高考数学选择题解法专题

合集下载

专题11 计数原理【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

专题11 计数原理【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2020年高考数学课标Ⅲ卷理科·第14题
18.(2018年高考数学课标卷Ⅰ(理)·第15题)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.。(用数字填写答案)
【答案】16
解析:方法一:直接法,1女2男,有 ,2女1男,有
【题目栏目】计数原理\二项式定理\二项式定理
【题目来源】2020年高考数学课标Ⅰ卷理科·第8题
5.(2019年高考数学课标Ⅲ卷理科·第4题) 的展开式中 的系数为()
A.12B.16C.20D.24
【答案】【答案】A
【解析】因为 ,所以 的系数为 ,故选A.
【点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数,是常规考法。
(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2017年高考数学课标Ⅲ卷理科·第4题
9.(2017年高考数学课标Ⅱ卷理科·第6题)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()
2013-2022十年全国高考数学真题分类汇编
专题11计数原理
一、选择题
1.(2020年新高考I卷(山东卷)·第3题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同 安排方法共有()
A.120种B.90种
C.60种D.30种
【答案】C
现在可看成是3组同学分配到3个小区,分法有:
根据分步乘法原理,可得不同的安排方法 种

2015高考数学(文)二轮专题复习课件:考前增分策略_专题一 选择题的解题方法与技巧

2015高考数学(文)二轮专题复习课件:考前增分策略_专题一 选择题的解题方法与技巧
1 1 1 (2)令 x=e- ,则 a=- ,b=-1,c=- .故选 2 2 8 C.
答案 C
Z 重 点方法 讲 解
二、取特殊函数 例3 定义在R上的奇函数f(x)为减函数,设a+ b≤0,给出下列不等式: ①f(a)· f(-a)≤0;
②f(b)· f(-b)≥0;
③f(a)+f(b)≤f(-a)+f(-b); ④f(a)+f(b)≥f(-a)+f(-b). 其中正确的不等式序号是( B ) A.①②④ B.①④ C.②④ D.①③
确是解答选择题的先决条件,选择题不设中间分,一步
失误,造成错选,全题无分,所以应仔细审题、深入分 析、正确推演、谨防疏漏,确保准确;
迅速是赢得时间获取高分的必要条件,对于选择题的答
题时间,应该控制在不超过40分钟左右,速度越快越好,
高考要求每道选择题在1~3分钟内解完,要避免“超时 失分”现象的发生. 高考中的数学选择题一般是容易题或中档题,个别 题属于较难题,当中的大多数题的解答可用特殊的方法
快速选择.解选择题的基本思想是既要看到各类常规题
的解题思想,但更应看到选择题的特殊性,数学选择题 的四个选择支中有且仅有一个是正确的,因而,在解答
时应该突出一个“选”字,尽量减少书写解题过程,
要充分利用题干和选择支两方面提供的信息,依据题目的 具体特点,灵活、巧妙、快速地选择解法,以便快速智取, 这是解选择题的基本策略.数学选择题的求解,一般有两
随堂讲义•第二部分
专题一
考前增分策略
选择题的解题方法与技巧
数学选择题在广东高考试卷中,所占的分值占全卷 的26.7%(理科)与33.3%(文科),它具有概括性强,知识 覆盖面广,小巧灵活,且有一定的综合性和深度等特点, 同学们能否迅速、准确、全面、简捷地解好选择题,对 于能否进入最佳状态,以至于整个考试的成败起着举足 轻重的作用.解答选择题的基本策略是准确、迅速.准

高考数学选择题的常见解法

高考数学选择题的常见解法
r z 1 ≥ O, z( 一 )
值、 特殊 数 列 、 殊 函数 、 殊 图形 、 特 特 特殊 角、 殊位 置 特
等.
解: 由 1≥ O
【 3 ( 08 全 国 ) 函数 Y一 - - 与 函数 Y= 例 】 20 , 若 厂z ()
点评 : 直接 法是解 答选择 题 最 常用 的基本 方 法, 低
用是 解 选择 题 的 常 用 方 法.
质、 定理 、 法则 等知识 , 过推理运 算 , 出结 论 , 通 得 再对 照
选择项 , 中选出正确答案 的方法叫直接法 . 从 【 1 (0 8 全 国) 例 】 20 , 函数 一
义域为 ( ) . B { z 1 .z{≥ } D { l4 z 1 . z o ≤ ) z 1 z O 可得 选 项 c ≥ 或 ≥ . .
【 2 (0 8 江 西) 例 】 20 , 函数 —tn + s 一 l n ax i 眦 z t c a
—i 在 间号, 内 图 大 是 ) s 区 ( ) 的 象 致 ( . 眦l
4 代入法 : 各个选 择项 逐 一代 入题 设 进行检 验 , . 将 从 而作 出正确判 断 的方法 叫代入法 , 又称 为验证法 , 即 将 各选择 支分别 作为 条件 , 去验证命 题 , 能使 命题成 立 的选择支就是正 确答案 .
交 点 还 可 以 在 圆 内 , 可 以在 圆 外 . 此 , 圆 与 过 圆直 也 因 从
径 两端点所作的两相交直线 的关 系来看 , 可将勾 股定理
加 以推 广 .
味 求 快 则 会 快 中 出错 .
l ̄z n / +l的图象关 于直 - 一 对称 , 厂 z =( 则 ()
A. 2- eX 2 B. ez C. 州 e D

