(完整版)高中数学三角函数历年高考题汇编(附答案)
高中数学三角函数专项(含答案)

高中数学三角函数专项(含答案)一、填空题1.如图,在ABC 中,1cos 3BAC ∠=-,2AC =,D 是边BC 上的点,且2BD DC =,AD DC =,则AB 等于______.2.已知正方体1111ABCD A B C D -,点E 是AB 中点,点F 为1CC 的中点,点P 为棱1DD 上一点,且满足//AP 平面1D EF ,则直线AP 与EF 所成角的余弦值为_______.3.已知()()()cos sin 3cos 0f x x x x ωωωω=+>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.4.已知函数()2sin()f x x ωφ=+(0>ω,||φπ<)的部分图象如图所示,()f x 的图象与y 轴的交点的坐标是(0,1),且关于点(,0)6π-对称,若()f x 在区间14(,)333ππ上单调,则ω的最大值是___________.5.已知向量a ,b ,c 满足0a b c ++=,()()0a b a c -⋅-=,||9b c -=,则||||||a b c ++的最大值是___________.6.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)7.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.8.关于函数()()33cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).9.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.10.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.二、单选题11.若方程x 2 +2x +m 2 +3m = m cos(x +1) + 7有且仅有1个实数根,则实数m 的值为( ) A .2B .-2C .4D .-412.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为( )A B C D 13.已知1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .⎫⎪⎪⎣⎭B .⎛ ⎝⎦C .12⎛ ⎝⎦D .⎫⎪⎪⎣⎭14.已知点P 是曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦15.已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=( )A .15B .25C .35D .4516.已知ABC 的三边是连续的三个自然数,且最大角是最小角的2倍,则ABC 内切圆的半径r =( )A .1B C .32D .217.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1618.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .919.设函数()3sinxf x mπ=,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞20.若函数()()11,0sin ,0133,1x x x f x x x x ππ⎧-++≤⎪=-<<⎨⎪-≥⎩,满足()()()()()f a f b f c f d f e ====且a 、b 、c 、d 、e 互不相等,则a b c d e ++++的取值范围是( )A .340,log 9⎛⎫ ⎪⎝⎭B .390,log 4⎛⎫ ⎪⎝⎭C .340,log 3⎛⎫ ⎪⎝⎭D .330,log 4⎛⎫ ⎪⎝⎭三、解答题21.在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:cos()cos cos sin sin αβαβαβ-=+ 具体过程如下:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角αβ,.它们的终边与单位圆O 的交点分别为A ,B .则(cos ,sin ),(cos ,sin )OA OB ααββ→→== 由向量数量积的坐标表示,有: cos cos sin sin OA OB αβαβ→→⋅=+设,OA OB →→的夹角为θ,则||||cos cos cos cos sin sin OA OB OA OB θθαβαβ→→→→⋅=⋅==+另一方面,由图3.1—3(1)可知,2k απβθ=++;由图可知,2k απβθ=+-.于是2,k k Z αβπθ-=±∈.所以cos()cos αβθ-=,也有cos()cos cos sin sin αβαβαβ-=+, 所以,对于任意角,αβ有:cos()cos cos sin sin αβαβαβ-=+(()C αβ-)此公式给出了任意角,αβ的正弦、余弦值与其差角αβ-的余弦值之间的关系,称为差角的余弦公式,简记作()C αβ-.有了公式()C αβ-以后,我们只要知道cos ,cos ,sin ,sin αβαβ的值,就可以求得cos()αβ-的值了.阅读以上材料,利用下图单位圆及相关数据(图中M 是AB 的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题: (1)判断1OC OMOM→→→=是否正确?(不需要证明)(2)证明:sin sin 2sincos22αβαβαβ+-+=(3)利用以上结论求函数()sin 2sin(2)3f x x x π=++的单调区间.22.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C 对墙的投影(即过C 作AB 的垂线垂足为投影)恰在线段AB (包括端点)上,求点C 离墙的水平距离的范围;(2)在(1)的条件下,当点C 离墙的水平距离为多少时,视角θ(ACB ∠)最大? 23.如图,四边形ABCD 是某市中心一边长为4百米的正方形地块的平面示意图. 现计划在该地块上划分四个完全相同的直角三角形(即Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE ),且在这四个直角三角形区域内进行绿化,中间的小正方形修建成市民健身广场,为了方便市民到达健身广场,拟修建4条路,AE ,BF ,CG DH . 已知在直角三角形内进行绿化每1万平方米的费用为10a 元,中间小正方形修建广场每1万平方米的费用为13a 元,修路每1百米的费用为a 元,其中a 为正常数.设FAB θ∠=,0,4πθ⎛⎫∈ ⎪⎝⎭.(1)用θ表示该工程的总造价S ;(2)当cos θ为何值时,该工程的总造价最低?24.已知函数2()232sin cos ()f x x x x a a R =-++∈,且(0)3f = (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围.25.已知函数2()6f x x ax =--(a 为常数,a R ∈).给你四个函数:①1()21g x x =+;②2()3xg x =;③32()log g x x =;④4()cos g x x =. (1)当5a =时,求不等式2(())0f g x ≥的解集; (2)求函数4(())y f g x =的最小值;(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为()g x ,()g x 满足条件:存在实数a ,使得关于x 的不等式(())0f g x ≤的解集为[,]s t ,其中常数s ,t R ∈,且0s >.对选择的()g x 和任意[2,4]x ∈,不等式(())0f g x ≤恒成立,求实数a 的取值范围.26.已知函数()223sin 2cos 2f x x x x =++. (1)求函数()f x 的最小正周期和单调递减区间; (2)求函数()f x 在02π⎡⎤⎢⎥⎣⎦,上的最大值和最小值.27.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.28.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.29.