清华大学随机过程作业 答案

合集下载

研究生《随机过程》教材课后作业答案

研究生《随机过程》教材课后作业答案

1.1 证明:∵1111,,,,,A F F F F ∈ΩΦ∈ΩΩ∈Φ∈Ω-Φ∈ΩΦ∈ 且∴1F 是事件域。

∵222,,,,cA A F F A F A A ∈Ω∈Ω∈-Φ∈=Ω-∴22222,,,,c c A F A F A F A F A F ∈-Φ∈-Φ∈Ω-∈Ω-∈ 且2,ccA A A A F ΦΩ=ΩΦΩ∈ ∴2F 是事件域。

且12F F ∈。

∵2ΩΩ∈∴3F Ω∈∴3F 是事件域。

且23F F ∈∴123,,F F F 皆为事件域且123F F F ∈∈。

1.2一次投掷三颗均匀骰子可能出现的点数ω为(),,,,,,16,16,16i j k i R j R k R i j k ∈∈∈≤≤≤≤≤≤∴样本空间()61,,6=,,n i j k i j k =≤≤Ω事件(){},,|,,i j k A i j k ωω==,,,,1,,6i R j R k R i j k ∈∈∈≤≤ 事件域2F Ω= 概率测度(),,1P 216i j k A =,,,,1,,6i R j R k R i j k ∈∈∈≤≤ 则(),,F P Ω为所求的概率空间。

1.3 证明:(1)由公理可知()0P Φ=(2)有概率测度的可列可加性将第n+1个集合往后都取为空集,即可得结论()11n nk k k k P A P A ==⎛⎫= ⎪⎝⎭∑∑ (3)∵,,A B F A B ∈⊂ ∴B A F -∈,()A B A -=Φ由概率测度的可列可加性可得:()()()()P B P A B A P A P B A =+-=+-即()()()P B A P B P A -=-有概率测度的非负性可得()()()0P B P A P B A -=-≥,即()()P B P A ≥ (4)若B =Ω,由(3)则有()()1P A P A =- (5)∵()()()()121212P A A P A P A P A A +=+- 假设()()()()()11211111m m m k k i j i j k m k i j m i j k m k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=⎛⎫=-+-+- ⎪⎝⎭∑∑∑ 成立,则()()()()()()()()()11111111111111211111+1m m m m k k m m k m k k k k k mm k iji j k k i j mi j k mm m m m k k m k i j i k i j mP A P A A P A P A P A A P A P A P A A P A A A P A A A P A A P A P A A P A A ++++====+=≤<≤≤<<≤++=+=≤<≤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+-+-⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭=-+∑∑∑∑∑()()()()()()()()()()()()1121111121111212111111111n j k m i j k mm i j m i j k m m m i j m i j k m m m k i j i j k m k i j m i j k m A P A A A P A A A P A A A A P A A A A P A P A A P A A A P A A A +≤<<≤++++≤<≤≤<<≤+++=≤<≤+≤<<≤+-+-⎛⎫--+-+- ⎪⎝⎭=-+-+-∑∑∑∑∑∑也成立由数学归纳法可知()()()()()11211111n n n k k i j i j k n k i j n i j k n k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=⎛⎫=-+-+- ⎪⎝⎭∑∑∑()()()()()()111122212123231231n nn n k k k k k k k k n n n k k k k k k nk k nk k P A P A A P A P A P A A P A P A P A P A A P A A P A P A P A P A =========⎛⎫⎛⎫⎛⎫⎛⎫=+=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫≤++ ⎪⎝⎭≤≤∑1.4 (1)()()()()()()()()()()()()()()()()()()()()()21040114P AB P A P B P AB P AB P A P B P AB P A P B P A P AB P A P B P AB P A P A B P A P A P A ≤-≤-≤≤-≤-=-=+-⎡⎤⎡⎤⎣⎦⎣⎦≤-≤(2)()()()()()()()()()()()()()()()()()()()()()()()if =1else if =P AB P BC P AB P BC P AB P AC P A B C P ABC P AB P BC P AC P A B C P ABC P BC P A B C P AB P BC P AB P BC --+=++-+=++-≤+≤--- 可由这个式子的轮换对称性证明这种情况(3)()()()()()()()()()()11111111111n nk k k k n nn nk k k k k k k k nk k nk k A A A AP A P A P A P A n P A P A n P A P A P A n ========⊂∴⊃⎛⎫≤≤=-=- ⎪⎝⎭-≤-∴≥--∑∑∑∑∑1.5()1(1)k nkk A P X k n--== 1.6由全概率公式()()()()()()()()()()()()100112211110101=1424P Y X P Y P X P Y P X P Y P X P Y P Y P Y e -≥=≥=+≥=+≥==+-=+-=-=-1.7 证明: 显然()()()()111111122,,,,,,0n n n n n F x x F x x F y x P x X y x X x X ∆=-=≤≤≤≤≥假设()()121111222,,,,,,,0i n i i i i i n n F x x P x X y x X y x X y x X x X ∆∆∆=≤≤≤≤≤≤≤≤≥ 成立 从而()()()()12+11111222111112221111122211122,,,,,,,,,,,,,,,,,,,0i i n i i i i i n n i i i i i n n i i i i i n n F x x P x X y x X y x X y x X x X P x X y x X y x X y y X x X P x X y x X y x X y x X x X +++++++++∆∆∆∆=≤≤≤≤≤≤≤≤-≤≤≤≤≤≤≤≤=≤≤≤≤≤≤≤≤≥ (分布函数对于每一变元单调不减)也成立有数学归纳法可知()()121111222,,,,0n n n n n F x x P x X y x X y x X y ∆∆∆=≤≤≤≤≤≤≥1.8()()()()()()()()()()()''''''',,0','x y x y x x y x y x y x y x y x x y y h x y eeh x y eeeee e e e x x y y -+-+-+-+-+-+----∆=-∆∆=---=--≥≤≤所以h 是二元单调不减函数。