高考数学选择题十大解题方法总结

高考数学选择题十大解题方法总结

2021高考数学选择题十大解题方法总结数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。

小编准备了高考数学选择题十大解题方法,希望你喜欢。

1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高考数学选择题十大解题方法就为大家介绍到这里,希望对你有所帮助。

[全]高考数学选择题六大答题技巧(附例题详解)

[全]高考数学选择题六大答题技巧(附例题详解)

[全]高考数学选择题六大答题技巧(附例题详解)选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右:(1)绝大部分数学选择题属于中低档题,且一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有较好区分度的基本题型之一。

(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点,且每一题几乎都有两种或两种以上的解法,能有效地检测学生的思维层次及观察、分析、判断和推理能力。

目前高考数学选择题采用的是一元选择题(即有且只有一个正确答案),由选择题的结构特点,决定了解选择题除常规方法外还有一些特殊的方法.解选择题的基本原则是:“小题不能大做”,要充分利用题目中(包括题干和选项)提供的各种信息,排除干扰,利用矛盾,作出正确的判断。

数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果。

二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件。

解答数学选择题的主要方法包括直接法、概念辨析法、数型结合法、特殊值法、排除法、逆向思维法等,这些方法既是数学思维的具体体现,也是解题的有效手段。

一一、直接法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支。

这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解。

思路解析:关于直线与圆锥曲线位置关系的题目,通常是联立方程解方程组.本题即是利用渐近线与抛物线相切,求出渐近线斜率.二、概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”。

2015届高考数学(理)二轮专题配套练习:选择题的解法(含答案)

2015届高考数学(理)二轮专题配套练习:选择题的解法(含答案)

选择题的解法【题型特点概述】高考数学选择题主要考查对基础知识的理解、基本技能的熟练程度、基本计算的准确性、基本方法的正确运用、考虑问题的严谨、解题速度的快捷等方面,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识、解决数学问题的能力.选择题是属于“小灵通”题,其解题过程“不讲道理”,所以解答选择题的基本策略是:充分地利用题干和选择支两方面的条件所提供的信息作出判断.先定性后定量,先特殊后推理,先间接后直接,先排除后求解,对于具有多种解题思路的,宜选最简解法等.解题时应仔细审题、深入分析、正确推演、谨防疏漏.初选后认真检验,确保准确.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧.总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做. 方法一 直接法直接法就是从题干给出的条件出发,进行演绎推理,直接得出结论.这种策略多用于一些定性的问题,是解选择题最常用的策略.这类选择题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后与选择支对照,从而作出相应的选择.例1 数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m 、n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( ) A .12 B .23 C .32D .2思维升华 直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.将函数y =sin 2x (x ∈R )的图象分别向左平移m (m >0)个单位、向右平移n (n >0)个单位所得到的图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则|m -n |的最小值为( )A .π6B .5π6C .π3D .2π3方法二 特例法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.例2 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) A .130 B .170 C .210 D .260(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1 D.3∶1思维升华 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.已知O 是锐角△ABC 的外接圆圆心,∠A =60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( )A .32 B . 2 C .1 D .12方法三 排除法(筛选法)例3 函数y =x sin x 在[-π,π]上的图象是()思维升华 排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法.函数y =2|x |的定义域为[a ,b ],值域为[1,16],a 变动时,方程b =g (a )表示的图形可以是()方法四 数形结合法(图解法)在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来,通过对规范图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,化抽象为直观,化直观为精确,从而使问题得到解决,这种方法称为数形结合法. 例4 函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-2≤x ≤4)的所有零点之和等于( ) A .2 B .4 C .6 D .8思维升华 本题考查函数图象的应用,解题的关键是将零点问题转化为两图象的交点问题,然后画出函数的图象找出零点再来求和.严格地说,图解法并非属于选择题解题思路范畴,但它在解有关选择题时非常简便有效.运用图解法解题一定要对有关函数的图象、方程曲线、几何图形较熟悉.图解法实际上是一种数形结合的解题策略.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A .33 B .-33 C .±33D .- 3 方法五 估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次. 例5 若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( ) A .34 B .1 C .74 D .2思维升华 “估算法”的关键是确定结果所在的大致范围,否则“估算”就没有意义.本题的关键在于所求值应该比△AOB 的面积小且大于其面积的一半.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( )A .m -39-mB .m -3|9-m |C .13D .51.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.例1A 变式训练1 C例2 (1)C (2)B 变式训练2 A 例3 A 变式训练3 B 例4 C 变式训练4 B 例5 C 变式训练5 D。