已知函数()()()2331?0f x cos x sin x cos x ωωωω=+-->,()12 1()3f x f x ==-,,且12min 2x x π-=.(1)求()f x 的单调递减区间; (2)若()237,,,sin 33235,25f ππβπαβαβ⎛⎫⎛⎫∈-=+=- ⎪ ⎪⎝⎭⎝⎭,求2f α⎛⎫⎪⎝⎭的值. 30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题 1.321163.140324.115.3310+31036.8,83⎛⎫ ⎪⎝⎭7.1π-##1π-+ 8.②③9735+ 1015二、单选题 11.A 12.A 13.A 14.A 15.C16.B 17.C 18.A 19.C 20.C 三、解答题21.(1)正确;(2)见解析;(3)单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】 【分析】 (1) 因为对1||n n →→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,即可判断出正确;(2)在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,表示出OC →,OM →的坐标,由纵坐标对应相等化简即可证得结论; 即sin sin 2sincos22αβαβαβ+-+=(3)由(2)结论化简可得222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭借助正弦型函数的性质即可求得结果. 【详解】(1) 因为对于非零向量1,||n n n →→→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,所以1OC OMOM→→→=正确;(2) 因为M 为AB 的中点,则OM AB ⊥,从而在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,又cos ,sin 22OC αβαβ→++⎛⎫= ⎪⎝⎭,cos cos sin sin 22OM αβαβ→++⎛⎫=⎪⎝⎭,所以1sin sin sin22cos 2αβαββα++⎛⎫=⎪-⎝⎭,即sin sin 2sincos22αβαβαβ+-+=(3) 因为222233()sin 2sin 22sin cos 3sin 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭令222262k x k πππππ-+≤+≤+,解得: 36k x k ππππ-+≤≤+所以()f x 的单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦令3222262k x k πππππ+≤+≤+,解得: 263k x k ππππ+≤≤+ 所以()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【点睛】本题考查向量在证明三角恒等式中的应用,考查类比推理,考查正弦型函数的单调性,难度较难.22.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可. 【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有 2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为:1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x x BCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得: 2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-,因为15y ≤≤,所以有55664y y +-≥=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力.23.(1)()16(13sin 6sin cos )S a θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭;(2)当3cos 4θ=时,()16()S af θθ=取得最小值 【解析】(1)根据题意可知4sin BF θ=,4cos AF θ=,进而求得Rt ABFS 与EFGH S 正方形再求得总造价S 即可.(2)由(1)有()16(13sin 6sin cos )S a θθθθ=+-,再求导分析函数的单调性与最值即可.【详解】(1)在Rt ABF 中,FAB θ∠=,4AB =,所以4sin BF θ=,4cos AF θ=. 由于Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE 是四个完全相同的直角三角形,所以4sin AE BF CG DH θ====,4(cos sin )EF FG GH HE θθ====-,所以Rt114cos 4sin 8sin cos 22ABFS AF BF θθθθ=⋅⋅=⨯⨯=, 2224(cos sin )16(12sin cos )EFGH S EF θθθθ==-=-正方形.所以()48sin cos 1016(12sin cos )1344sin S a a a θθθθθθ=⨯⨯+-⨯+⨯⨯16[20sin cos (12sin cos )13sin ]a θθθθθ=+-⨯+ 16(13sin 6sin cos )a θθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)记()13sin 6sin cos f θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭.则22232()cos 6(cos sin )12cos cos 612(cos )(cos )43f θθθθθθθθ'=--=-++=--+. 令()0f θ'=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以3cos 4θ=或2cos 3θ=-(舍).记03cos 4θ=,所以当0(0,)θθ∈时,()0f θ'<,()f θ单调递减;当0(,)4πθθ∈时,()0f θ'>,()f θ单调递增. 所以当3cos 4θ=时,()f θ取得极小值,也是最小值, 又0a >,所以当3cos 4θ=时,()16()S af θθ=取得最小值. 【点睛】本题主要考查了三角函数在几何中的运用,同时也考查了求导分析函数最值的方法,属于难题. 24.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x表达式,利用(0)f =a 的值. (2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.25.(1)[31log 2,)++∞;(2)2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩;(3)1a ≥-. 【解析】(1)令()2u g x =,则()0f u ≥的解为1u ≤-或6u ≥,由后者可得2(())0f g x ≥的解. (2)令()4t g x =,则[1,1]t ∈-,分类讨论后可求26y t at =--,[1,1]t ∈-的最小值,该最小值即为原来函数的最小值.(3)取()32()log g x g x x ==,可以证明()g x 满足条件,再利用换元法考虑任意[2,4]x ∈,不等式(())0f g x ≤恒成立可得实数a 的取值范围.【详解】(1)当5a =时,()256f x x x =--.令()2u g x =,因为2560u u --≥的解为1u ≤-或6u ≥,所以31x ≤-(舍)或36x ≥,故31log 2x ≥+,所以2(())0f g x ≥的解集为[31log 2,)++∞.(2)令()4cos ,t g x x x R ==∈,则[1,1]t ∈-,函数4(())y f g x =的最小值即为()26h t t at =--,[1,1]t ∈-的最小值. 当()1,12a ∈-即22a -<<时, ()2min 64a h t =--. 