2)()()2S a a a a a d a d a a d d =+++=−+−+++=−,从而22d d −=−,由于公差不为零,故:2d =,数列的通项公式为:*3(3)26().n a a n d n n N =+−=−∈ (2)由数列的通项公式可得1264a =−=−, 则2(1)(4)252n n n S n n n −=×−+×=−, 则不等式n n S a >即2526n n n −>−,整理可得(1)(6)0n n −−>,解得1n <或6n >,又n 为正整数,故n 的最小值为7.【解析】本题考查等差数列基本量的求解,是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值.【2020年真题】11.(2020·新高考I 卷 第14题、II 卷 第15题)将数列{21}n −与{32}n −的公共项从小到大排列得到数列{n a },则{}n a 的前n 项和为__________.【答案】232n n −【解析】【分析】本题考查数列的特定项与性质以及等差数列求和.利用公共项构成首项为1 ,公差为6的等差数列,利用求和公式即可求出答案.【解答】解:数列 的首项是1,公差为2的等差数列;数列 的首项是1,公差为3的等差数列;公共项构成首项为1 ,公差为6的等差数列;故 的前n 项和S n 为:.故答案为232.n n − 12.(2020·新高考I 卷 第18题)已知公比大于1的等比数列{}n a 满足24320,8.a a a +== (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m N ∈中的项的个数,求数列{}m b 的前100项和100.S【答案】解:(1)设等比数列的公比为q ,且1q >,2420a a += ,38a =,,解得舍)或,∴数列{}n a 的通项公式为2;n n a =(2)由(1)知12a =,24a =,38a =,416a =,532a =,664a =,7128a =,{21}n −{32}n −{}n a则当1m =时,10b =,当2m =时,21b =,以此类推,31b =,45672b b b b ====, 815...3b b ===,1631...4b b ===,3263...5b b ===,64100...6b b ===,10012100...S b b b ∴=+++0122438416532637480.=+×+×+×+×+×+×=【解析】本题考查了数列求和及等比数列通项公式,属中档题.(1)根据等比数列通项公式列出方程,求出首项和公比,即可求出通项公式;(2)根据等比数列通项公式,归纳数列{}m b 的规律,从而求出其前100项和.13.(2020·新高考II 卷 第18题)已知公比大于1的等比数列{}n a 满足2420a a +=,38.a = (1)求{}n a 的通项公式;(2)求1223a a a a −+…11(1).n n n a a −++−【答案】解:(1)设等比数列{}n a 的公比为(1)q q >,则32411231208a a a q a q a a q +=+= ==, 1q > ,122a q = ∴ =, 1222.n n n a −∴=⋅=1223(2)a a a a −+…11(1)n n n a a −++−35792222=−+−+…121(1)2n n −++−⋅,322322[1(2)]82(1).1(2)55n n n +−−==−−−− 【解析】本题考查等比数列的通项公式,前n 项求和公式,考查转化思想和方程思想,属于基础题.(1)根据题意,列方程组32411231208a a a q a q a a q +=+= ==,解得1a 和q ,然后求出{}n a 的通项公式; (2)根据条件,可知12a a ,23a a −,…11(1)n n n a a −+−,是以32为首项,22−为公比的等比数列,由等比数列求和公式,即可得出答案.。