最新高考数学选择题常用解法(教师版)

最新高考数学选择题常用解法(教师版)
高考数学选择题常用解法
高考数学试题中, 选择题的分值占全卷的 40%,同时它又在全卷的开始部分,所以解选择题的快慢和成功率 的高低对于能否进入最佳状态,以至于整个考试的成败起着举足轻重的作用. 近年高考选择题减少了繁烦的运算,着力考查学生的逻辑思维与直觉思维能力,以及观察、分析、比较、选择 简捷运算方法的能力,突出了对学生数学素质的考查。试题运算量不大,以认识型和思维型的题目为主,许多题 目既可用通性、通法直接求解,也可用 “特殊”方法求解。下面介绍高考数学选择题的 10 种常用解法. 解数学选择题有两个基本思路:一是直接法;二是间接法 ①充分利用题干和选择支两方面提供的信息,快速、准确地作出判断,是解选择题的基本策略。 ②解选择题的基本思想是:既要看到通常各类常规题的解题思想,原则上都可以指导选择题的解答;更应看 到。根据选择题的特殊性,必定存在着若干异于常规题的特殊解法。我们需把这两方面有机地结合起来,对具体 问题具体分析。
B.62
C.63
D.64 例2
注:本题也可尝试利用基本不等式进行变换. 一个长方体共一顶点的三个面的面积分别是 2, 3, 6 ,这个长方体对角线的长是 ( A. 2 3 B. 3 2 C.6 D. 6 )
x 1 , y sin x ,这两个方程的曲线交点的个数就是原方程实数解的个数 .由于直线 y x 的斜率 100 100
B. f (a) f (b)
C. f (a)
ca [ f (b) f (a)] ba
D. f (a)
ca [ f (b) f (a)] ba
5.有三个命题:①垂直于同一个平面的两条直线平行;②过平面 的一条斜线 l 有且仅有一个平面与 垂直;③ 异面直线 a , b 不垂直,那么过 a 的任一平面与 b 都不垂直。其中正确的命题的个数为( ) A.0 B.1 C.2 D.3 2 2 n-1 6.数列 1,1+2,1+2+2 ,…,1+2+2 +…+2 ,…的前 99 项的和是( ) A.2100-101 B.299-101 C.2100-99 D.299-99 练习精选答案:B ACCDA

高考数学选择题解法技巧例析

高考数学选择题解法技巧例析


。 l |五
A. BI
图 1
一  ̄5 4 o0 / - — s. — c


解析 : 显然 , 只有 当 尸移动到 中心 0 时 , MN 有 唯一


1 。 1 .∈( ,] ≤cs g 1 3 .
的最大值 , 淘汰选项 A、 P点 移动时 , c; z与 的关 系应
的线-易 q ,以 + 一,n1 4+卫 故 选 u. 直 y1 知一 2 吉 1 : 4 l6, D。 , 一所 当 = 队 = /
时 , 择 项 中 只 有 C为 1 选 . 【 4 ( 0 8 北 京 ) 图 2 动 例 】 50 , 如 ,


【 2 (0 8 福建) 曲线 2 例 】 20 , 双 X
干和选择支两方 面 提供 的信 息 , 据题 目的具体 特点 , 依 灵活 、 巧妙 、 速地 选择 解 法 , 快 以便 快 速智 取. 答选 择 解 题 的常用 方 法 有 : 接 法 、 除 法 ( 称 筛 选 法 , 汰 直 排 也 淘 法)验证法 、 、 分析法 、 特例法 、 估算法 、 图解法 .