当12a ≤-即2a ≤-时,()min 5h t a =-; 当12a >即2a >时, ()min –5h t a =-. 故2min –5,26,2245,2a a a y a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩. (3)取()32()log g x g x x ==,令2log u x =,设260u au --≤的解集为闭区间[]12,u u ,由12u u u ≤≤得1222u u x ≤≤,故(())0f g x ≤的解集为122,2u u ⎡⎤⎣⎦,取12u s =,则0s >,故()g x 满足条件.当[2,4]x ∈时,2[]1,u ∈,故()0f u ≤在[1,2]上恒成立,故2211602260a a ⎧-⨯-≤⎨--≤⎩,解得1a ≥-, 所以实数a 的取值范围是1a ≥-.【点睛】本题考查复合函数的性质及复合函数对应的不等式的解与恒成立问题,此类问题可通过换元法把复合函数问题转化为二次函数的最值问题或恒成立问题,本题有一定综合性,是难题.26.(1)T π=;2,63k k ⎛⎫++ ⎪⎝⎭ππππ(2)5; -2 【解析】【分析】(1)根据二倍角公式和辅助角公式化简即可(2)由02x ⎡⎤∈⎢⎥⎣⎦,π求出26x π+的范围,再根据函数图像求最值即可 【详解】(1)()2sin 2cos 22cos 232sin 236f x x x x x x x ⎛⎫=++=++=++ ⎪⎝⎭π, 22T ππ==,令3222,2,62263x k k x k k ⎛⎫⎛⎫+∈++⇒∈++ ⎪ ⎪⎝⎭⎝⎭πππππππππ, 即单减区间为2,,63k k k Z ππππ⎛⎫++∈ ⎪⎝⎭; (2)由702,2666x t x ⎡⎤⎡⎤∈⇒=+∈⎢⎥⎢⎥⎣⎦⎣⎦,ππππ,当76πt =时,()f x 的最小值为:-2; 当2t π=时,()f x 的最大值为:5【点睛】本题考查三角函数解析式的化简,函数基本性质的求解(周期、单调性、在给定区间的最值),属于中档题27.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】【分析】 (1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值.【详解】(1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭, 解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1- 【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.28.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可.【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫ ⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭ ()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴= ()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫ ⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m = ()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭ 令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.29.(1) 单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2) 15. 【解析】【分析】(1)根据题意求出函数()f x 的解析式,然后可求出它的单调递减区间.(2)结合条件求出()424sin ,cos 3525πβαβ⎛⎫-=+=- ⎪⎝⎭,然后由()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦可得结果. 【详解】(1)()2()1f x cos x sin x x ωωω=221sin xcos x x ωωω=+221)1sin x cos x ωω=--221sin x x ωω=-2(2)13sin x πω=+-. ∵1(2)13sin x πω-≤+≤, ∴32(2)113sin x πω-≤+-≤, ∴()f x 的最大值为1,最小值为3-.又()()121,3f x f x ==-,且12min 2x x π-=, ∴函数()f x 的最小正周期为22ππ⨯=,∴1ω=, ∴()2(2)13f x sin x π=+-.由3222,232k x k k Z πππππ+≤+≤+∈, 得7,1212k x k k Z ππππ+≤≤+∈, ∴()f x 的单调递减区间为7[,],1212k k k Z ππππ++∈. (2)由(1)得3212335f sin βππβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭, ∴4sin 35πβ⎛⎫-= ⎪⎝⎭. ∵2,33ππβ⎛⎫∈ ⎪⎝⎭, ∴0,33ππβ⎛⎫-∈ ⎪⎝⎭,∴3cos 35πβ⎛⎫- ⎪⎝⎭. ∵()7sin 25αβ+=-且2,,33ππαβ⎛⎫∈ ⎪⎝⎭, ∴24,33ππαβ⎛⎫+∈ ⎪⎝⎭,∴()24cos 25αβ+==-. ∴()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()2sin cos cos sin 133ππαββαββ⎡⎤⎛⎫⎛⎫=+--+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 7324421255255⎡⎤⎛⎫=⨯-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦15=. 【点睛】(1)解答有关三角函数性质的有关问题时,首项把函数解析式化为(x)Asin(x )f ωϕ=+的形式,然后再结合正弦函数的相关性质求解,解题时注意系数,A ω对结果的影响. (2)对于三角变换中的“给值求值”问题,在求解过程中注意角的变换,通过角的“拆”、“拼”等手段转化为能应用条件中所给角的形式,然后再利用整体思想求解.30.(Ⅰ) 3π(Ⅱ)5 【解析】【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析:解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编一.选择题1、(2009)函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2、(2008)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是( )4.(2009山东卷文)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =5.(2009江西卷文)函数()(13tan )cos f x x x =+的最小正周期为A .2πB .32π C .π D .2π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为A.6π B.4π C. 3π D. 2π7.(2008海南、宁夏文科卷)函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,328.(2007海南、宁夏)函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是()二.填空题1.(2009宁夏海南卷文)已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。
2.(2009年上海卷)函数22cos sin 2y x x =+的最小值是_____________________ .3.(2009辽宁卷文)已知函数()sin()(0)f x x ωϕω=+>的图象如图所示,则ω =三.解答题1、(2008)已知函数()sin()(0,0),f x A x a x R ϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。