历年(2020-2023)全国高考数学真题分类(数列)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(数列)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(数列)汇编【2023年真题】1. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件2. (2023·新课标II 卷 第8题) 记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S = ( ) A. 120B. 85C. 85-D. 120-3. (2023·新课标I 卷 第20题)设等差数列{}n a 的公差为d ,且 1.d >令2n n n nb a +=,记n S ,n T 分别为数列{}{},n n a b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求.d4. (2023·新课标II 卷 第18题)已知为等差数列,,记n S ,n T 分别为数列,的前n 项和,432S =,316.T =(1)求的通项公式;(2)证明:当5n >时,n S .n T >【2022年真题】5.(2022·新高考I 卷 第17题)记n S 为数列{}n a 的前n 项和,已知11a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112.na a a +++< 6.(2022·新高考II 卷 第17题)已知{}n a 为等差数列,{}nb 为公比为2的等比数列,且223344.a b a b b a -=-=-(1)证明:11;a b =(2)求集合1{|,1500}k m k b a a m =+剟中元素个数.【2021年真题】7.(2021·新高考II 卷 第12题)(多选)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ ,则( ) A.()()2n n ωω=B. ()()231n n ωω+=+C. ()()8543n n ωω+=+D. ()21nn ω-=8.(2021·新高考I 卷 第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推.则对折4次共可以得到不同规格图形的种数为____________________;如果对折*()n n N ∈次,那么12n S S S ++= __________2dm . 9.(2021·新高考I 卷 第17题)已知数列{}n a 满足11a =,,记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; 求{}n a 的前20项和.(1)(2)10.(2021·新高考II 卷 第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35a S =,244.a a S =(1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.【2020年真题】11.(2020·新高考I 卷 第14题、II 卷 第15题)将数列{21}n -与{32}n -的公共项从小到大排列得到数列{n a },则{}n a 的前n 项和为__________.12.(2020·新高考I 卷 第18题)已知公比大于1的等比数列{}n a 满足24320,8.a a a +==(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m N ∈中的项的个数,求数列{}m b 的前100项和100.S13.(2020·新高考II 卷 第18题)已知公比大于1的等比数列{}n a 满足2420a a +=,38.a =(1)求{}n a 的通项公式;(2)求1223a a a a -+…11(1).n n n a a -++-参考答案1. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d , 则1(1)2n n n S na d -=+,111222n S n d d a d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}n Sn为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n 为等差数列,即甲是乙的充分条件.反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C . 2. (2023·新课标II 卷 第8题)解:2S ,42S S -,64S S -,86S S -成等比数列,242224264264262(1)55(21)521S S q S q S S S q S S q S S S⎧-=⎧+=-⎪-==+⇒⎨⎨-=⎩⎪=⎩从而计算可得24681,5,21,85S S S S =-=-=-=- 故选.C3. (2023·新课标I 卷 第20题)解:因为21333a a a =+,故3132d a a d ==+,即1a d =,故n a nd =,所以21n n n n b nd d++==,(1)2n n n d S +=,(3)2n n n T d +=,又3321S T +=,即34362122d d ⨯⨯+=,即22730d d -+=,故3d =或1(2d =舍), 故{}n a 的通项公式为:3.n a n =(2)方法一:(基本量法)若{}n b 为等差数列,则2132b b b =+,即11123123422a d a a d⨯⨯⨯⨯=+++,即2211320a a d d -+=,所以1a d =或12;a d =当1a d =时,n a nd =,1n n b d +=,故(1)2n n n d S +=,(3)2n n n T d+=,又999999S T -=, 即99100991029922d d ⋅⋅-=,即250510d d --=,所以5150d =或1(d =-舍); 当12a d =时,(1)n a n d =+,n n b d=,故(3)2n n n d S +=,(1)2n n n T d +=,又999999S T -=,即99102991009922d d ⋅⋅-=,即251500d d --=,所以50(51d =-舍)或1(d =舍); 综上:51.50d = 方法二:因为{}n a 为等差数列且公差为d ,所以可得1n a dn a d =+-,则211(1)n n n n nb dn a d dn a d++⋅==+-+- 解法一:因为{}n b 为等差数列,根据等差数列通项公式可知n b 与n 的关系满足一次函数,所以上式中的分母“1dn a d +-”需满足10a d -=或者11da d=-,即1a d =或者12;a d = 解法二:由211(1)n n n n nb dn a d dn a d ++⋅==+-+-可得,112b a =,216b a d =+,31122b a d =+,因为{}n b 为等差数列,所以满足1322b b b +=,即111212622a a d a d+=⋅++,两边同乘111()(2)a a d a d ++化简得2211320a a d d -+=,解得1a d =或者12;a d =因为{}n a ,{}n b 均为等差数列,所以995099S a =,995099T b =,则999999S T -=等价于50501a b -=, ①当1a d =时,n a dn =,1(1)n b n d =+,则505051501a b d d-=-=,得 250510(5051)(1)0d d d d --=⇒-+=,解得5150d =或者1d =-,因为1d >,所以51;50d =②当12a d =时,(1)n a d n =+,1n b n d =,则505050511a b d d-=-=,化简得 251500(5150)(1)0d d d d --=⇒+-=,解得5051d =-或者1d =,因为1d >,所以均不取; 综上所述,51.50d =4. (2023·新课标II 卷 第18题) 解:(1)设数列的公差为d ,由题意知:,即,解得52(1)2 3.n a n n ∴=+-=+(2)由(1)知23n a n =+,,212121n n b b n -+=+,当n 为偶数时,当n 为奇数时,22113735(1)(1)4(1)652222n n n T T b n n n n n ++=-=+++-+-=+-, ∴当n 为偶数且5n >时,即6n …时,22371(4)(1)022222n n n nT S n n n n n n -=+-+=-=->, 当n 为奇数且5n >时,即7n …时, 22351315(4)5(2)(5)0.22222n n T S n n n n n n n n -=+--+=--=+-> ∴当5n >时,n S .n T >5.(2022·新高考I 卷 第17题)解:1112(1)(1)33n n S S n n a a +=+-=,则23n n n S a +=①,1133n n n S a +++∴=②; 由②-①得:111322;33n n n n n a n n n a a a a n ++++++=-⇒=∴当2n …且*n N ∈时,13211221n n n n n a a a a aa a a a a ---=⋅⋅ 1543(1)(1)1232122n n n n n n n a n n +++=⋅⋅⋅=⇒=-- , 又11a =也符合上式,因此*(1)();2n n n a n N +=∈ 1211(2)2((1)1n a n n n n ==-++, 1211111111112(2(12122311n a a a n n n ∴+++=-+-++-=-<++ , 即原不等式成立.6.(2022·新高考II 卷 第17题) 解:(1)设等差数列{}n a 公差为d由2233a b a b -=-,知1111224a d b a d b +-=+-,故12d b = 由2244a b b a -=-,知111128(3)a d b b a d +-=-+,故11124(3);a d b d a d +-=-+故1112a d b d a +-=-,整理得11a b =,得证.(2)由(1)知1122d b a ==,由1k m b a a =+知:11112(1)k b a m d a -⋅=+-⋅+即111112(1)2k b b m b b -⋅=+-⋅+,即122k m -=,因为1500m 剟,故1221000k -剟,解得210k 剟, 故集合1{|,1500}k m k b a a m =+剟中元素的个数为9个. 7.(2021·新高考II 卷 第12题)(多选)解:对于A 选项,010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,, 则12101122222kk k k n a a a a +-=⋅+⋅++⋅+⋅ ,,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,,而0120212=⋅+⋅,则,即,B 选项错误;对于C 选项,34302340101852225121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 32k k a ++⋅,所以,,23201230101432223121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 22k k a ++⋅,所以,,因此,,C 选项正确;对于D 选项,01121222n n --=+++ ,故,D 选项正确.故选.ACD8.(2021·新高考I 卷 第16题)解:对折3次时,可以得到2.512dm dm ⨯,56dm dm ⨯,103dm dm ⨯,20 1.5dm dm ⨯四种规格的图形. 对折4次时,可以得到2.56dm dm ⨯,1.2512dm dm ⨯,53dm dm ⨯,10 1.5dm dm ⨯,200.75dm dm ⨯五种规格的图形.对折3次时面积之和23120S dm =,对折4次时面积之和2475S dm =,即12402120S ==⨯,2180360S ==⨯,3120430S ==⨯,475515S ==⨯,……得折叠次数每增加1,图形的规格数增加1,且()*12401,2nn S n n N ⎛⎫=+⨯∈ ⎪⎝⎭,121111240[234(1)]2482n n S S S n ∴++=⨯⨯+⨯+⨯++⋅+记231242n n n T +=+++ ,则112312482n n n T ++=+++ , 11111111(224822n n n n n n T T T ++-==++++-113113322222n n n n n ++++=--=-, 得332n nn T +=-,123240(3)2n n n S S S +∴++=⨯-, 故答案为5;3240(3).2n n +⨯-9.(2021·新高考I 卷 第17题)解:⑴12b a =,且21+1=2a a =,则1=2b , 24b a =,且4321215a a a =+=++=,则25b =;1222121213n n n n n b a a a b +++==+=++=+,可得13n n b b +-=,故{}n b 是以2为首项,3为公差的等差数列; 故()21331n b n n =+-⨯=-.数列{}n a 的前20项中偶数项的和为2418201210109=102+3=1552a a a ab b b ⨯++++=+++⨯⨯ , 又由题中条件有211a a =+,431a a =+, ,20191a a =+, 故可得n a 的前20项的和10.(2021·新高考II 卷 第17题)解:(1)由等差数列的性质可得:535S a =,则3335,0a a a =∴=, 设等差数列的公差为d ,从而有22433()()a a a d a d d =-+=-,412343333(2)()()2S a a a a a d a d a a d d =+++=-+-+++=-,从而22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:*3(3)26().n a a n d n n N =+-=-∈(2)由数列的通项公式可得1264a =-=-,则2(1)(4)252n n n S n n n -=⨯-+⨯=-, 则不等式n n S a >即2526n n n ->-,整理可得(1)(6)0n n -->, 解得1n <或6n >,又n 为正整数,故n 的最小值为7.(2)11.(2020·新高考I 卷 第14题、II 卷 第15题)解:数列 的首项是1,公差为2的等差数列; 数列 的首项是1,公差为3的等差数列; 公共项构成首项为1 ,公差为6的等差数列; 故 的前n 项和S n 为: .故答案为232.n n -12.(2020·新高考I 卷 第18题)解:(1)设等比数列的公比为q ,且1q >,2420a a += ,38a =,,解得舍)或,∴数列{}n a 的通项公式为2;n n a =(2)由(1)知12a =,24a =,38a =,416a =,532a =,664a =,7128a =,则当1m =时,10b =,当2m =时,21b =, 以此类推,31b =,45672b b b b ====,815...3b b ===,1631...4b b ===, 3263...5b b ===,64100...6b b ===, 10012100...S b b b ∴=+++0122438416532637480.=+⨯+⨯+⨯+⨯+⨯+⨯=13.(2020·新高考II 卷 第18题)解:(1)设等比数列{}n a 的公比为(1)q q >,则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, {21}n -{32}n -{}n a1q > ,122a q =⎧∴⎨=⎩, 1222.n n n a -∴=⋅=1223(2)a a a a -+…11(1)n n n a a -++- 35792222=-+-+…121(1)2n n -++-⋅,322322[1(2)]82(1).1(2)55n n n +--==----。

近三年数列高考真题(带解析)

近三年数列高考真题(带解析)

近三年数列高考真题(带解析)1.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .2.设等比数列{an }满足124a a +=,318a a -=. (1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m . 3.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.4.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.5.记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列.6.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 7.已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.8.已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-. (1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.9.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.10.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.参考答案:1.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n ∈N ,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n+++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n n n na a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+. [方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n n x x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.2.(1)13n n a -=;(2)6m =.【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13n n a -=;(2)令313log log 31n n n b a n -===-, 所以(01)(1)22n n n n n S +--==, 根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.3.(1)2-;(2)1(13)(2)9nn n S -+-=. 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论; (2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题. 4.(1)26n a n =-;(2)7.【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-+++=-,从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用. 5.证明见解析.【分析】的公差d ,进一步写出的通项,从而求出{}n a 的通项公式,最终得证.【详解】∵数列是等差数列,设公差为d(n -=()n *∈N ∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列.【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况. 6.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n nn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁. (2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法, 方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=, 则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.8.(1)证明见解析;(2)9.【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出;(2)根据题意化简可得22k m -=,即可解出.【详解】(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112d b a ==,所以原命题得证. (2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k =,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.9.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221n n S n a n+=+,即222n n S n na n +=+①, 当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<=. 则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10.(1)()12n n n a +=(2)见解析【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得. 【详解】(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=, ∴()()112133n n n n n n a n a a S S --++=-=-, 整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦。