随机过程第二章作业及参考答案

随机过程第二章作业及参考答案

第二章 平稳过程2. 设随机过程()sin X t Ut =,其中U 是在[]02π,上均匀分布的随机变量。

试证 (1)若t T ∈,而{}12T = ,,,则(){}12X t t = ,,,是平稳过程; (2)若t T ∈,而[)0T =+∞,,则(){}0X t t ≥,不是平稳过程。

证明:由题意,U 的分布密度为:()10220u f u ππ⎧<<⎪=⎨⎪⎩,,其它数学期望()()[]sin X m t E X t E Ut ==⎡⎤⎣⎦()()2220001111sin sin cos cos 212222ut du ut d ut ut t t t t ππππππππ=⋅==-=--⎰⎰.相关函数()()()()()sin sin X X R R t t E X t X t E Ut U t ττττ=+=+=⋅+⎡⎤⎡⎤⎣⎦⎣⎦,()()()2200111sin sin cos 2cos 222ut u t du ut u u du ππτττππ⎛⎫=⋅+⋅=⋅-+--⎡⎤ ⎪⎣⎦⎝⎭⎰⎰ ()()2220001111cos 2cos sin 2sin 442u t u du u t u t πππττττππττ⎡⎤=-+-=-+-⎡⎤⎢⎥⎣⎦+⎢⎥⎣⎦⎰()()11sin 22sin 2424t t πτπτπτπτ=-+++.(1)若t T ∈,而{}12T = ,,时,()0X m t =,()X R τ只与τ有关,二者均与t 无关,因此,(){}12X t t = ,,,是平稳过程。

(2)若t T ∈,而[)0T =+∞,时,()X m t 可能取到不是常数的值,所取到的值与t 有关,()X R τ取到的值也与t 有关,因此,(){}0X t t ≥,不是平稳过程。

3. 设随机过程()()0cos X t A t ωΦ=+,t -∞<<+∞其中0ω是常数,A 和Φ是独立随机变量。

随机过程课后题答案

随机过程课后题答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。

随机过程作业和答案第一二章

随机过程作业和答案第一二章

随机过程作业第一章 P9例题6:随机过程X(t)=A+Bt, t ≥0, 其中A 和B 是独立随机变量,分布服从正态分布N(0, 1)。

求X(t)的一维和二维分布。

解 先求一维分布。

当t 固定,X(t)是随机变量,因为 EX(t)=EA+tEB=0, DX(t)=DA+2t DB=1+2t故X(t)具有正态分布N(0, 1+2t )。

这亦是随机过程X(t)的一维分布。

再求二维分布。

当1t , 2t 固定, X(1t )=A+B 1t , X(2t )=A+B 2t因A 、B 独立同正态分布,故(A, B)T 亦为二维正态分布。

则其线性变换也服从正态分布。

且所以二维分布是数学期望为(0, 0)T,协方差矩阵 的二维正态分布。

P10例题7:随机过程X(t)=Acost, -∞<t<∞,其中A 是随机变量,且有分布列 A 1 2 3 P 1/3 1/3 1/3 求 (1) 一维分布函数(2) 二维分布函数解 (1) 先求所以222211211)DX(t ,1)DX(t , 0)EX(t ,0)(t t t EX +=+===212121211))(())()X(t ())X(t ),(cov(t t Bt A Bt A E t X E t X +=++==⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t )3π,0x x F )2πF(x;x F ;,( ),4;(21π( ;) 4F x π。