高中三角函数历年高考真题_含答案

历年高考三角函数专题一,选择题1.(08全国一6)2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.(08全国一9)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .25.(08安徽卷8)函数sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=-C .6x π=D .12x π=6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x7.(08广东卷5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )A. -3,1B. -2,2C. -3,32D. -2,329.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是 ( )A.512π B.512π- C.1112π D.1112π-10.(08江西卷6)函数sin ()sin 2sin2x f x xx =+是 ( )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 ( ) A .1BCD .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A. BC .45-D .4513.(08陕西卷1)sin 330︒等于 ( ) A.2-B .12-C .12D.214.(08四川卷4)()2tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则 ( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.(08浙江卷2)函数2(sin cos )1y x x =++的最小正周期是 ( ) A.2π B .π C.32πD.2π 18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 ( )A.0B.1C.2D.4 二,填空题19.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .22.(08浙江卷12)若3sin()25πθ+=,则cos 2θ=_________。
(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。
(完整)高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案),推荐文档

1.已知 tan x =2,求 sin x , cos x 的值. 解:因为tan xsin x cosx2 2 ▲2,又 sin x + cos x =1,sinx 2cosx联立得 22sin x cos x 1si nx2.55 L 5sin xcos x5 cos x解这个方程组得2 5 5 ..5 5+ tan( 120 ) cos(210 ) sin( 480 ) “2.求的值.tan( 690 ) sin( 150 ) cos(330 ) 解:原式 tan( 120 180 )cos(180 30 )sin( 360 120 ) tan( 720 30o )sin( 150 )cos(36030 )tan 60 ( cos30 )( sin 120 )tan30 ( sin 150 )cos30 3.3. sin x cosx 3.右 2,,求 sin x cos x 的值. sin x cosx 解:法一:因为 Ecosx2, si nx cosx所以 sin x — cos x =2(sin x + cos x ),2 2得到sin x =— 3cos x ,又sin x + cos x =1,联立方程组,解得sin x 3 .10 sinx 3i10 1010 cosx 辺cosx、10 10 10所以sinxcosx31法 因为sin x cosx sin x cosx2,所以 sin x — cos x =2(sin x + cos x ), 2 2所以(sin x — cos x ) =4(sin x + cos x ), 所以 1 — 2sin x cos x =4 + 8sin x cos x ,所以有sinxcosx 10 4. 求证:tan x • sin x =tan x — sin x . 证明: 法一:右边= tan 2x — sin 2x =tan 2x — (tan2x •cos x )=tan2x (1 — cos 2x )=tan 2x • sif x ,法二:左边=tan 2x • sin 2x =tan 2x (1 — cos 2x )=tan 2x — tan 2x • cos x =tan 2x — sin 2x ,问题得问题得证.x n5.求函数y 2sin( )在区间[0 , 22 6解:因为O W x < 2 n,所以 号n 7n ,由正弦函数的图象,得到丽哥n )[21], 所以 y € [ — 1, 2]. 6.求下列函数的值域.2(1) y = sin x — cos x +2;(2) y = 2sin x cos x — (sin x + cos x ).222解: (1) y =sin x — cos x + 2 = 1 — cos x — cos x + 2=— (cos x + cos x ) + 3,利用二次函数的图象得到 y [1,13]. 42人(2) y = 2sin x cos x — (sin x + cos x )=(sin x + cos x ) — 1 — (sin x + cos x ),令sin(x 丄),则t [ J2,J2]则,y t 2t 1,利用二次函数的图象得到y [ 5,1 J2].447.若函数y =A si n( ®x +0 )( 0, 0> 0)的图象的一个最高点为 (2, J2),它到其相邻的最低点之间的图象与x 轴交于(6 , 0),求这个函数的一个解析式.解:由最高点为(2, .2),得到A .、2,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是14Tn个周期,这样求得一4 ,T =16,所以丄 48又由,2, 2 sin( 2),得到可以取 .y . 2 sin(—x ).8484448. 已知函数 f (x )=cos x — 2sin x cos x — sin x . n(i )求f (x )的最小正周期; (n )若x [0,—],求f (x )的最大值、最小值.2叱 1 sinx “数y的值域.3 cosx42222解: ( I )因为 f (x )=cos x — 2si n x cos x — si n4 x = (cos x — sin x )(cos x + sin x ) — si n2 x22厂 n厂n (cos x sin x) sin 2x cos2x sin 2x 、2 sin( 2x)2 sin(2x) 44所以最小正周期为 n.(n )若x [0,n,则(2xnn,写,所以当x =0时,f(x )取最大值为Qsin( -) 1;当x 士时,]上的值域.令 t =cos x ,则 t [ 1,1], y (t 2 t) 3t =sin x + cos x•、2 ,cos2 4 4 4 4 8f (x)取最小值为、2si^ ;(2) sin2 sin .cos 2cos2sin1.已知tan 2,求(1)的值.3.已知函数f(x) 24sin x 2sin 2x(1 )求f (x)的最小正周期、f (x)的最大值及此时x的集合;n(2)证明:函数f (x)的图像关于直线x 对称。
高考三角函数历年真题汇总以及解析