2023年全国各省份高考数学真题数列汇总

2023年全国各省份高考数学真题数列汇总

2023年全国各省份高考数学真题数列汇总一、单选题二、填空题8.(2023年全国乙卷(理数)第15题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.9.(2023年全国甲卷(文数)第13题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.10.(2023年北京卷第14题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =___________;数列{}n a 所有项的和为____________.三、解答题15.(2023年北京卷第21题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.16.(2023年天津卷第19题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和1212n n ii a --=∑.(2)已知{}n b 为等比数列,对于任意*N k ∈,若1221k k n -≤≤-,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及其前n 项和.a-【详解】由题意可得:当1n =时,2122a a =+,即1122a q a =+,①当2n =时,()31222a a a =++,即()211122a q a a q =++,②联立①②可得12,3a q ==,则34154a a q ==.故选:C.二、填空题三、解答题为奇数反证:假设满足11n n r r +->的最小正整数为11j m ≤≤-,当i j ≥时,则12i i r r +-≥;当1i j ≤-时,则11i i r r +-=,则()()()112100m m m m m r r r r r r r r ---=-+-+⋅⋅⋅+-+()22m j j m j ≥-+=-,又因为11j m ≤≤-,则()2211m r m j m m m m ≥-≥--=+>,假设不成立,故11n n r r +-=,即数列{}n r 是以首项为1,公差为1的等差数列,所以01,n r n n n =+⨯=∈N .(3)(ⅰ)若mmA B ≥,构建,1n n n r S A B n m =-≤≤,由题意可得:0n S ≥,且n S 为整数,反证,假设存在正整数K ,使得K S m ≥,则1,0K K K r K r A B m A B +-≥-<,可得()()111K K K K K r r r K r K r b B B A B A B m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≤-.①若存在正整数N ,使得0N N N r S A B =-=,即N Nr A B =,可取0,,N r p q N s r ====,使得p s q r B B A A +=+;②若不存在正整数N ,使得0NS =,因为{}1,2,1n S m m ∈⋅⋅⋅-,且1n m ≤≤,所以必存在1X Y m ≤<≤,使得X Y S S =,即X Y X r Y r A B A B -=-,可得Y X X r Y r A B A B +=+,可取,,,Y X p X s r q Y r r ====,使得p s q r B B A A +=+;(ⅱ)若m m A B <,构建,1n n r n S B A n m =-≤≤,由题意可得:0n S ≤,且n S 为整数,反证,假设存在正整数K ,使得K S m ≤-,则1,0K K r K r K B A m B A +-≤-->,可得()()111K K K K K r r r r K r K b B B B A B A m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≥-.①若存在正整数N ,使得0N N r N S B A =-=,即N Nr A B =,可取0,,N r p q N s r ====,使得p s q r B B A A +=+;②若不存在正整数N ,使得0NS =,因为{}1,2,,1n S m ∈--⋅⋅⋅-,且1n m ≤≤,。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 数列大题(原卷版及解析版)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 数列大题(原卷版及解析版)
6.(2018年高考数学课标Ⅲ卷(理))(12分)等比数列 中, ,
(1)求 的通项公式;
(2)记 为 的前 项和,若 ,求 .
(1) 或 ;(2)
【答案】【官方解析】(1)设 的公比为 ,由题设得
由已知得 ,解得 (舍去), 或
故 或
(2)若 ,则 ,由 ,得 ,此方和没有正整数解
若 ,则 ,由 ,得 ,解得
【答案】解析:(1)设 的公差为 ,由题意得 .
由 得 ,所以 的通项公式为 .
(2)由(1)得 .
所以当 时, 取得最小值,最小值为 .
8.(2016高考数学课标Ⅲ卷理科)已知数列 的前 项和 ,其中 .
(Ⅰ)证明 是等比数列,并求其通项公式;
(Ⅱ)若 ,求 .
【答案】(Ⅰ) ;(Ⅱ) .
【解析】(Ⅰ)由题意得 ,故 , , .
所以数列 是以 为首项,以 为公差等差数列;
(2)由(1)可得,数列 是以 为首项,以 为公差的等差数列,
,
,
当n=1时, ,
当n≥2时, ,显然对于n=1不成立,
∴ .
【点睛】本题考查等差数列的证明,考查数列的前n项和与项的关系,数列的前n项积与项的关系,其中由 ,得到 ,进而得到 是关键一步;要熟练掌握前n项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.
【解析】(1)设 的公比为 , 为 的等差中项,


(2)设 前 项和为 , ,
,①
,②
① ②得,


【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。

历年高考理科数列真题汇编含答案解析

历年高考理科数列真题汇编含答案解析

高考数列选择题部分(2016全国I )(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97(2016上海)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a(2016四川)5. 【题设】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年 (B )2019年 (C )2020年 (D )2021年 (2016天津)(5)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件(2016浙江)6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}n S 是等差数列C .{}n d 是等差数列D .2{}n d 是等差数列1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( )A 、-1B 、0C 、1D 、62.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .93.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a -->4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>1.【2014年重庆卷(理02)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列2.【2014年全国大纲卷(10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .35.【2014年福建卷(理03)】等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14高考数列填空题部分(2016全国I )(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .(2016上海)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.(2016北京)12.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..(2016江苏)8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .(2016浙江)13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .5.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .6.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.7.【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += .8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 .9.【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为3.【2014年广东卷(理13)】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= 。