X()cos ,442A A ππ==显然,三值,,易知它仅取2232 22{()42P X π=={cos 42P A π==1P{A 1},3==31}223)4({ ,31 }2)4({====ππX P X P 同理,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<= 2 23 x 1,2 23x 2 ,32 2 x 22 ,3122 x 0 )4; ( ,πx F进而有P18例题1:具有随机初相位的简谐波 其中a 与 是正常数,而 服从在区间[0,2 ]上的均匀分布, 求X(t)的数学期望方差和相关函数。

随机过程第三章作业答案

随机过程第三章作业答案
k =0 ∞ ∞
Yk-1 ]] ≤ b ⋅ ∑ E[I{T ≥ k} ]
k =0
= b ⋅ ∑ P(T ≥ k) = b(1 + E[T]) < ∞,即E[W] < ∞
10证明:利用停时定理2 由已知P(T<∞)=1,得条件1已满足。
2 2 又∀n ≥ 1,E[X T ∧ n ]=E[|X T ∧ n | ] ≤ c;
利用柯西-施瓦茨不等式(E[XY])2 ≤ E[X 2 ]E[Y 2 ]: 令Y=1,(E[|X T ∧ n |])2 ≤ E[|X T ∧ n |2 ]E[12 ] ≤ c ∴ E[|X T ∧ n |] ≤ c,进而有E[ sup|X T ∧ n |] ≤ c < ∞,
第三章习题解答
3-(1) ∵{ X n , n ≥ 0}是鞅, ∴ E[X 0 ] = E[X n ] = 0,且有 E[Yk ]=E[X k -X k-1 ]=0;Var(Yk )=E[Yk2 ];Var(X n )=E[X 2 n ];
2 E[Yk2 ]=E[(X k -X k-1 )2 ]=E[X k +X 2 k-1 -2X k X k-1 ] 2 =E[X k ]+E[X 2 其中 k-1 ]-2E[X k X k-1 ],
9 (一)常规证明: 右侧不等号: E[X T ∧ n ]=E[X T ∧ n ⋅ I{T ≥ n} ]+E[X T ∧ n ⋅ I{T<n} ]=E[X n ⋅ I{T ≥ n} ]+E[X T ⋅ I{T<n} ] =E[X n ⋅ I{T ≥ n} ]+E[∑ X k ⋅ I{T=k} ]
k =0 n-1
E[X k X k-1 ]=E[E[X k X k-1|X 0 X1 =E[X k-1E[X k |X 0 X1

清华大学随机过程作业 答案

清华大学随机过程作业 答案

清华大学电子工程系版权所有
3
参考答案:
(1) |X1|, |X2|, |X3|, ... 满足 Markov 性,可以严格证明:P (|Xn+1| = xn+1||X1| = x1, ..., |Xn| = xn) = P (|Xn+1| = xn+1||Xn| = xn)。 当 |Xn| = 0 时,必有:|Xn+1| = 1,P (|Xn+1| = 1||X1| = x1, ..., |Xn| = 0) = 1 = P (|Xn+1| = 1||Xn| = 0) 当 |Xn| = xn ̸= 0 ∨ m 时,则 |Xn+1| = xn+1 必须取值为 |Xn| ± 1
=
(i1,
i2),
Zt−1
=
(xt−1,
yt−1),
·
·
·
,
Z1
=
(x1,
y1)}
=
2
0
0 < i1 = i2 < m 其他

1
P {Zt+1
=
(i1,
i2)|Zt
=
(i1,
i2),
Zt−1
=
(xt−1,
yt−1),
·
·
·
,
Z1
=
(x1,
y1)}
=
2
0
i1 = i2 = m 其他

2. 设一个离散时间、离散状态的随机过程 {Xn, n ⩾ 1} 满足
X1, · · · , Xn−1⊥Xn+1|Xn, ∀n > 1
则成立

《随机过程》课后习题解答

《随机过程》课后习题解答
6、证函数 f (t ) 解 (1)
( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2

i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)

x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )

f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt

3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n

随机过程第一章习题答案

随机过程第一章习题答案
似水年华轻轻一瞥,年华似水轻描淡写
随机过程 第一章 习题答案
1.方法一: F (t ; x) P{ X (t ) x} P{ X sin t x} 当t k 时,P{ X (t ) 0} 1,其中k为整数,
k 当t 时,
x x sin t (i)若 sin t 0, F (t ; x) P{ X } ( x) dx sin t x 1 1 1 1 x 2 f (t ; x) ( ) exp{ ( )} sin t sin t sin t 2 2 sin t x x x sin t (ii )若 sin t 0, F (t ; x) P{ X } 1 P{ X } 1 ( x)dx sin t sin t 1 1 1 x 2 f (t ; x) Fx' (t ; x) exp{ ( )} sin t 2 2 sin t 1 1 x 2 f (t ; x) exp{ ( ) }, k 为整数。 2 sin t 2 sin t