1.若34cos,sin ,2525θθ==则角θ的终边落在直线( )上A. 2470x y -=B. 2470x y +=C. 7240x y +=D. 7240x y -=2.已知在△ABC 中,22tan tan A a B b =,判断△ABC 的形状为( ).A. 等腰三角形B. 直角三角形C. 等腰或直角三角形D. 等腰直角三角形3.已知函数()()cos 20,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,将其图象向右平移6π个单位后得函数()cos2g x x =的图象,则函数()f x 的图象( )A. 关于直线23x π=对称 B. 关于直线6x π=对称C. 关于点2-03π⎛⎫⎪⎝⎭,对称 D. 关于点5-012π⎛⎫⎪⎝⎭,对称 4.已知2sin 1cos αα=+,其中α是第一象限角,则tan2α=( )A.12- B. 2C.12D.135.已知函数()sin()(0,||)2f x x πωϕωϕ=+><,其图像相邻两条对称轴之间的距离为2π,且函数()12f x π+是偶函数,则下列判断正确的是( )A. 函数f (x )的最小正周期为2πB. 函数f (x )在区间3[,]4ππ上单调递增 C. 函数f (x )的图象关于直线712x π=-对称 D. 函数f (x )的图象关于点7(,0)12π对称 6.在△ABC 中,a 、b 、c 分别为内角A 、B 、C()sin sin A B A B+=+,3cos 5C =,且4ABCS=,则c =( )B. 4C.3D. 57.在△ABC 中,4ABC π∠=,AB =,3BC =,则sin BAC ∠=( )8.将函数()2sin(2)(0)f x x ϕϕπ=+<<的图象上所有点的纵坐标缩短为原来的12,再把所得图象上的所有点向右平移4π个单位长度后,得到函数()g x 的图象,若函数()g x 在3x π=处取得最大值,则函数()f x 的图象( )A 关于点5,012π⎛⎫-⎪⎝⎭对称 B. 关于点,06π⎛⎫⎪⎝⎭对称C. 关于直线512x π=-对称 D. 关于直线6x π=对称9.当[,]33x ππ∈-时,函数2()cos 444x x x f x =+ )A. C. 110.若1cos 44πα⎛⎫-= ⎪⎝⎭,则sin 2α的值为( )A. 78- B.78C. 18-D.1811.函数()sin()sin()36f x x a x ππ=++-的一条对称轴方程为2x π=,则a =( )A. 1C. 2D. 312.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,4A π=,12B π=,c =,则a =( )A. 2B. 22C. 32D. 4213.在直角坐标系xOy 中,如果相异两点()(),,,A a b B a b --都在函数()y f x =的图象上,那么称A ,B 为函数()f x 的一对关于原点成中心对称的点对(A ,B 与B ,A 为同一对).函数()6sin ,02log ,0x x f x x x π⎧≤⎪=⎨⎪>⎩图象上关于原点成中心对称的点对有( )A. 1对B. 2对C. 3对D. 4对14.将函数()sin 36f x x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标伸长到原来的6倍(纵坐标不变),再将所得到的图象向右平移()0m m >个单位长度,得到函数()g x 的图象.若()g x 为奇函数,则m 的最小值为_______. 15.给出下列四个命题正确的是______________: ①函数()ln 2f x x x =-+在区间(1,)e 上存在零点; ②将函数cos()6y x π=-的图象的横坐标变为原来的12倍得到函数cos(2)3y x π=-; ③若1m ≥-,则函数22log (2)y x x m =--的值域为R ;④“1a =”是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件; 16.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos sin a B b A c A +=,则△ABC 的形状为_____________. 17.正弦型函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的图象如图所示,则()f x 的解析式为_______________.18.用I M 表示函数sin y x =在闭区间I 上的最大值,若正数a 满足[0,][,2]2a a a M M ≥,则[0,]a M =________;a 的取值范围为________.19.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,22a bc =且sin 2sin A C =,则cos C ________.20.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2b sin A a cos B +a sin B . (1)求B ;(2)设b =,a =4,D 为线段BC 上一点,若S △ABD ,求AD 的长. 21.已知函数()()22sin cos f x x x x =++-(1)求它的单调递增区间; (2)若0,2x π⎛⎫∈ ⎪⎝⎭,求此函数的值域. 22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且22sin 30C C -++=. (1)求角C 的大小;(2)若b =,△ABC 的面积为sin 2A B ,求sin A 及c 的值. 23.已知函数()2cos 2sin 2x x f x x πωωω⎛⎫=++ ⎪⎝⎭(0>ω)的最小正周期为π.(1)求ω的值和函数f (x )的单调增区间; (2)求函数f (x )在区间,2ππ⎡⎤⎢⎥⎣⎦上的取值范围. 24.已知△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且1cos 2a c Bb =+. (1)求cos C ;(2)若c =,求+a b 的取值范围.25.已知函数2()cos 2cos 1f x x x x =+-(x ∈R ). (1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的单调区间;(2)若06()5f x =,0[,]42x ππ∈,求0cos2x 的值. 26.已知a ,b ,c 分别为说角△ABC 三个内角A ,B ,C 的对边,满足222sin sin sin sin sin 0.A B C B C --+=(1)求A ;(2)若b =2,求△ABC 面积的取值范围. 27.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭满足下列3个条件中的2个条件:①函数f (x )的周期为π;②6x π=是函数f (x )的对称轴;③04f π⎛⎫=⎪⎝⎭且在区间,62ππ⎛⎫⎪⎝⎭上单调; (Ⅰ)请指出这二个条件并说明理由,求出函数f (x )的解析式; (Ⅱ)若0,3x π⎡⎤∈⎢⎥⎣⎦,求函数f (x )的最值.试卷答案1.B【详解】由条件可知2724cos 2cos1,sin 2sin cos 2252225θθθθθ=-=-==, 24tan 7θ-=.又24tan 7y x θ==-, 所以247x y =-,即2470x y +=. 故选:B . 2.C 【分析】22tan tan A a B b=左边切化弦,右边用正弦定理化边为角可解 【详解】22tan tan A a B b =,22sin cos sin sin cos sin A B AB A B∴=cos sin cos sin B A A B∴=,sin cos sin cos A A B B ∴= sin 2sin 2A B ∴=22A B ∴=或2+2=A B πA B ∴=或+=2A B πABC 是等腰或直角三角形故选:C . 3.D 由题意得22ππω=,故1ω=, ∴()cos(2)f x x ϕ=+, ∴()cos[2()]cos(2)cos 263g x x x x ππϕϕ=-+=-+=,∴3πϕ=,∴()cos(2)3f x x π=+.∵2251()cos(2)cos 133332f ππππ=⨯+==≠±,21()cos(2)cos 166332f ππππ=⨯+==-≠±, ∴选项A,B 不正确. 又22()cos(2)cos()10333f ππππ-=-⨯+=-=-≠, 55()cos(2)cos()0121232f ππππ-=-⨯+=-=, ∴选项C,不正确,选项D 正确.选D . 