) .

c ( , 。 . 3 +。 )
D [ , 。 . 3 +。 )
Y 则 函数 一厂 z 的 图象大致是 ( , ()
) .
解 析 : 图 1 设 I F —m, 如 , 2 P l
F P 2 (< ) 当 P 在 右 顶 l F 一 O ≤兀 ,
点处时 , 一兀 .
该是线性 的 ' 淘汰选项 D, B 选 ・
另外 , 也可用 三 角形 的两边 和 大 于第 三边 , 两边 及
差小 于第 三边 的关 系解题 , 要注 意前者 可 以取 到等号 但
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 高考数学选择题简捷解法专题(1) 一、数形结合 画出图形或者图象能够使问题提供的信息更直观地呈现,从而大大降低思维难度,是解决数学问题的有力策略,这种方法使用得非常之多。

【例题】、(07江苏6)设函数()fx定义在实数集上,它的图象关于直线1x对称,且当1x时,

()31xfx,则有( )。 A、132()()()323fff B、231()()()323fff C、213()()()332fff D.321()()()233fff 【解析】、当1x时,()31xfx,()fx的 图象关于直线1x对称,则图象如图所示。 这个图象是个示意图,事实上,就算画出

()|1|fxx的图象代替它也可以。由图知, 符合要求的选项是B, 【练习1】、若P(2,-1)为圆22(1)25xy的弦AB的中点,则直线AB的方程是( )

A、30xy B、230xy C、10xy D、250xy (提示:画出圆和过点P的直线,再看四条直线的斜率,即可知选A)

【练习2】、(07辽宁)已知变量x、y满足约束条件20170xyxxy,则yx的取值范围是( )

A、9,65 B、

9

,6,5



 C、,36, D、3,6

(提示:把yx看作可行域内的点与原点所在直线的斜率,不难求得答案 ,选A。)

【练习3】、曲线214(2,2)yxx 与直线(2)4ykx有两个公共点时, k的取值范围是( )

A、5(0,)12 B、11(,)43

C、5(,)12 D、53(,)124 (提示:事实上不难看出,曲线方程214(2,2)yxx的图象为 2

22(1)4(22,13)xyxy,表示以(1,0)为圆心,2为半径的上半圆,如图。直线

(2)4ykx过定点(2,4),那么斜率的范围就清楚了,选D)] 【练习4】、函数)1(||xxy在区间 A上是增函数,则区间A是( )

A、0, B、21,0

C、,0 D、,21 (提示:作出该函数的图象如右,知应该选B)

【练习5】、曲线13||2||yx与直线mxy2 有两个交点,则m的取值范围是( ) A、4m或4m B、44m C、3m或3m D、33m (提示:作出曲线的图象如右,因为直线

mxy2与其有两个交点,则4m或4m,选A)

【练习6】、(06湖南理8)设函数()1xafxx,集合|()0Mxfx,'|()0Pxfx,若MP,则实数a的取值范围是( ) A、(,1) B、(0,1) C、(1,) D、[1,)

(提示:数形结合,先画出()fx的图象。111()1111xaxaafxxxx。当1a时,图象如左;当1a时图象如右。

由图象知,当1a时函数()fx在(1,)上递增,'()0fx,同时()0fx的解集为(1,)的真子集,选C) 【练习7】、(06湖南理10)若圆2244100xyxy上至少有三个不同的点到直线

:0laxby的距离为22,则直线l的倾斜角的取值范围是( ) 3

A、,124 B、5,1212 C、,63 D、0,2 (提示:数形结合,先画出圆的图形。圆方程化为 222(2)(2)(32)xy,由题意知,圆心到直线

的距离d应该满足02d,在已知圆中画一个半 径为2的同心圆,则过原点的直线:0laxby与小圆有公共点,∴选B。) 【练习8】、(07浙江文10)若非零向量a,b满足|a-b|=| b |,则( ) A、|2b| > | a-2b | B、|2b| < | a-2b | C、|2a| > | 2a-b | D、|2a| < | 2a-b |

(提示:关键是要画出向量a,b的关系图,为此 先把条件进行等价转换。|a-b|=| b ||a-b|2= | b |2 a2+b2-2a·b= b2 a·(a-2b)=0 a⊥(a-2b),又a-(a-2b)=2b,所以|a|,| a-2b |, |2b|为边长构成直角三角形,|2b|为斜边,如上图, ∴|2b| > | a-2b |,选A。 另外也可以这样解:先构造等腰△OAB,使OB=AB, 再构造R△OAC,如下图,因为OC>AC,所以选A。)

【练习9】、方程cosx=lgx的实根的个数是( ) A、1 B、2 C、3 D、4 (提示:在同一坐标系中分别画出函数cosx与lgx的图象,如图,

由两个函数图象的交点的个数为3,知应选C) 【练习10】、(06江苏7)若A、B、C为三个集合,ABBC,则一定有( ) A、AC B、CA C、AC D、A

(提示:若ABC,则,ABABCBA 成立,排除C、D选项,作出Venn图,可知A成立)