时,k为整数,有 X
一维分布密度为:f (t ; x) 当t= k

时,k为整数,有P{ X (t ) 0} 1
1 1 Xt x}=P{e } e Xt x 1 1 1 =P{Xt ln }=P{Xt ln x}=P{X ln x}=1-P{X ln x} x t t 1 11 1 1 f (t ; x) Fx' (t ; x) f ( ln x)( ) f ( ln x) t t x tx t 2.F(t;x)=P{X(t) x}=P{e Xt x}=P{
方法二: X N(0,1) EX=0,EX 2 =DX=1 EX(t)=E(Xsin t)=sin tEX 0 k N(0 , sin 2 t) 1 1 x 2 exp{ ( ) }, x 2 sin t 2 sin t DX (t ) D(Xsin t) (sin t) 2 DX sin 2 t 当t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 试问该过程是否为马尔可夫链; (2) 计算它的一步转移概率矩阵。
参考答案:
(1) 此过程是马尔可夫链,原因如下: ξ(n) 的状态集为 {0, 1, 2, 3}; 给定当前时刻状态后,下时刻状态的分布完全确定,与 过去时刻的状态无关。
(2) 它的一步转移概率矩阵
0100
P = 019
4 9
4 9
(因为由 Yt−1 = d, Yt−2 = d − 1 可得:|X(t − 1)| = d, 从而 |X(t)| < d)
定义随机序列 Zn = (|Xn|, Yn), n = 1, 2, · · · (由于 Zn 最多 (m + 1)2 种不同值,因
此也可认为是离散随机变量序列), 此随机序列是 Markov 序列,其一步转移概率为:
4 9
4 9
019
0010
4. 设有齐次马尔科夫链,其状态空间为 I : 0, 1, 它的一步转移概率矩阵为:
(
)
P= 1−a a
(0 < a < 1, 0 < b < 1)
b 1−b
试求 P(n)(利用矩阵的特征值、特征矢量方法计算)
(
)
(
)
参考答案:由矩阵特征值理论可得:P = Q 1
0
Q−1, Q = 1 a


见下图。




(2) 给定 0 < d < m,则有:
P (Yt+1
=
d
+
1|Yt
=
d, Yt−1
=
d − 1)
=
1 2
(因为由 Yt = d, Yt−1 = d − 1 可得 |X(t)| = d)
P (Yt+1 = d + 1|Yt = d, Yt−1 = d, Yt−2 = d − 1) = 0
概率密度为 fξn (xn) = fn(xn),E {ξn} = 0,n = 1, 2, . . .。
定义
ηn
=
∑n
i=1
ξi,n
=
1,
2,
.
.
.。试证明:
(1) 序列 η1, η2, · · ·, ηn, · · · 具有马尔科夫性; (2) E (ηn|η1 = y1, η2 = y2, · · ·, ηn−1 = yn−1) = E (ηn|ηn−1 = yn−1) = yn−1。
P (|Xn+1| = xn+1 = xn + 1||X1| = x1, ..., |Xn| = xn) =
P (|Xn+1| = xn + 1, Xn = xn||X1| = x1, ..., |Xn| = xn)
+ P (|Xn+1| = xn + 1, Xn = −xn||X1| = x1, ..., |Xn| = xn)
2. 设一个离散时间、离散状态的随机过程 {Xn, n ⩾ 1} 满足
X1, · · · , Xn−1⊥Xn+1|Xn, ∀n > 1
则成立
X1, · · · , Xn−1⊥Xn+1, · · · , Xm|Xn, ∀m > n > 1
参考答案:
下面为了记号简单,以 f (Xi|Xj) 代表条件 pdf: fXi|Xj (xi|Xj = xj)
=
(xt−1,
yt−1),
·
·
·
,
Z1
=
(x1,
y1)}
=
2
0
0 < i1 = i2 < m 其他
1
P {Zt+1
=
(i1,
i2)|Zt
=
(i1,
i2),
Zt−1
=
(xt−1,
yt−1),
·
·
·
,
Z1
=
(x1,
y1)}
=
2
0
i1 = i2 = m 其他