(完整)历年数列高考题(汇编)答案,推荐文档

(完整)历年数列高考题(汇编)答案,推荐文档

n
3
26
3
4
9
a>0,故 q 1 。
3
1
1
由2a1 3a2
1得2a1
3a2q
1
,所以
a1 3 。故数列{an}的通项式为
an=

3n
(Ⅱ ) bn log1 a1 log1 a1... log1 a1
(1 2 ... n) n(n 1)
2
1
2
11

2( )
bn n(n 1)
1.S
1 3
(1
1 3n
)
1
31n
,
n
() 33
3n n
1 1
2
3
所以
Sn
1
an , 2
(Ⅱ) bn log3 a1 log3 a2 log3 an
n(n 1)
所以{bn }的通项公式为bn
. 2
n(n 1) (1 2 ....... n)
2
2、(2011 全国新课标卷理)
{a1 9
解得 d 2
数列{an}的通项公式为 an=11-2n。 ...................................................6 分
专业整理
word 格式文档
n(n 1)
(2)由(1) 知 Sn=na1+
d=10n-n2。
2
因为 Sn=-(n-5)2+25.
a1 d 0, 解:(I)设等差数列{an } 的公差为 d,由已知条件可得2a1 12d 10,
a1 1,
解得 d
1.
故数列{an } 的通项公式为 an 2 n. ………………5 分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考试题汇编 — 数列1.(1994全国理,12)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A.130B.170C.210D.260答案:C解法一:由题意得方程组⎪⎪⎩⎪⎪⎨⎧=-+=-+1002)12(22302)1(11d m m ma d m m ma 视m 为已知数,解得212)2(10,40m m a m d +== ∴210402)13(3)2(1032)13(3322113=-++=-+=m m m m m m d m ma ma S m解法二:设前m 项的和为b 1,第m +1到2m 项之和为b 2,第2m +1到3m 项之和为b 3,则b 1,b 2,b 3也成等差数列.于是b 1=30,b 2=100-30=70,公差d =70-30=40. ∴b 3=b 2+d =70+40=110∴前3m 项之和S 3m =b 1+b 2+b 3=210.解法三:取m =1,则a 1=S 1=30,a 2=S 2-S 1=70,从而d =a 2-a 1=40. 于是a 3=a 2+d =70+40=110.∴S 3=a 1+a 2+a 3=210.评述:本题考查等差数列的基本知识,及灵活运用等差数列解决问题的能力,解法二中是利用构造新数列研究问题,等比数列也有类似性质.解法三中,从题给选择支获得的信息可知,对任意变化的自然数m ,题给数列前3m 项的和是与m 无关的不变量,在含有某种变化过程的数学问题,利用不变量的思想求解,立竿见影.2.(1994全国理,15)某种细菌在培养过程中,每20分钟分裂一次(一个分裂二个)经过3小时,这种细菌由1个可以繁殖成()A.511个B.512个C.1023个D.1024个答案:B 解析:由题意知细菌繁殖过程中是一个公比为2的等比数列,所以a10=a1q9=29=512.评述:该题作为数学应用题,又是选择题,问题的实际背景虽然简单,考查的知识点也集中明确,但也有一定的深刻性.解决本题,应搞清题意,应求的是a9的值,而不是求和.从题型设计的角度,本题的立意、取材和构题都是不错的.3.(1994上海,20)某个命题与自然数n有关,若n=k(k∈N)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=5时,该命题不成立,那么可推得()A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立答案:C 解析:因为当n=k时,命题成立可推出n=k+1时成立,所以n=5时命题不成立,则n=4时,命题也一定不成立,故应当选C.4.(1994全国文,25)设数列{a n}的前n项和为S n,若对于所有的正整数n,都有S n =2)(1naan.证明:{a n}是等差数列.解:证法一:令d=a2-a1,下面用数学归纳法证明a n=a1+(n-1)d(n∈N*)①当n=1时,上述等式为恒等式a1=a1,当n=2时,a1+(2-1)d=a1+(a2-a1)=a2,等式成立.②假设当n=k(k∈N,k≥2)时命题成立,即a k=a1+(k-1)d由题设,有2))(1(,2)(1111++++=+=k k k k a a k S a a k S , 又S k +1=S k +a k +1,所以2)(2))(1(111k k a a k a a k +=++++a k +1将a k =a 1+(k -1)d 代入上式,得(k +1)(a 1+a k +1)=2ka 1+k (k -1)d +2a k +1 整理得(k -1)a k +1=(k -1)a 1+k (k -1)d ∵k ≥2,∴a k +1=a 1+[(k +1)-1]d . 即n =k +1时等式成立.由①和②,等式对所有的自然数n 成立,从而{a n }是等差数列. 证法二:当n ≥2时,由题设,2)(,2))(1(1111n n n n a a n S a a n S +=+-=--所以2))(1(2)(11211--+--+=-=n n n n a a n a a n S S a 同理有2)(2))(1(1111n n n a a n a a n a +-++=++从而2))(1()(2))(1(111111-+++-++-++=-n n n n n a a n a a n a a n a a整理得:a n +1-a n =a n -a n -1,对任意n ≥2成立. 从而{a n }是等差数列.评述:本题考查等差数列的基础知识,数学归纳法及推理论证能力,教材中是由等差数列的通项公式推出数列的求和公式,本题逆向思维,由数列的求和公式去推数列的通项公式,有一定的难度.考生失误的主要原因是知道用数学归纳法证,却不知用数学归纳法证什么,这里需要把数列成等差数列这一文字语言,转化为数列通项公式是a n =a 1+(n -1)d 这一数学符号语言.证法二需要一定的技巧.5.(1994全国理,25)设{a n }是正数组成的数列,其前n 项和为S n ,并且对所有自然数n ,a n 与2的等差中项等于S n 与2的等比中项.(Ⅰ)写出数列{a n }的前三项;(Ⅱ)求数列{a n }的通项公式(写出推证过程); (Ⅲ)令b n =⎪⎪⎭⎫⎝⎛+++1121n n n n a a a a (n ∈N *),求∞→n lim (b 1+b 2+…+b n -n ). 解:(Ⅰ)由题意n n S a 222=+,a n >0令n =1时,11222S a =+ S 1=a 1 解得a 1=2,令n =2时有22222S a =+ S 2=a 1+a 2 解得a 2=6,令n =3时有33222S a =+ S 3=a 1+a 2+a 3 解得a 3=10 故该数列的前三项为2、6、10.(Ⅱ)解法一:由(Ⅰ)猜想数列{a n }有通项公式a n =4n -2,下面用数学归纳法证明数列{a n }的通项公式是a n =4n -2 (n ∈N *)1°当n =1时,因为4×1-2=2,又在(Ⅰ)中已求得a 1=2,所以上述结论正确. 2°假设n =k 时,结论正确,即有a k =4k -2 由题意有k k S a 222=+ 得a k =4k -2,代入上式得2k =k S 2,解得S k =2k 2 由题意有11222++=+k k S a S k +1=S k +a k +1 得S k =2k 2代入得(221++k a )2=2(a k +1+2k 2) 整理a k +12-4a k +1+4-16k 2=0由于a k +1>0,解得:a k +1=2+4k 所以a k +1=2+4k =4(k +1)-2 这就是说n =k +1时,上述结论成立.根据1°,2°上述结论对所有自然数n 成立. 解法二:由题意有,n n S a 222=+(n ∈N *) 整理得S n =81(a n +2)2 由此得S n +1=81(a n +1+2)2所以a n +1=S n +1-S n =81[(a n +1+2)2-(a n +2)2] 整理得(a n +1+a n )(a n +1-a n -4)=0 由题意知a n +1+a n ≠0,所以a n +1-a n =4即数列{a n }为等差数列,其中a 1=2,公差d =4, 所以a n =a 1+(n -1)d =2+4(n -1) 即通项公式a n =4n -2. (Ⅲ)令c n =b n -1, 则⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+=++11212112122122111n n n n a a a a c n nn n n 121121+--=n n b 1+b 2+…+b n -n =c 1+c 2+…+c n =12111211215131311+-=⎪⎭⎫⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-n n n 所以⎪⎭⎫⎝⎛+-=-+++∞→∞→1211lim )(lim 21n n b b b n n n =1.评述:该题的解题思路是从所给条件出发,通过观察、试验、分析、归纳、概括、猜想出一般规律,然后再对归纳、猜想的结论进行证明.对于含自然数n 的命题,可以考虑用数学归纳法进行证明,该题着重考查了归纳、概括和数学变换的能力.7.(1994上海,26)已知数列{a n }满足条件:a 1=1,a 2=r (r >0)且{a n ·a n +1}是公比为q (q >0)的等比数列,设b n =a 2n -1+a 2n (n =1,2,…)(Ⅰ)求出使不等式a n a n +1+a n +1a n +2>a n +2a n +2(n ∈N *)成立的q 的取值范围; (Ⅱ)求b n 和nn S 1lim∞→,其中S n =b 1+b 2+…+b n ; (Ⅲ)设r =219.2-1,q =21,求数列{nn b b 212log log +}的最大项和最小项的值. 解:(Ⅰ)由题意得rq n -1+rq n >rq n +1 由题设r >0,q >0,故上式q 2-q -1<0 所以251251+<<-q , 由于q >0,故0<q <251+ (Ⅱ)因为q a a a a a a nn n n n n ==++++2121所以nn n n n n n n n n a a qa q a a a a ab b 21221221222121++=++=---+++=q ≠0 b 1=1+r ≠0,所以{b n }是首项为1+r ,公比为q 的等比数列, 从而b n =(1+r )q n -1 当q =1时,S n =n (1+r )0)1(1lim 1lim=+=∞→∞→r n S n nn当0<q <1时,S n =qq r n --+1)1)(1(r qq r q S n n nn +-=-+-=∞→∞→11)1)(1(1lim 1lim当q >1时,S n =1)1)(1(--+q q r n 01lim =∞→n n S综上所述 ⎪⎩⎪⎨⎧≥<<+-=∞→)1( 0)10( 111l i m q q r qS n n(Ⅲ)由(Ⅱ)知b n =(1+r )q n -1q n r qn r q r q r b b c n n n n n 2222122212log )1()1(log log )1(log ])1[(log ])1[(log log log -++++=++==-+ 2.2011-+=n从上式可知当n -20.2>0时n ≥21(n ∈N )时,c n 随n 的增大而减小,故1<c n <c 21=1+8.0112.20211+=-=2.25①当n -20.2<0,即n ≤20(n ∈N )时,c n 也随着n 的增大而减小,故 1>c n >c 20=1+42.0112.20201-=-=-②综合①、②两式知对任意的自然数n 有c 20≤c n ≤c 21 故{c n }的最大项c 21=2.25,最小项c 20=-4.