4.C 【分析】由二倍角公式和平方关系可得22sincoscos 222ααα=,再由商数关系即可得解.【详解】因为2sin 1cos αα=+,所以224sin cos1cos sin 2222αααα=+-,所以22sincoscos 222ααα=,又α是第一象限角,所以cos02α≠,所以2sincos1222cos 2ααα=即1tan 22α=.故选:C.【点睛】本题考查了二倍角公式及同角三角函数关系的应用,考查了运算求解能力,属于基础题. 5.B图像相邻两条对称轴之间的距离为2π,即三角函数的周期为22,,22ππππωω⨯=∴==,所以sin 2sin 212126f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又12f x π⎛⎫+ ⎪⎝⎭是偶函数,,62k k Z ππϕπ∴+=+∈,即,3k k Z πϕπ=+∈,又2πϕ<,解得3πϕ=,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭.A项,最小正周期T π=,错误;B 项, 由222,232k x k k Zπππππ-≤+≤+∈,解得单调递增区间为5,,1212k k k Z ππππ⎡⎤-+⎢⎥⎣∈⎦,k=1时成立,故正确;;C 项, 2,32x k k Z πππ+=+∈,解得对称轴是,212k x k Z ππ=+∈,错误;D 项, 由2,3x k k Z ππ+=∈,解得对称中心是,0,26⎛⎫-∈ ⎪⎝⎭k k Z ππ,错误;综上所述,应选B. 6.B 【分析】由三角函数的基本关系式和4ABCS=,求得10ab =,再由正弦定理,得到a b =+,根据余弦定理,列出方程,即可求解.【详解】因3cos 5C =,则(0,)2C π∈,所以4sin 5==C ,又因为4ABCS=,即114sin 4225ab C ab =⨯=,解得10ab =,sin sin C A B =+a b =+, 由余弦定理,可得22222223162cos 2()33255c a b ab C a b ab a b ab c =+-=+-⨯=+-=-,整理得216c =,即4c =.故选:B.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于中档题. 7.C试题分析:由余弦定理得22923cos5,4b b π=+-⋅==.由正弦定理得3sin sin 4BAC π=∠,解得sin BAC ∠=考点:解三角形. 8.C 【分析】根据函数()sin y A ωx φ=+的图象变换规律,得到sin 2)2(x g x πϕ⎛⎫-+ ⎝=⎪⎭,函数()g x 在3x π=处取得最大值,求得3πϕ=,再求函数()f x 的对称轴和对称中心即可.【详解】由题意得,12sin 2sin (4)222x x x g ππϕϕ⎡⎤⎛⎫⎛⎫⨯-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=, 由函数()g x 在3x π=处取得最大值,得max sin 2sin 13326()g x g ππππϕϕ⎛⎫⎛⎫⎛⎫==⨯-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴262k ππϕπ+=+,k Z ∈,23k πϕπ=+,k Z ∈,∵0ϕπ<<,∴3πϕ=,∴2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,由23x k ππ+=,k Z ∈,得26k x ππ=-,k Z ∈, ∴函数()f x 的图象关于,026k ππ⎛⎫- ⎪⎝⎭,k Z ∈对称, 故A ,B 选项错误; 由232x k πππ+=+,k Z ∈,得212k x ππ=+,k Z ∈, ∴函数()f x 的图象的对称轴方程为212k x ππ=+,k Z ∈, 显然当1k =-时,函数()f x 的图象的对称轴为直线512x π=-, 故选:C .【点睛】本题主要考查三角函数的图象变换,三角函数的最值,三角函数图象的对称性等,考查的数学核心素养是数学运算、直观想象. 9.B【分析】由二倍角公式降幂,然后由两角和的正弦公式化简函数为一个角一个三角函数形式,再利用正弦函数性质可得最小值. 【详解】21()cos sin 4442222223x x x x x x x x f x π⎫⎛⎫=-=+==+⎪ ⎪⎪⎝⎭⎭, 当,33x ππ⎡⎤∈-⎢⎥⎣⎦时,,2362x πππ⎡⎤+∈⎢⎥⎣⎦,所以236x ππ+=,即3x π=-时,min ()2f x =. 故选:B .【点睛】本题考查求正弦型函数的最值,解题关键是利用二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式. 10.A 【分析】 根据1cos 44πα⎛⎫-=⎪⎝⎭,将sin 2α,利用诱导公式和二倍角的余弦公式转化为2sin 22cos 14παα⎛⎫=-- ⎪⎝⎭求解.【详解】因为1cos 44πα⎛⎫-=⎪⎝⎭, 所以27sin 2cos 22cos 1448ππααα⎡⎤⎛⎫⎛⎫=-=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选:A【点睛】本题主要考查诱导公式和二倍角公式的应用,还考查了转化求解问题的能力,属于基础题. 11. B 【详解】试题分析:()f x 的对称轴是2x π=2f π⎛⎫∴= ⎪⎝⎭cos cos 36a ππ+=a =考点:三角函数性质点评:利用对称轴处取最值求解 12.C 【分析】先求得C ,然后利用正弦定理求得a . 【详解】因为,412A B ππ==,所以23C A B ππ=--=,所以sin sin c Aa C===故选:C【答案】 13.C 【分析】作出函数6log y x =,作出sin ,02y x x π=≤关于原点的对称图像,由图象交点个数即可得到结论.【详解】若()6sin ,02log ,0x x f x x x π⎧≤⎪=⎨⎪>⎩图象上有关于原点成中心对称的点, 则6log y x =与sin,02y x x π=≤关于原点对称图像有交点,作出6log y x =,sin(),02y x x π=--≥图象如图,由图象可知,有3个交点,从而()f x 有3对关于原点对称的点. 故选:C【点睛】本题主要考查了对数函数、正弦型函数的图象与性质的应用问题,也考查了数形结合思想,属于中档题. 14.3π 【分析】利用图象变换求得函数()y g x =的解析式,由函数()y g x =为奇函数,可得出关于m 的代数式,进而可求得正数m 的最小值. 【详解】将函数()sin 36f x x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数11sin 3sin 6626y x x ππ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭的图象, 再将所得函数图象向右平移()0m m >个单位长度,得到()()111sin sin 26262g x x m x m ππ⎡⎤⎛⎫=-+=+- ⎪⎢⎥⎣⎦⎝⎭的图象,由于函数()y g x =为奇函数,则()162m k k Z ππ-=∈,()23m k k Z ππ∴=-∈, 当0k =时,正数m 取得最小值3π. 故答案为:3π. 【点睛】本题考查利用三角函数图象变换求函数解析式,同时也考查了利用正弦型函数的奇偶性求参数,考查计算能力,属于中等题.①③④ 【分析】根据零点存在定理,三角函数图象变换,对数函数的性质,充分不必要条件的定义判断各选项.【详解】①()ln 2f x x x =-+,(1)10f =-<,()10f e e =->,由零点存在定理得()f x 在(1,)e 上有零点,①正确;②函数cos()6y x π=-的图象的横坐标变为原来的12得到函数cos 26y x π⎛⎫=- ⎪⎝⎭,②错误;③1m ≥-时,440m ∆=+≥,故函数值域为R ,③正确;④()1x x a e f x ae -=+是奇函数,则1()11x x xx x xa e ae a e f x ae e a ae------===-+++,22(1)(1)0xa e --=,1a =±,因此“1a =”是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件,④正确. 故答案为:①③④【点睛】本题考查命题的真假判断,掌握零点存在定理,三角函数图象变换,对数函数的性质,充分不必要条件的定义是解题基础. 