∏m f (Xn+1, · · · , Xn+m|X1, X2, · · · , Xn) = f (Xn+i|Xn+i−1)
i=1
∏m = f (Xn+i|Xn, · · · , Xn+i−1) = f (Xn+1, · · · , Xn+m|Xn)
i=1
此即:X1, · · · , Xn−1⊥Xn+1, · · · , Xm|Xn, ∀m > n > 1
清华大学电子工程系版权所有
3
参考答案:
(1) |X1|, |X2|, |X3|, ... 满足 Markov 性,可以严格证明:P (|Xn+1| = xn+1||X1| = x1, ..., |Xn| = xn) = P (|Xn+1| = xn+1||Xn| = xn)。 当 |Xn| = 0 时,必有:|Xn+1| = 1,P (|Xn+1| = 1||X1| = x1, ..., |Xn| = 0) = 1 = P (|Xn+1| = 1||Xn| = 0) 当 |Xn| = xn ̸= 0 ∨ m 时,则 |Xn+1| = xn+1 必须取值为 |Xn| ± 1

















图 2.1 带反射壁的随机游走
(1) 解释为什么 |X1|, |X2|, |X3|, . . . 满足 Markov 性,并画出相关的状态转移图。
(2) 假设跟踪记录最大偏移量,即定义 t 时刻的最大偏移量 Yt = max{|X1|, |X2|, . . . , |Xt|}, 解释为什么 Y1, Y2, Y3, . . . 不满足 Markov 性,试寻找一个满足 Markov 性且能够记 录最大偏移量的随机变量序列,并画出其相关的状态转移图。
清华大学电子工程系版权所有
*





!

"""#$%&'()&""
4
!"#$%&

'()*+,-./0 状态转移图为:


即:(η1, · · · , ηn−1)⊥ηn+1|ηn 因此随机变量序列 {ηn} 具有 Markov 性。 (2) E(ηn|η1 = y1, η2 = y2, · · · , ηn−1 = yn−1) = E(ηn−1 + ξn|η1 = y1, η2 = y2, · · · , ηn−1 = yn−1) = E(ηn−1|η1 = y1, η2 = y2, · · · , ηn−1 = yn−1)+E(ξn|η1 = y1, η2 = y2, · · · , ηn−1 = yn−1) = yn−1 + E(ξn) 根据 (1),{η1, η2, · · · , ηn−1} 与 ξn 相互独立 同样,可得 E(ηn|ηn−1 = yn−1) = yn−1 + E(ξn)。据题意,E(ξn) = 0 因此:E (ηn|η1 = y1, η2 = y2, · · ·, ηn−1 = yn−1) = E (ηn|ηn−1 = yn−1) = yn−1。
参考答案:
(1) 由随机变量 ξ1, ξ2, · · · , ξn, · · · 相互独立,可得:{η1, η2, · · · , ηn} 与 ξn+1 相互独立 又有:ηn+1 = ηn + ξn+1, 得到条件 pdf fηn+1|ηn (x) 为:
fηn+1|ηn (x) = fξn+1 (x − ηn) = fn+1(x − ηn) = fξn+1|ηn,ηn−1,··· ,η1 (x)
=
P (|Xn+1|
=
m − 1||X1|
=
x1, · · · , |Xn| = m)
综上:P (|Xn+1| = xn+1||X1| = x1, ..., |Xn| = xn) = P (|Xn+1| = xn+1||Xn| = xn),即
Markov 性成立。上述证明也给出了 |Xn|(n = 1, 2, · · · ) 的一步转移概率,状态转移图
1 2
0 < i1 = i2 < m
P {Zt+1 = (i1+1, i2+1)|Zt = (i1, i2), Zt−1 = (xt−1, yt−1), · · · , Z1 = (x1, y1)} = 10
i1 = i2 = 0 其他
1
P {Zt+1
=
(i1−1,
i2)|Zt
=
(i1,
i2),
Zt−1
1 = 2 P (Xn = xn||X1| = x1, ..., |Xn| = xn)
1
1
+ 2 P (Xn = −xn||X1| = x1, ..., |Xn| = xn) = 2
同理:P (|Xn+1|
=
xn+1
=
xn

1||X1|
=
x1, ..., |Xn|
=
xn)
=
1 2
类似,可以证明:P (|Xn+1|
∏m f (Xn+1, · · · , Xn+m|X1, X2, · · · , Xn) = f (Xn+i|X1, X2, · · · , Xn+i−1)
相关文档
最新文档