评述:本题主要考查等比数列、对数、不等式等基础知识,推理能力以及分解问题和解决问题的能力.一九九五年高考1.(1995全国,12)等差数列{a n },{b n }的前n 项和分别为S n 与T n ,若132+=n nT S n n ,则nnn b a ∞→lim 等于( ) A.1B.36C.32D.94 答案:C解法一:应用等差数列中,若m +n =p +q ,有a m +a n =a p +a q 这条性质来解.26241)12(3)12(22)12)((2)12)((221212121121121121--=+--==-+-+=++==------n n n n T S n b b n a a b b a a b a b a n n n n n n n n n n ,所以3264lim==∞→nn n b a 解法二:设数列{a n }的首项为a 1,公差为d ,{b n }的首项为b 1,公差为m ,则132)1(2)1(211+=-+-+=n nm n b d n a T S n n 注意n 是极限中的变量有32132lim )1(2)1(2lim )1()1(lim lim1111=+=-+-+=-+-+=∞→∞→∞→∞→n n m n b d n a m n b d n a b a n n n n n n . 解法三:∵nn n T S n n +=2232 ∴不妨令S n =2n 2,T n =3n 2+n∴a n =S n -S n -1=2n 2-2(n -1)2=4n -2(n =1时成立),b n =T n -T n -1=6n -2(n =1成立)∴32lim=∞→nn n b a 评述:该题的形式新颖,其考查目的也明确,正确解答,可考查其数学能力,要是在题型的选用上,采用解答题的形式,那将是一道十分理想的中等难度的试题.可是作为选择题,其考查的有效性大打折扣,因为有相当一部分考生,并没有用正确的方法却也得出了正确答案C.2.(1995上海)若∞→n lim [1+(r +1)n ]=1,则r 的取值范围是_____.答案:-2<r <0解析:∵∞→n lim 1=1,又∵∞→n lim [1+(r +1)n ]=1,∴∞→n lim {[1+(r +1)n ]-}=1-1=0,即∞→n lim (r +1)n =0.则-1<r +1<1,因此-2<r <0.3.(1995上海)∞→n lim (1+n1)n -2=_____. 答案:e解析:e e nn n n n nn n n n n n n n ==+=+=+-∞→-∞→-∞→∞→12lim 22])11(lim [])11[(lim )11(lim .4.(1995上海,12)已知lo g 3x =3log 12-,那么x +x 2+x 3+…+x n +…=_____. 答案:1解析:lo g 3x =3log 12-=-lo g 32=lo g 321,故x =21, 于是x +x 2+x 3+…+x n +…=1211211=-=-x x.5.(1995上海理,11)1992年底世界人口达54.8亿,若人口的年平均增长率为x %,2000年底世界人口数为y (亿),那么y 与x 的函数关系式是_____.答案:y =54.8(1+x %)8解析:因为y 1=54.8,y 2=54.8(1+x %),y 3=54.8(1+x %)2 从1992年底到2000年底共经过8年,因此有:y =54.8(1+x %)86.(1995全国理,25)设{a n }是由正数组成的等比数列,S n 是前n 项和. (Ⅰ)证明:2lg lg 2++n n S S <l gS n +1;(Ⅱ)是否存在常数C >0使得2)lg()lg(2C S C S n n -+-+=l g (S n +1-C )成立?并证明你的结论.(Ⅰ)证明:设{a n }的公比为q ,由题设知a 1>0,q >0 (ⅰ)当q =1时,S n =a 1n ,从而S n S n +2-S n +12=a 1n (n +2)a 1-(n +1)2a 12=-a 12<0(ⅱ)当q ≠1时,S n =21)1()1(q q a n --,从而 S n S n +2-S n +12=221212221)1()1()1()1)(1(q q a q q q a n n n ------++=-a 12q n<0 由(ⅰ)和(ⅱ)得S n S n +2<S n +12根据对数函数的单调性知l g (S n S n +2)<l gS n +12 即2lg lg 2++n n S S <l gS n +1.(Ⅱ)解:不存在. 证法一:要使2)lg()lg(2C S C S n n -+-+=l g (S n +1-C )成立,则有⎩⎨⎧>--=--++0)())((212C S C S C S C S n n n n分两种情况讨论: (ⅰ)当q =1时,(S n -C )(S n +2-C )-(S n +1-C )2=(a 1n -C )[a 1(n +2)-C ]-[a 1(n +1)-C ]2 =-a 12<0可知,不满足条件①,即不存在常数C >0,使结论成立. (ⅱ)当q ≠1时,(S n -C )(S n +2-C )-(S n +1-C )2)]1([1)1(1)1(1)1(11211211q C a q a C q q a C q q a C q q a n n n n ---=⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡---=++ 因a 1q n ≠0,若条件①成立,故只能是a 1-C (1-q )=0,即C =qa -11,此时因为C >0,a 1>0,所以0<q <1,但是0<q <1时,S n -qq a q a n--=-1111<0,不满足条件②,即不存在常数C >0,使结论成立.综合(ⅰ)、(ⅱ),同时满足条件①,②的常数C >0不存在,即不存在常数C >0, 使2)lg()lg(2C S C S n n -+-+=l g (S n +1-C )证法二:用反证法,假设存在常数C >0,使)lg (2)lg ()lg (12C S C S C S n n n -=-+-++则有⎪⎪⎩⎪⎪⎨⎧-=-->->->-++++1221())((000C S C S C S C S C S C S n n n n n n 由④得S n S n +2-S n +12=C (S n +S n +2-2S n +1 ⑤ 根据平均值不等式及①、②、③、④知S n +S n +2-2S n +1=(S n -C )+(S n +2-C )-2(S n +1-C ) ≥))((22C S C S n n --+-2(S n +1-C )=0因为C >0,故⑤式右端非负,而由(Ⅰ)知,⑤式左端小于零,矛盾, 故不存在常数C <0,使2)lg()lg(2C S C S n n -+-+=l g (S n +1-C ).评述:本题为综合题,以数列为核心知识,在考查等比数列基本知识的同时,考查不等式的证明和解方程,兼考对数的运算法则和对数函数的单调性,并且多角度、多层次考查数学思想方法的灵活、恰当的运用,提高对数学能力的考查要求.该题的解答方法很多,表明该题能较好考查灵活综合运用数学知识的能力.第(Ⅰ)问侧重知识和基本技能的考查,第(Ⅱ)问则把考查的重心放在能力要求上.对思维的逻辑性、周密性和深刻性;运算的合理性、准确性;应用的灵活性、有效性等,该题都涉及到了,是一道突出能力考查的好试题.一九九六年高考1.(1996全国理,10)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若3231510=S S ,则∞→n lim S n 等于( )A.32B.-32 C.2 D.-2答案:B解析:323113231)1()1()1)(1(3231551101510=+⇒=----⇒=q q a q q q a S S 213215-=⇒-=⇒q q ,又a 1=-1,故322111lim 1-=+-=-=∞→q a S n n ,故选B.评述:本题主要考查等比数列前n 项和求和公式的灵活运用,较好地考查了基本知识以及思维的灵活性.2.(1996全国文,21)设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q .解:若q =1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1.因a 1≠0,得S 3+S 6≠2S 9,显然q =1与题设矛盾,故q ≠1.由S 3+S 6=2S 9,得qq a q q a q q a --=--+--1)1(21)1(1)1(916131,整理得q 3(2q 6-q 3-1)=0,由q ≠0,得2q 6-q 3-1=0,从而(2q 3+1)(q 3-1)=0,因q 3≠1,故q 3=-21,所以q = -243.3.(1996上海,24)设A n 为数列{a n }的前n 项和,A n =23(a n -1)(n ∈N *),数列{b n }的通项公式为b n =4n +3(n ∈N ).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若d ∈{a 1,a 2,a 3,…,a n ,…}∩{b 1,b 2,b 3,…,b n ,…},则称d 为数列{a n }与{b n }的公共项,将数列{a n }{b n }的公共项,按它们在原数列中的先后顺序排成一个新的数列{d n },证明数列{d n }的通项公式为d n =32n +1(n ∈N *);(Ⅲ)设数列{d n }中第n 项是数列{b n }中的第r 项,B r 为数列{b n }的前r 项的和,D n 为数列{d n }的前n 项和,T n =B r +D n ,求4)(limnnn a T ∞→.解:(Ⅰ)由已知A n =23(a n -1)(n ∈N ),当n =1时,a 1=23(a 1-1), 解得a 1=3,当n ≥2时,a n =A n -A n -1=23(a n -a n -1),由此解得a n =3a n -1, 即1-n na a =3(n ≥2). 所以数列{a n }是首项为3,公比为3的等比数列,故a n =3n (n ∈N *); (Ⅱ)证明:由计算可知a 1,a 2不是数列{b n }中的项, 因为a 3=27=4×6+3,所以d 1=27是数列{b n }中的第6项 设a k =3k 是数列{b n }中的第n 项,则3k =4m +3(k ,m ∈N ), 因为a k +1=3k +1=3·3k =3(4m +3)=4(3m +2)+1, 所以a k +1不是数列{b n }中的项.