16. 直角三角形 【分析】利用正弦定理边角互化思想求得sin A 的值,可求得角A 的值,进而可判断出ABC 的形状. 【详解】cos cos sin a B b A c A+=,由正弦定理得sin cos cos sin sin sin A B A B A C +=,即()()sin sin sin sin sin A C A B C C π=+=-=,0C π<<,则sin 0C >,sin 1A ∴=,0A π<<,2A π∴=.因此,ABC 为直角三角形. 故答案为:直角三角形.【点睛】本题考查利用正弦定理边角互化思想判断三角形的形状,考查计算能力,属于基17.()2sin(2)3f x x π=+【分析】由最值求得A ,由周期求得ω,由最高点或零点横坐标及ϕ的范围求得ϕ,得解析式.【详解】由题意1A =,4312T πππ⎛⎫=⨯-= ⎪⎝⎭,∴22πωπ==, 由正弦函数性质得,22122k ππϕπ⨯+=+,k Z ∈,∵2πϕ<,∴3πϕ=.∴()2sin(2)3f x x π=+.故答案为:()2sin(2)3f x x π=+【点睛】本题考查求三角函数的解析式,掌握“五点法”作正弦函数的图象是解题关键. 18. 1; 513,612ππ⎡⎤⎢⎥⎣⎦【分析】根据三角函数的有界性易得[0,]1a M =,通过作图分析可得a 的取值范围. 【详解】作出函数sin y x =的图象,如图所示:显然,[0,]a M 的最大值为1,[0,][,2]2a a a M M ≥,∴[,2]a a M 的最大值为12, 作出直线12y =与sin y x =相交于,,A B C 三点,且151131(,)(,),(,)626262A B C πππ,由图形可得:5,513613662,6a a a ππππ⎧≤⎪⎪⇒≤≤⎨⎪≤⎪⎩, 故答案为:513[,]66ππ. 【点睛】本题考查函数的新定义问题,考查函数与方程思想、数形结合思想,考查逻辑推理能力、运算求解能力,求解时注意结合图象进行分析求解. 19.78【分析】根据正弦定理将角化成边得2a c =,结合2b c =,将边统一用c 表示,再利用余弦定理,即可得答案; 【详解】sin 2sin 2A C a c =⇒=,又22a bc =,∴2b c =,∴2222277cos 2248a b c c C ab c +-===⋅⋅, 故答案为:78. 【点睛】本题考查正余弦定理的应用,考查函数与方程思想,考查逻辑推理能力、运算求解能力,求解时注意将边统一用c 进行表示,进而求得角的余弦值. 20. (1)3π;(2) 【分析】(1)根据2b sin Aa cos B +a sin B ,利用正弦定理得到sin sin cos B A A B =,再根据sin 0A ≠求解.(2)在△ABC 中,利用余弦定理求得c ,再由S △ABD,求得BD ,然后 在△ABD 中,由余弦定理求解.【详解】(1)因为2b sin Acos B +a sin B ,所以2sin sin sin cos sin sin B A A B A B =+,sin sin cos B A A B =,sin 0A ≠tan B =()0,B π∈ 3B π=(2)在△ABC 中,由余弦定理得:2222cos b a c ac B =+-,解得6c =或2c =-(舍去),因为S △ABD =1sin 22⨯⨯=BD c B , 解得 3BD =,在△ABD 中,由余弦定理得:2222cos 27AD BD c BD c B =+-⨯⨯⨯=,解得AD =.【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题. 21.(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦(k Z ∈);(2)(1⎤⎦.【分析】(1)化简()f x ,再根据正弦函数的单调增区间代入求解即可. (2)根据(1)的结果()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,再根据0,2x π⎛⎫∈ ⎪⎝⎭求出23x π+的范围结合sin 23y x π⎛⎫=+⎪⎝⎭的值域为,12⎛⎤-⎥⎝⎦,即可求出结果.【详解】(1)())21sin 22cos 1f x x x =+-1sin 212sin 23x x x π⎛⎫=++=++ ⎪⎝⎭由222232k x k πππππ-+≤+≤+,得51212k x k ππππ-+≤≤+,k Z ∈.故此函数的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦(k Z ∈).(2)由02x π<<,得42333x πππ<+<.sin 23y x π⎛⎫=+ ⎪⎝⎭的值域为⎛⎤ ⎥⎝⎦.()12sin 23f x x π⎛⎫=++ ⎪⎝⎭的值域为(1⎤⎦,故此函数的值域为(1⎤-⎦【点睛】本题主要考查了三角函数的性质,常考三角函数的性质有:对称轴、单调性、最值、对称中心.属于中档题. 22.(1)34C π=;(2)sin 1A c ==. 【分析】(1)由三角恒等变形可得cos 2C =-,0C π<<又,即34C π=.(2)由余弦定理得c =,再由正弦定理及三角形面积公式可得:2sin ()sin sin sin sin a b c C C A B C==,即1c ==,得解.【详解】解:(1)22sin 30C C -++=,可得:22(1cos )30C C --++=,22cos 10C C ∴++=, cos C ∴=0C π<<,34C π∴=. (2)2222222cos 325c a b ab C a a a =+-=+=,c ∴,sin C A ∴,sinA C ∴==,1sin sin 2ABC S ab C A B ∆=,∴1sin sin 2ab C A B =,∴2sin ()sin sin sin sin a b c C C A B C=1c ∴=.【点睛】本题考查了三角恒等变形及正余弦定理,属中档题. 23.(1)1ω=;单调增区间为2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(2)[]0,3. 【分析】(1)先将函数解析式整理,得到()2sin 216f x x ⎛⎫=-++ ⎪⎝⎭πω,根据最小正周期,即可求出1ω=,由正弦函数的单调性,列出不等式求解,即可得出单调增区间; (2)先由3x ππ≤≤,得到7132666x πππ≤+≤,根据正弦函数的性质,即可求出结果. 【详解】(1)()2cos 2sin cos 1cos 22x x x x x f x x ⎛⎫=++=-+- ⎪⎝⎭πωωωωωω2cos 212sin 216x x x ⎛⎫=-+=-++ ⎪⎝⎭πωωω,∵函数()f x 的最小正周期为22T ππω==, ∴1ω=;∴()2sin 216f x x π⎛⎫=-++ ⎪⎝⎭, 由3222262k x k πππππ+≤+≤+()k ∈Z ,得263k x k ππππ+≤≤+()k ∈Z ,∴函数()f x 的单调增区间为2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z . (2)由2x ππ≤≤得7132666x πππ≤+≤, 所以1sin 21,62x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,则()[]2sin 210,36f x x ⎛⎫=-++∈ ⎪⎝⎭π. 即()f x 的取值范围为[]0,3.【点睛】本题主要考查由正弦型函数的周期求参数,考查求正弦型函数的单调区间,考查求正弦型函数在给定区间的值域,属于常考题型. 24.(1)12;(2)3【分析】(1)利用余弦定理将角转化为边,再利用余弦定理求得结果;(2)由已知结合正弦定理将边转化角,再利用三角形内角和定理、辅助角公式转化为求6a b A π⎛⎫+=+ ⎪⎝⎭的取值范围.【详解】(1)由1cos 2a c Bb =+,可得222222cos a ab ac B a c b -==+-, 整理得222a b c ab +-=,所以222cos 122a b c C ab +-==.