【练习11】、(07天津理7)在R上定义的函数()fx是偶函数,且()(2)fxfx。若()fx在区间[1,2]上是减函数,则()fx( ) A、在区间[-2,-1]上是增函数,在区间[3,4]上是增函数 B、在区间[-2,-1]上是增函数,在区间[3,4]上是减函数 C、在区间[-2,-1]上是减函数,在区间[3,4]上是增函数 4

D、在区间[-2,-1]上是减函数,在区间[3,4]上是减函数 (提示:数形结合法,()fx是抽象函数,因此画出其简单图象即可得出结论,如下左图知选B)

【练习12】、(07山东文11改编)方程321()2xx的解0x的取值区间是( ) A、(0,1) B、(1,2) C、(2,3) D、(3,4) (提示:数形结合,在同一坐标系中作出函数321,()2xyxy的图象,则立刻知选B,如上右图)

二、特值代验 包括选取符合题意的特殊数值、特殊位臵和特殊图形,代入或者比照选项来确定答案。这种方法叫做特值代验法,是一种使用频率很高的方法。

【例题】、(93年全国高考)在各项均为正数的等比数列na中,若569aa,则

3132310logloglogaaa( ) A、12 B、10 C、8 D、32log5 【解析】、思路一(小题大做):由条件有4529561119,aaaqaqaq从而 10129295101231011()3aaaaaqaq

,

所以原式=10312103log()log310aaa,选B。 思路二(小题小做):由564738291109aaaaaaaaaa知原式=5103563log()log33aa,选B。 思路三(小题巧做):因为答案唯一,故取一个满足条件的特殊数列563,1aaq即可,选B。

【练习1】、(07江西文8)若02x

,则下列命题中正确的是( )

A、2sinxx B、2sinxx C、3sinxx D、3sinxx

(提示:取,63x验证即可,选B) 【练习2】、(06北京理7)设4710310()22222()nfnnN,则()fn( ) A、2(81)7n B、12(81)7n C、32(81)7n D、42(1)7nn (提示:思路一:f(n)是以2为首项,8为公比的等比数列的前4n项的和,

所以442(18)2()(1)187nnfnn,选D。这属于直接法。 5

思路2:令0n,则344710421(2)2(0)2222(81)127f,对照选项,只有D成立。) 【练习3】、(06全国1理9)设平面向量a1、a2、a3的和a1+a2+a3=0,如果平面向量b1、b2、b3满足| bi|=2| ai |,且ai顺时针旋转30以后与bi同向,其中i=1、2、3则( ) A、-b1+b2+b3=0 B、b1-b2+b3=0 C、b1+b2-b3=0 D、b1+b2+b3=0 (提示:因为a1+a2+a3=0,所以a1、a2、a3构成封闭三角形,不妨设其为正三角形,则bi实际上是

将三角形顺时针旋转30后再将其各边延长2倍,仍为封闭三角形,故选D。)

【练习4】、若()(0,1)xfxaaa,1(2)0,f则1(1)fx的图象是( )

A、 B、 C、 D、 (提示:抓住特殊点2,1(2)0f,所以对数函数1()fx是减函数,图象往左移动一个单位得

1(1)fx,必过原点,选A)

【练习5】、若函数(1)yfx是偶函数,则(2)yfx的对称轴是( ) A、0x B、1x C、12x D、2x (提示:因为若函数(1)yfx是偶函数,作一个特殊函数2(1)yx,则(2)yfx变为2(21)yx,即知(2)yfx的对称轴是12x,选C)

【练习6】、已知数列{an}的通项公式为an=2n-1,其前n和为Sn,那么 Cn1S1+ Cn2S2+„+ CnnSn=( ) A、2n-3n B、3n -2n C、5n -2n D、3n -4n (提示:愚蠢的解法是:先根据通项公式an=2n-1求得和的公式Sn,再代入式子Cn1S1+ Cn2S2+„+ CnnSn,再利用二项式展开式的逆用裂项求和得解,有些书上就是这么做的!其实这既然是小题,就应该按照小题的解思路来求做:令n=2,代入式子,再对照选项,选B)

【练习7】、(06辽宁理10)直线2yk与曲线2222918kxykx(,1kRk)的公共点的个数是( ) A、1 B、2 C、3 D、4

(提示:取1k,原方程变为22(1)19yx,这是两个椭圆,与直线2y有4个公共点,选D) 【练习8】、如图左,若D、E、F分别是 三棱锥S-ABC的侧棱SA、SB、SC上的点, 且SD:DA=SE:EB=CF:FS=2:1,那么平 面DEF截三棱锥S-ABC所得的上下两部分

相关文档
最新文档