而a k +2=3k +2=9·3k =9(4m +3)=4(9m +6)+3, 所以a k +2是数列{b n }中的项由以上讨论可知d 1=a 3,d 2=a 5,d 3=a 7,…,d n =a 2n +1 所以数列{d n }的通项公式是d n =a 2n +1=32n +1(n ∈N *)(Ⅲ)解:由题意,32n +1=4r +3,所以r =4343312=-+n (32n -1)易知8)37)(13(32)(1221++-=+=n n r r b b r B 8631539,8)13(271)1(2421+⋅-⋅=-=-=--=nnn r n n n n D B T q q d D∴8938631539lim )(lim 4244=⋅+⋅-⋅=∞→∞→n n n n nn n a T一九九七年高考1.(1997上海文,6)设f (n )=1+1313121-+++n (n ∈N ),那么f (n +1)- f (n )等于( )A.231+n B.13131++n n C.231131+++n nD.23113131++++n n n 答案:D解析:∵f (n )=1+1313121-+++n ∴f (n +1)=2311313113131211+++++-++++n n n n ∴f (n +1)-f (n )=23113131++++n n n 2.(1997上海理,6)设f (n )=nn n n 21312111+++++++ (n ∈N ),那么 f (n +1)-f (n )等于( )A.121+n B. 221+n C.221121+++n nD.221121+-+n n 答案:D解析:f (n )为n 个连续自然数的倒数之和 f (n +1)=221121213121+++++++++n n n n n ∴f (n +1)-f (n )=22112111221121+-+=+-+++n n n n n . 3.(1997上海)设0<a <b ,则nn nn b a b -∞→4lim =_____.答案:-4解析:414]1)[(lim 4lim 1)(4lim 4lim -=-=-=-=-∞→∞→∞→∞→n n n n n n n n n b ab a b4.(1997上海)n n n2)21(lim -∞→-=_____.答案:e 4解析:4422})]2(1{[lim )21(lim e nn nn n n =-+=--∞→-∞→.5.(1997全国理,21)已知数列{a n }{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q ,且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求1lim -∞→n nn S S .解:1)1(1)1(11--+--=q q b p p a S n n n )1)(1()1)(1()1)(1()1)(1(1111111--+----+--=---n n n n n n q p b p q a q p b p q a S S 分两种情况讨论(1)当p >1时,因p >q >0,则1>pq>0,所以 )]1)(1()11)(1([)]1)(1()11)(1([lim lim 1111111111-----∞→-∞→--+----+--=n n n n n n n n n nn n nn pp q p b p q a p pp q p b p q a p S S pq a q a p pp q p b p q a pp q p b p q a p n n n n n n n =--⋅=--+----+--=---∞→)1()1(]1))[(1()11)(1(]1))[(1()11)(1(lim11111111(2)当p <1时,因p >q >0,则1>p >q >01)1()1()1()1()1)(1()1)(1()1)(1()1)(1(lim lim 11111111111=--------=--+----+--=--∞→-∞→p b q a p b q a q p b p q a q p b p q a S S n n n n n n n n .评述:该题考查了数列、极限的有关知识和分类讨论的思想,考查了学生解决问题的能力,知识、方法、基本计算能力要求较高.6.(1997全国文,21)设S n 是等差数列{a n }前n 项的和,已知31S 3与41S 4的等比中项为4354131,51S S S 与的等差中项为1,求等差数列{a n }的通项a n .解:设等差数列{a n }的首项为a ,公差为d ,则a n =a +(n -1)d , 前n 项和为S n =na +2)1(dn n -, 由题意得⎪⎪⎩⎪⎪⎨⎧=+=⋅,24131,)51(4131432543S S S S S 其中S 5≠0. 于是得⎪⎪⎩⎪⎪⎨⎧=⨯++⨯+⨯+=⨯+⨯⨯+.2)2344(41)2233(31,)2455(251)2344(41)2233(312d a d a d a d a d a 整理得⎪⎩⎪⎨⎧=+=+,2252.0532d a d ad 解得⎪⎩⎪⎨⎧=-=⎩⎨⎧==.4,512;1,0a d a d 由此得a n =1;或a n =4-512(n -1)=532-512n . 经验证a n =1时,S 5=5,或a n =5121532-n 时,S 5=-4,均适合题意.故所求数列通项公式为a n =1,或a n =5121532-n . 评述:该题考查了数列的有关基本知识及代数运算能力,思路明显,运算较基本. 8.(1997上海理,22)设数列{a n }的首项a 1=1,前n 项和S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…) (1)求证:数列{a n }是等比数列;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f (11-n b )(n =2,3,4,…),求数列{b n }的通项b n ;(3)求和:b 1b 2-b 2b 3+b 3b 4-b 4b 5…+b 2n -1b 2n -b 2n b 2n +1. 解:(1)由a 1=S 1=1,S 2=1+a 2,得a 2=tta a t t 323,32312+=+ 又3tS n -(2t +3)S n -1=3t①3tS n -1-(2t +3)S n -2=3t ② ①-②得3ta n -(2t +3)a n -1=0 ∴tt a a n n 3321+=-,(n =2,3,…) 所以{a n }是一个首项为1,公比为tt 332+的等比数列. (2)由f (t )=tt t 132332+=+,得b n =f 32)1(1=-n b +b n -1.∴{b n }是一个首项为1,公差为32的等差数列. ∴b n =1+32(n -1)=312+n (3)由b n =312+n ,可知{b 2n -1}和{b 2n }是首项分别为1和35,公差均为34的等差数列于是b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1=b 2(b 1-b 3)+b 4(b 3-b 5)+b 6(b 5-b 7)+…+b 2n (b 2n -1+b 2n +1) =-34(b 2+b 4+…+b 2n )=-)31435(2134++n n =-94(2n 2+3n )一九九八年高考1.(1998全国文,15)等比数列{a n }的公比为-21,前n 项和S n 满足11lim a S n n =∞→,那么a 1的值为( )A.±3B.±23C.±2D.±26 答案:D解析:1111lima q a n =-∞→,∴a 12=1-q ,∴a 12=23,∴a =±26.2.(1998全国理,15)在等比数列{a n }中,a 1>1,且前n 项和S n 满足11lim a S n n =∞→,那么a 1的取值范围是( )A.(1,+∞)B.(1,4)C.(1,2)D .(1,2)答案:D解析:由题意得:1111a q a =-且0<|q |<1 ∴-q =a 12-1 ∴0<|a 12-1|<1 又∵a 1>1 ∴1<a 1<2,故选D.评述:该题主要考查了无穷等比数列各项和公式的应用,挖掘了公式成立的条件. 3.(1998上海文、理,10)在数列{a n }和{b n }中,a 1=2,且对任意自然数n ,3a n +1-a n =0,b n 是a n 与a n +1的等差中项,则{b n }的各项和是_____.答案:2解析:b n =21++n n a a ,3a n +1=a n ∴b n =2a n +1,311=+n n a a ∴b 1+b 2+…+b n =2(a 1+a 2+…+a n )-2a 1∵{a n }是首项为2,公比为31的等比数列∴∞→n lim (b 1+b 2+…+b n )=∞→n lim [2(a 1+a 2+…+a n )-2a 1]=2×3112--2×2=2.4.(1998全国理,25)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (Ⅰ)求数列{b n }的通项b n ; (Ⅱ)设数列{a n }的通项a n =lo g a (1+nb 1)(其中a >0,且a ≠1),记S n 是数列{a n }的前n 项和.试比较S n 与31lo g a b n +1的大小,并证明你的结论.解:(Ⅰ)设数列{b n }的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=1452)110(1010111d b b 解得⎩⎨⎧==311d b ∴b n =3n -2 (Ⅱ)由S n =3n -2知)2311(log )411(log )11(log -++++++=n S a a a n3113log log 31)]2311()711)(411)(11[(log +=-++++=+n b n a n a a因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)…(1+231-n )与313+n 的大小.取n =1,有(1+1)>3113+⋅ 取n =2,有(1+1)(1+41)>3123+⋅, ……由此推测(1+1)(1+41)……(1+231-n )>313+n ① 若①式成立,则由对数函数性质可断定: 当a >1时,S n >31lo g a b n +1 当0<a <1时,S n <31lo g a b n +1. 下面用数学归纳法证明①式. (i )当n =1时已验证①式成立.(ii )假设当n =k (k ≥1)时,①式成立, 即(1+1)(1+41)……>-+)2311(k 313+k . 那么,当n =k +1时, (1+1)(1+41)……(1+231-k )·[1+2)1(31-+k ]>313+k (1+131+k ) =13133++k k (3k +2)∵2233333)13()13)(43()23()43()23(1313+++-+=+-⎥⎦⎤⎢⎣⎡+++k k k k k k k k 0)13(492>++=k k ∴13133++k k (3k +2)>331)1(343++=+k k因而(1+1)31)1(3)1311)(2311()411(++>++-++k k k 这就是说①式当n =k +1时也成立.由(i )(ii )知,①式对任何自然数n 都成立.