(2)由(1)得1cos 2C =,0C π<<,3C π=,,sin 2C =,c = 由正弦定理得2sin sin sin a b cA B C===, ∴22sin 2sin 2sin 2sin 3a b A B A A π⎛⎫+=+=+-⎪⎝⎭3sin 6A A A π⎛⎫=+=+ ⎪⎝⎭,∵3C π=,∴203A π<<,5666A πππ<+<, 1sin 126A π⎛⎫<+≤ ⎪⎝⎭6A π⎛⎫<+≤ ⎪⎝⎭∴+a b 的取值范围是3.【点睛】本题主要考查正弦定理和余弦定理的应用,属于中档题. 25.(1)最小正周期是π,增区间是06,π⎡⎤⎢⎥⎣⎦,减区间是,62ππ⎡⎤⎢⎥⎣⎦;(2 【分析】(1)应用二倍角公式和两角和的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求解; (2)由(1)求得0sin 26x π⎛⎫+ ⎪⎝⎭,再求出0cos 26x π⎛⎫+⎪⎝⎭,然后用两角差的余弦公式求解.【详解】(1)1()2cos 222cos 22sin 2326f x x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以最小正周期为22T ππ==, 0,2x π⎡⎤∈⎢⎥⎣⎦时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦,由2662x πππ≤+≤,得06x π≤≤, 由72266x πππ≤+≤得62x ππ≤≤, 所以()f x 的增区间是06,π⎡⎤⎢⎥⎣⎦,减区间是,62ππ⎡⎤⎢⎥⎣⎦;(2)由(1)得062sin 265x π⎛⎫+= ⎪⎝⎭,即03sin 265x π⎛⎫+= ⎪⎝⎭, 因为0,43x ππ⎡⎤∈⎢⎥⎣⎦,所以0252,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以04cos 265x π⎛⎫+=- ⎪⎝⎭,所以0000cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦431552=-+⨯=【点睛】本题考查求三角函数的周期与单调区间,考查两角和与差的正弦、余弦公式,二倍角公式,同角间的三角函数关系.解题关键是把三角函数化为一个角的一个三角函数形式,然后由正弦函数性质求解. 26.(1)3A π=;(2)(2【分析】 (1)利用正弦定理的边角互化可得222a b c bc =+-,再利用余弦定理即可求解. (2)利用正弦定理可得2sin sin C c B=,再利用三角形的面积公式可得12sin 2sin 2sin ABC C S A B=⨯⨯,根据三角形的内角和性质以及两角差的正弦公式可将式子312tan B ⨯,结合B 的取值范围即可求解. 【详解】解:(1)由已知及正弦定理得, 222,a b c bc =+- 由余弦定理可得2221cos .22b c a A bc +-== 又0A π<<,.3A π∴=(2) 由已知及正弦定理得, 2sin ,sin C c B =由2,3B C π+=得12sin 2sin 2sin ABC C S A B=⨯⨯2sin()313.sin 2tan B B Bπ-==+⨯ ABC 是锐角三角形,得20,0,232B B πππ<<<-<得.62B ππ<<tan B >∴10tan B ∴<<ABC S <<所以ABC面积的取值范围是,2 【点睛】本题考查了正弦定理的边角互化、余弦定理解三角形、三角形的面积公式、两角差的正弦公式,属于中档题.27.(Ⅰ)①②成立,理由见解析,()sin 26f x x π⎛⎫+⎝=⎪⎭;(Ⅱ)f (x )的最大值为1;最小值为12.【分析】(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案. (Ⅱ)03x π≤≤得到52666x πππ≤+≤,得到函数值域,即可得出最值. 【详解】(Ⅰ)由①可得,22ππωω=⇒=. 由②得:6226k k πωπππωϕπϕπ+=+⇒=+-,k Z ∈ 由③得,44m m πωπωωπϕπ+=⇒=-,m Z ∈220322633T πππππωω≥-=⇒≥⇒<≤ 若①②成立,则2ω=,6π=ϕ,()sin 26f x x π⎛⎫+ ⎝=⎪⎭. 若①③成立,则42m m πωπϕππ=-=-,m Z ∈,不合题意. 若②③成立,则()1266264k m m k ππωπωππω+-=-⇒=--≥,k Z ∈与③中的03ω<≤矛盾,所以②③不成立.所以,只有①②成立,()sin 26f x x π⎛⎫+⎝=⎪⎭. (Ⅱ)由题意得,()5102136662x x f x ππππ≤≤⇒≤+≤⇒≤≤. 所以,当6x π=时,函数()f x 取得最大值1;当0x =或3x π=时,函数()f x 取得最小值12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数历年高考题汇编
一.选择题1、(2009)函数
22cos 14y x π⎛
⎫=-- ⎪⎝
⎭是
A .最小正周期为π的奇函数
B .最小正周期为π的偶函数
C .最小正周期为
2π的奇函数 D .最小正周期为2
π
的偶函数 2、(2008)已知函数
2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )
A 、最小正周期为π的奇函数
B 、最小正周期为2π
的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2
π
的偶函数
3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...
是( )
4.(2009山东卷文)将函数
sin 2y x =的图象向左平移
4
π
个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2
2sin y x = C.)4
2sin(1π++=x y D. cos 2y x =
5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为
A .2π
B .
32π C .π D .
2
π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4(
,0)3
π
中心对称,那么φ的最小值为
A.
6π B.4π C. 3π D. 2π
7.(2008海南、宁夏文科卷)函数
()cos 22sin f x x x =+的最小值和最大值分别为( )
A. -3,1
B. -2,2
C. -3,
3
2
D. -2,
32
8.(2007海南、宁夏)函数
πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤
-⎢⎥⎣⎦
,的简图是(
)
二.填空题
1.(2009宁夏海南卷文)已知函数
()2sin()f x x ωφ=+的图像如图所示,则712
f π
⎛⎫
=
⎪⎝⎭。
2.(2009年上海卷)函数
22cos sin 2y x x =+的最小值是_____________________ .
3.(2009辽宁卷文)已知函数()sin()(0)f x x ωϕω=+>的图象如图所示,则ω =
三.解答题
1、(2008)已知函数()sin()(0,0),f x A x a x R ϕϕπ=+><<∈的最大值是1,其图像经过点1
(,)32
M π。
(1)求
()f x 的解析式;
(2)已知,(0,)2παβ∈,且312
(),(),513
f f αβ==求()f αβ-的值。
12、(2006)已知函数()sin sin(),2
f x x x x R π
=++∈.
(I)求
()f x 的最小正周期;
(II)求()f x 的的最大值和最小值;
(III)若3
()4
f α=,求sin2α的值.
30.(2009北京文)(本小题共12分)已知函数()2sin()cos f x x x π=-.
(Ⅰ)求
()f x 的最小正周期;
(Ⅱ)求
()f x 在区间,62ππ⎡⎤
-⎢⎥⎣⎦
上的最大值和最小值.
三角函数历年高考题汇编参考答案
一.
选择题
1.A
2.D
3.D
4.A
5.A
6.A
7.C
8.A 二.填空题
1. 0 2. 132
三.解答题 1.
()sin()2
f x x π
=+
56
()sin()cos()265
f παβαβαβ-=-+=-=
2. (1)2T π=
(2)
min max f f == (3)7sin 216
α=- 3. (1)T
π=
(2)min max 12
f f =-
=。