由此证得: 当a >1时,S n >31lo g a b n +1当0<a <1时,S n <31lo g a b n +1评述:该题是综合题,主要考查等差数列、数学归纳法、对数函数的性质等基本知识,以及归纳猜想,等价转化和代数式恒等变形的能力,相比之下,对能力的考查,远远高于对知识的考查.5.(1998全国文,25)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=100. (Ⅰ)求数列{b n }的通项b n ; (Ⅱ)设数列{a n }的通项a n =l g (1+nb 1),记S n 是数列{a n }的前n 项和,试比较S n 与21l gb n +1的大小,并证明你的结论.解:(Ⅰ)设数列{b n }的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=.1002)110(1010,111d b b 解得⎩⎨⎧==.2,11d b ∴b n =2n -1.(Ⅱ)由b n =2n -1,知S n =l g (1+1)+l g (1+31)+…+l g (1+121-n ) =l g [(1+1)(1+31)…(1+121-n )],21l gb n +1=l g 12+n . 因此要比较S n 与21l gb n +1的大小,可先比较(1+1)(1+31)…(1+121-n )与12+n 的大小.取n =1,有(1+1)>112+⋅,取n =2,有(1+1)(1+31)>122+⋅,……由此推测(1+1)(1+31) (1)121-n )>12+n . ①若①式成立,则由对数函数性质可断定:S n >21l gb n +1. 下面用数学归纳法证明①式. (i )当n =1时已验证①式成立.(ii )假设当n =k (k ≥1)时,①式成立,即(1+1)(1+31)…(1+121-k )>12+k .那么,当n =k +1时,(1+1)(1+31) (1)121-k )[1+1)1(21-+k ]>12+k·(1+121+k )=1212++k k (2k +2). ∵[1212++k k (2k +2)]2-(32+k )2=012112)384(48422>+=+++-++k k k k k k ,∴.1)1(232)22(1212++=+>+=+k k k k k .因而 .1)1(2)1211)(1211()311)(11(++>++-+++k k k 这就是说①式当n =k +1时也成立.由(i ),(ii )知①式对任何正整数n 都成立. 由此证得:S n >21l gb n +1.6.(1998上海,22)若A n 和B n 分别表示数列{a n }和{b n }前n 项的和,对任意正整数n ,a n =-232+n ,4B n -12A n =13n . (1)求数列{b n }的通项公式;(2)设有抛物线列C 1,C 2,…,C n ,…抛物线C n (n ∈N *)的对称轴平行于y 轴,顶点为(a n ,b n ),且通过点D n (0,n 2+1),求点D n 且与抛物线C n 相切的直线斜率为k n ,求极限nn nn b a k k k +++∞→ 21lim.(3)设集合X={x |x =2a n ,n ∈N *},Y={y |y =4b n ,n ∈N *}.若等差数列{C n }的任一项C n∈X ∩Y ,C 1是X ∩Y 中的最大数,且-265<C 10<-125.求{C n }的通项公式.解:(1)∵a 1=-25,a n -a n -1=-123)1(2232-=+-++n n ∴数列{a n }是以-25为首项,-1为公差的等差数列.∴A n =2)4(2)23225(+-=+--n n n n由4B n -12A n =13n ,得B n =4116412132nn A n n +-=+ ∴b n =B n -B n -1=-4512+n (2)设抛物线C n 的方程为y =a (x +232+n )2-4512+n 即y =x 2+(2n +3)x +n 2+1∵y ′=2x +(2n +3),∴D n 处切线斜率k n =2n +3.∴31)453)(23(4lim lim 221=----+=+++∞→∞→n n n n b a k k k n nn n n (3)对任意n ∈N *,2a n =-2n -3,4b n =-12n -5=-2(6n +1)-3∈X ∴y ⊆X ,故可得X ∩Y =Y .∵c 1是X ∩Y 中最大的数,∴c 1=-17 设等差数列{c n }的公差为d ,则c 10=-17+9d ∵-265<-17+9d <-125得-2795<d <-12而{4b n}是一个以-12为公差的等差数列.∴d=-12m(m∈N*),∴d=-24∴c n=7-24n(n∈N*)评述:本题考查数列、数列的极限、集合和解析几何中的直线、抛物线等知识.对思维能力有较高要求,考查了分析问题和解决问题的能力.一九九九年高考1.(1999上海,10)在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =_____.答案:9解法一:设公差为d ,由题设有3(a 1+3d )=7(a 1+6d ),解得d =-334a 1<0,解不等式a n >0,即a 1+(n -1)(-334a 1)>0得n <437,则n ≤9.当n ≤9时,a n >0,同理可得n ≥10时a n <0. 所以n =9时,S n 取得最大值. 解法二:∵d =-334a 1 ∴S n =na 1+)235(332)334(2)1(2)1(2111n n a a n n na d n n --=--+=- =])435()435[(332221---n a ∵-3321a <0,∴(n -435)2最小时,S n 最大.又n ∈N ,∴n =9.评述:本题考查等差数列的基本知识,解法二的计算量太大.2.(1999全国理,23)已知函数y =f (x )的图象是自原点出发的一条折线.当n ≤y ≤n +1(n =0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),该数列{x n }由f (x n )=n (n =1,2,…)定义.(Ⅰ)求x 1、x 2和x n 的表达式;(Ⅱ)求f (x )的表达式,并写出其定义域;(Ⅲ)证明:y =f (x )的图象与y =x 的图象没有横坐标大于1的交点.(Ⅰ)解:依题意f (0)=0,又由f (x 1)=1,当0≤y ≤1时,函数y =f (x )的图象是斜率为b 0=1的线段,故由)0()(11--x f x f =1得x 1=1.又由f (x 2)=2,当1≤y ≤2时,函数y =f (x )的图象是斜率为b 的线段,故由1212)()(x x x f x f --=b ,即x 2-x 1=b 1得x 2=1+b 1.记x 0=0,由函数y =f (x )图象中第n 段线段的斜率为b n -1,故得111)()(---=--n n n n n b x x x f x f .又f (x n )=n ,f (x n -1)=n -1; ∴x n -x n -1=(b1)n -1,n =1,2,….由此知数列{x n -x n -1}为等比数列,其首项为1,公比为b1. 因b ≠1,得x n =1)1(111)(1111--=+++=----=∑b b b b b x x n n k nk k , 即x n =1)1(1---b b b n . (Ⅱ)解:当0≤y ≤1,从(Ⅰ)可知y =x ,即当0≤x ≤1时,f (x )=x . 当n ≤y ≤n +1时,即当x n ≤x ≤x n +1时,由(Ⅰ)可知 f (x )=n +b n (x -x n ) (x n ≤x ≤x n +1,n =1,2,3,…).为求函数f (x )的定义域,须对x n =1)1(1---b b b n (n =1,2,3,…)进行讨论. 当b >1时,11)1(lim lim 1-=--=-∞→∞→b b b b b x n n n n ;当0<b <1时,n →∞,x n 也趋向于无穷大.综上,当b >1时,y =f (x )的定义域为[0,1-b b);当0<b <1时,y =f (x )的定义域为[0,+∞). (Ⅲ)证法一:首先证明当b >1,1<x <1-b b时,恒有f (x )>x 成立. 用数学归纳法证明:(ⅰ)由(Ⅱ)知当n =1时,在(1,x 2]上,y =f (x )=1+b (x -1),所以f (x )-x =(x -1)(b -1)>0成立.(ⅱ)假设n =k 时在(x k ,x k +1]上恒有f (x )>x 成立. 可得f (x k +1)=k +1>x k +1,在(x k +1,x k +2]上,f (x )=k +1+b k +1(x -x k +1),所以f (x )-x =k +1+b k +1(x -x k +1)-x =(b k +1-1)(x -x k +1)+(k +1-x k +1)>0成立.由(ⅰ)与(ⅱ)知,对所有自然数n 在(x n ,x n +1)上都有f (x )>x 成立. 即1<x <1-b b时,恒有f (x )>x . 其次,当b <1,仿上述证明,可知当x >1时,恒有f (x )<x 成立. 故函数y =f (x )的图象与y =x 的图象没有横坐标大于1的交点.证法二:首先证明当b >1,1<x <1-b b时,恒有f (x )>x 成立.对任意的x ∈(1,1-b b)存在x n ,使x n <x ≤x n +1, 此时有f (x )-f (x n )=b n (x -x n )>x -x n (n ≥1),∴f (x )-x >f (x n )-x n . 又f (x n )=n >1+b 1+…+11-n b=x n ,∴f (x n )-x n >0, ∴f (x )-x >f (x n )-x n >0. 即有f (x )>x 成立.其次,当b <1,仿上述证明,可知当x >1时,恒有f (x )<x 成立. 故函数f (x )的图象与y =x 的图象没有横坐标大于1的交点.评述:本小题主要考查函数的基本概念、等比数列、数列极限的基础知识,考查归纳、推理和综合的能力.3.(1999全国文,20)数列{a n }的前n 项和记为S n .已知a n =5S n -3(n ∈N ).求∞→n lim(a 1+a 3+…+a 2n -1)的值.解:由S n =a 1+a 2+…+a n 知,a n =S n -S n -1(n ≥2),a 1=S 1, 由已知a n =5S n -3,得a n -1=5S n -1-3.于是a n -a n -1=5(S n -S n -1)=5a n ,所以a n =-41a n -1. 由a 1=5S 1-3,得a 1=43.所以,数列{a n }是首项a 1=43,公比q =-41的等比数列. 由此知数列a 1,a 3,a 5,…,a 2n -1,… 是首项为a 1=43,公比为(-41)2的等比数列.∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=54)41(1432=--. 评述:本小题主要考查等比数列和数列极限等基础知识.4.(1999上海,18)设正数数列{a n }为一等比数列,且a 2=4,a 4=16,求2221lg lg lg limn a a a nn n n +++++∞→ . 解:设数列{a n }的公比为q ,则q 2=24a a =4. 由a n >0(n ∈N *),得q =2,∴a 1=1,a n =2n . ∴222212lg 22lg )2(2lg )1(lg lg lg nn n n n a a a n n n +++++=+++++ 2lg )2123(2lg 2]2)1[(2lg 2)2()1(22n n n n n n n n n +=++=+++++=于是2lg 23lg lg lg lim2221=+++++∞→n a a a n n n n二○○○年高考1.(2000京皖春,13)已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A.a 1+a 101>0 B.a 2+a 100<0 C.a 3+a 99=0D.a 51=51答案:C解析:a 1+a 2+a 3+…+a 101=0 即2101(a 3+a 99)=0,∴a 3+a 99=0. 2.(2000上海春,7)若数列{a n }的通项为)1(1+n n (n ∈N *),则∞→n lim (a 1+n 2a n )= .答案:23 解析:23])1(21[lim )(lim ,212211=++=+=∞→∞→n n n a n a a n n n .3.(2000全国,15)设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n=0(n =1,2,3,…),则它的通项公式是a n = .答案:n1解析:将(n +1)a n +12-na n 2+a n +1a n =0化简得(n +1)a n +1=na n .当n =1时,2a 2=a 1=1,∴a 2=21,n =2时,3a 3=2a 2=2×21=1,∴a 3=31,…可猜测a n =n1,数学归纳法证明略.3.(2000上海,12)在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N )成立.类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式 成立.答案:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)解析:在等差数列{a n }中,由a 10=0,得a 1+a 19=a 2+a 18=…=a n +a 20-n =a n +1+a 19-n =2a 10=0, 所以a 1+a 2+…+a n +…+a 19=0, 即a 1+a 2+…+a n =-a 19-a 18-…-a n +1, 又∵a 1=-a 19,a 2=-a 18,…,a 19-n =-a n +1∴a 1+a 2+…+a n =-a 19-a 18-…-a n +1=a 1+a 2+…+a 19-n . 若a 9=0,同理可得a 1+a 2+…+a n =a 1+a 2+a 17-n .相应地等比数列{b n }中,则可得:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *) 4.(2000上海,4)计算nn n n )2(lim +∞→=_____. 答案:e -2解析:22222})]22(1{[lim )221(lim )2(lim -+-+-∞→∞→∞→=+-+=+-=+e n n n n n nn n n n n n .评述:本题主要考查灵活运用数列极限公式的能力及代数式的变形能力.5.(2000京皖春理,24)已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧∈∈].1,21[),(),21,0[),(21x x f x x f其中f 1(x )=-2(x 21-)2+1,f 2(x )=-2x +2. (Ⅰ)在图3—3坐标系上画出y =f (x )的图象; (Ⅱ)设y =f 2(x )(x ∈[21,1])的反函数为y =g (x ),a 1=1,a 2=g (a 1),…,a n =g (a n -1);求数列{a n }的通项公式,并求∞→n lim a n ;(Ⅲ)若x 0∈[0,21),x 1=f (x 0),f (x 1)=x 0,求x 0. 解:(Ⅰ)函数图象:说明:图象过(0,21)、(21,1)、(1,0)点;在区间[0,21]上的图象为上凸的曲线段;在区间[21,1]上的图象为直线段. (Ⅱ)f 2(x )=-2x +2,x ∈[21,1]的反函数为:y =1-2x , x ∈[0,1].由已知条件得:a 1=1, a 2=1-21a 1=1-21, a 3=1-21a 2=1-21+(21)2, a 4=1+(-21)1+(-21)2+(-21)3, ……∴a n =(-21)0+(-21)1+(-21)2+…+(-21)n -1)21(1)21(1----=n即a n =32[1-(-21)n ], ∴32])21(1[32lim lim =--=∞→∞→n n n n a . (Ⅲ)由已知x 0∈[0,21),∴x 1=f 1(x 0)=1-2(x 0-21)2, 由f 1(x )的值域,得x 1∈[21,1]. ∴f 2(x 1)=2-2[1-2(x 0-21)2]=4(x 0-21)2. 由f 2(x 1)=x 0,整理得4x 02-5x 0+1=0,解得x 0=1,x 0=41. 因为x 0∈[0,21),所以x 0=41. 评述:本小题主要考查函数及数列的基本概念和性质,考查分析、归纳、推理、运算的能力.6.(2000京皖春文,22)已知等差数列{a n }的公差和等比数列{b n }的公比相等,且都等于d (d >0,d ≠1).若a 1=b 1,a 3=3b 3,a 5=5b 5,求a n ,b n .解:由已知⎩⎨⎧=+=+.54,32411211d a d a d a d a 由①,得a 1(3d 2-1)=2d ③ 由②,得a 1(5d 4-1)=4d ④ 因为d ≠0,由③与④得2(3d 2-1)=5d 4-1, 即5d 4-6d 2+1=0, 解得d =±1,d =±55. ∵d >0,d ≠1,∴d =55. 代入③,得a 1=-5,故b 1=-5. a n =-5+55(n -1)=55(n -6), b n =-5×(55)n -1. 评述:本小题考查等差数列和等比数列的概念、性质,方程(组)的解法以及运算能力和分析能力.7.(2000全国理,20)(Ⅰ)已知数列{c n },其中c n =2n +3n ,且数列{c n +1-pc n }为等比数列,求常数p ;(Ⅱ)设{a n }、{b n }是公比不相等的两个等比数列,c n =a n +b n ,证明数列{c n }不是等比数列.(Ⅰ)解:因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=(c n +2-pc n +1)(c n -pc n -1), 将c n =2n +3n 代入上式,得[2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)]即[(2-p )2n +(3-p )3n ]2=[(2-p )2n +1+(3-p )3n +1][(2-p )2n -1+(3-p )3n -1], 整理得61(2-p )(3-p )·2n ·3n =0,解得p =2或p =3.(Ⅱ)证明:设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n . 为证{c n }不是等比数列只需证c 22≠c 1·c 3. 事实上,c 22=(a 1p +b 1q )2=a 12p 2+b 12q 2+2a 1b 1pq ,c 1·c 3=(a 1+b 1)(a 1p 2+b 1q 2)=a 12p 2+b 12q 2+a 1b 1(p 2+q 2) 由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零, 因此c 22≠c 1·c 3,故{c n }不是等比数列.评述:本题主要考查等比数列的概念和基本性质,推理和运算能力.8.(2000全国文,18)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n}的前n 项和,求T n . 解:设等差数列{a n }的公差为d ,则S n =na 1+21n (n -1)d .∴S 7=7,S 15=75,∴⎩⎨⎧=+=+,7510515,721711d a d a 即⎩⎨⎧=+=+,57,1311d a d a 解得a 1=-2,d =1.∴nS n =a 1+21(n -1)d =-2+21(n -1).∵2111=-++n S n S n n , ∴数列{nS n }是等差数列,其首项为-2,公差为21,∴T n =41n 2-49n .评述:本题主要考查等差数列的基础知识和基本技能;运算能力.9.(2000上海,21)在XOY 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n ),…,对每个自然数n ,点P n 位于函数y =2000(10a )x(0<a <10)的图象上,且点P n 、点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(Ⅰ)求点P n 的纵坐标b n 的表达式;(Ⅱ)若对每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;(Ⅲ)(理)设B n =b 1,b 2…b n (n ∈N ).若a 取(Ⅱ)中确定的范围内的最小整数,求数列{B n }的最大项的项数.(文)设c n =l g (b n )(n ∈N ).若a 取(Ⅱ)中确定的范围内的最小整数,问数列{c n }前多少项的和最大?试说明理由.解:(Ⅰ)由题意,a n =n +21,∴b n =2000(10a )21+n .(Ⅱ)∵函数y =2000(10a )x(0<a <10)递减, ∴对每个自然数n ,有b n >b n +1>b n +2则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n , 即(10a )2+(10a-1)>0, 解得a <-5(1+5)或a >5(5-1), ∴5(5-1)<a <10.(Ⅲ)(理)∵5(5-1)<a <10,∴a =7,b n =2000(107)21+n .数列{b n }是一个递减的正数数列.对每个自然数n ≥2,B n =b n B n -1. 于是当bn ≥1时,B n ≥B n -1,当b n <1时,B n <B n -1,因此,数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1.由b n =2000(107)21+n ≥1,得n ≤20.8,∴n =20.(文)∵5(5-1)<a <10,∴a =7,b n =2000(107)21+n .于是c n =l g [2000(107)21+n ]=3+l g 2(n +21)l g 0.7数列{c n }是一个递减的等差数列.因此,当且仅当c n ≥0,且c n +1<0时,数列{c n }的前n 项的和最大. 由c n =3+l g 2+(n +21)l g 0.7≥0, 得n ≤20.8,∴n =20.评述:本题主要考查函数的解析式,函数的性质,解不等式,等差等比数列的有关知识,及等价转化,数形结合等数学思想方法.10.(2000上海春,20)已知{a n }是等差数列,a 1=-393,a 2+a 3=-768,{b n }是公比为q (0<q <1)的无穷等比数列,b 1=2,且{b n }的各项和为20.。

相关文档
最新文档